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ABSTRACT 
To date, few advanced machine learning models have been developed for investigating 

the associations between features from brain imaging and individual Alzheimer’s disease (AD) 

related cognitive functional changes. Additionally, how these associations differ among 

different imaging modalities is unclear. Here we investigated 3D convolutional neural network 

(CNN) models which were trained to predict sub-scores in 13-item Alzheimer’s Disease 

Assessment Scale - Cognitive Subscale (ADAS-Cog13) based on MRI and FDG-PET brain 

imaging data obtained from the ADNI database. We found that each key ADAS-Cog13 sub-

score was associated with a specific set of brain features within an imaging modality. Overall, 

sub-scores were strongly associated with structural changes of subcortical regions including 

amygdala, hippocampus, and putamen, and were associated with metabolic changes of cortical 

regions including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, 

and the cerebellum. Our findings provided insights into complex AD etiology. Our analytical 

pipeline can also be utilized to study other brain diseases. 
 
INTRODUCTION  

Alzheimer’s Disease (AD) is the most frequent cause of dementia1. AD pathology is 

characterized by the accumulation of toxic species, such as amyloid beta plaques and tau 

tangles, alterations in glucose metabolism, as well as brain atrophy 2. The progression of AD 

impacts an individual’s cognitive functions such as memory, language, and spatial navigation 
3,4. The pathological changes of AD brain is best captured through neuroimaging techniques, 

such as magnetic resonance imaging (MRI) for brain structural changes, positron emission 

tomography (PET) for metabolic and chemical composition changes 5,6, etc. On the other hand, 

the cognitive function of AD patients can be evaluated via Alzheimer’s Disease Assessment 

Scale-Cognitive subscale (ADAS-Cog), which quantifies cognitive functions from different  

aspects (e.g., word recall, orientation, comprehension, etc.) with continuous values, and is 

frequently used in research and clinical settings7,8. 

 

Study of brain imaging data is important for understanding AD etiology and improving 

AD diagnosis, prognosis9,10, and development of treatments. To date, researchers have 

identified brain imaging biomarkers that are strongly associated with AD diagnosis: atrophy in 

the hippocampus and the medial temporal lobe, hypometabolism of glucose in the cingulate 

cortex, etc. 10-13.  Further, advanced statistical models have been trained to accurately classify 
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AD versus healthy control brains based on imaging data 14,15. However, most studies focused 

on AD diagnosis instead of individual components of cognitive function, which assesses brain 

functions from various aspects (e.g., as quantified by ADAS-Cog13 sub-scores). Associations 

between individual cognitive functions and brain imaging features remain to be further studied. 

Further, how these associations appear in different imaging modalities such as MRI vs PET 

remain to be studied. To the best of our knowledge, no previous study has systematically 

investigated these questions.  

 

To understand the relationship between ADAS-Cog13 sub-scores and brain imaging 

features, we first linked these two types of data through a statistical model. Here we chose to 

use a 3-dimensional (3D) convolutional neural network (CNN) model to predict ADAS-Cog13 

sub-scores, since CNNs demonstrated to have superior performance in classification and 

regression when dealing with imaging data 16,17. We trained the model, validated it, and further 

investigated the model. While neural networks (NNs) were commonly used as “black-box” 

tools in the past, recent advances in methods for interpreting NNs allow researchers to identify 

features important for the models’ performance 18-20. In this study, we applied occlusion 18-20, a 

commonly used method, to investigating the trained model and identified brain features most 

important for predicting ADAS-Cog13 sub-scores. 

 

In this study, we obtained MRI, fluorodeoxyglucose PET (FDG-PET), and AV45-PET 

imaging data, along with ADAS-Cog13 sub-scores for subjects from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). We identified top ADAS-

Cog13 sub-scores that were most important for AD diagnosis, then used a same pipeline to 

train CNN models for predicting these key ADAS-Cog13 sub-scores based on different 

imaging modalities. We further investigated these trained models to identify brain regions 

associated with ADAS-Cog13 sub-scores. Our analytical pipeline brought new insights for 

associations between brain features and individual cognitive functions and can be applied to 

studying other brain diseases where imaging data are available. 

 

RESULTS  

 
Identifying ADAS-Cog13 sub-scores important for AD diagnosis  
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We identified the ADAS-Cog13 sub-scores most important for AD diagnosis by 

training a random forest (RF) model for classifying AD versus non-AD (nAD) patients based 

on these sub-scores using ADNI sample (See Methods section and Supplementary Table 1). 

The RF classifier was able to classify the AD diagnosis with an accuracy of 95% (98% 

precision and 90% recall). In this model, top four ADAS-Cog13 sub-scores were responsible 

for 82% of the RF feature importance: word recall (Q1), 16%; delayed word recall (Q4), 29%; 

orientation (Q7), 25%; word recognition (Q8), 11% (Supplementary Table 2). These top four 

sub-scores scores are representable of the AD cognitive performance and are therefore used as 

regression outputs of the subsequent 3D CNN models.  

 

Predicting key ADAS-Cog13 sub-scores with CNNs based on brain images  

We trained 3D CNNs that utilized brain images to predict 4 ADAS-Cog13 sub-scores 

(Q1, Q4, Q7, and Q8) based on MRI, FDG-PET, and AV45-PET imaging modalities. Our CNN 

model architecture is described in Figure 1 (see Methods section for details). We found that the 

MRI based CNN model performed the best in predicting sub-scores, with R2 of 78%, 80%, 

64%, and 62% for Q1, Q4, Q7 and Q8 respectively (Figure 2D). The FDG-PET based 3D CNN 

performed similarly to the MRI model, with the exception of poor performance on Q8 (49%). 

The AV45-PET based model had the lowest prediction accuracy (Figure 2D).  

 

To assess the models’ accuracy in predicting ADAS-Cog13 sub-scores, we compared 

the mean absolute error (MAE) of our model predictions with the inter-test variability of sub-

scores (ITV), which reflects natural fluctuations of ADAS-Cog13 (see Methods section for 

details). The MAEs of MRI and FDG based 3D CNN model didn’t show significant difference 

from ITVs for Q1, Q4, Q7, or Q8 (Figure 2 A, B, D). This indicated that errors in the model 

predictions are comparable to intrinsic variations in the sub-scores. As a comparison, AV45-

PET based model performed worse, with MAEs significantly higher than ITVs for Q1 and Q4 

(Figure 2 C, D).  

 

To further assess the 3D CNN models’ accuracy, we extended them for classifying nAD 

vs. AD (i.e., AD diagnosis). The deep learning features from the final fully connected layer 

(FC2) were used for AD classification (Figure 1). The highest classification accuracy was 

achieved by the FDG-PET model with a k-nearest neighbor (KNN) extension (AUROC = 90%), 

followed by the MRI model (AUROC = 89%) and AV45-PET model (AUROC = 84%) 
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(Supplementary Figure 1, Supplementary Table 3). To further test the generalizability of the 

3D CNN models, an external validation was done by applying our models to the RADC dataset 

(see Methods section and Supplementary Table 4) to classify nAD vs. AD. Despite significant 

differences in age, overall patient populations and scanning protocols between ADNI and 

RADC datasets, our model achieved an AUROC of 0.74 for RADC data.  

 

Identifying brain regions associated with ADAS-Cog13 sub-scores 

After model training, we investigated MRI and FDG-PET based models with occlusion 

method to identify brain regions important for predicting ADAS-Cog13 sub-scores (see 

Methods section for details).  

 

We found that the MRI and FDG-PET CNNs utilized different brain regions for 

predicting ADAS-Cog13 sub-scores. Further, each ADAS-Cog13 sub-score was associated 

with a specific set of brain features. In the MRI based 3D CNN model, sub-score Q1 was most 

strongly associated with brain structural changes in the hippocampus and the putamen, etc. Q4, 

Q7, and Q8 were strongly associated with changes in the hippocampus and the amygdala, etc. 

(Figure 3 A-D). Three regions (the amygdala, the hippocampus, and the putamen) appeared 

among the top ten for all four ADAS-Cog13 sub-score. Supplementary Table 5 lists feature 

importance scores of all brain regions in the MRI based CNN. In the FDG-PET based 3D CNN 

model, Q1 and Q4 were most strongly associated with brain metabolic changes in the 

cerebellum and the cingulate gyrus (posterior division), etc. Q7 was strongly associated with 

changes in the cingulate gyrus (posterior division) and the thalamus, etc. Q8 was associated 

with changes in the cingulate gyrus (posterior division) and the putamen, etc. (Figure 3 E-H). 

Five brain regions appeared among the top ten for all four ADAS-Cog13 sub-scores: the 

cingulate gyrus (posterior division), middle frontal gyrus, precuneous cortex, lateral occipital 

cortex (inferior division), and cerebellum. Supplementary Table 6 lists feature importance 

scores of all brain regions in the FDG-PET based CNN. Figure 3 I-L visualize the top five 

regions associated with each ADAS-Cog13 sub-score in MRI model (red) and FDG-PET 

model (green), respectively. A few important brain regions overlap between MRI and FDG-

PET based CNNs, as highlighted in yellow color. 

 

We further investigated the brain-imaging associations in three disease sub-groups: 

cognitively normal (CN), MCI, and AD. We observed that within different disease sub-groups, 
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the importance scores of a specific brain region varied. For example, the hippocampus was a 

most important region in the MRI based CNN model in CN subjects for all ADAS-Cog13 sub-

scores, while its importance in the model diminished in MCI and AD patients. The cerebellum 

was a most important region in the FDG-PET model in AD subjects for sub-score Q7; while 

its importance was much lower in CN and MCI subjects (Supplementary Figure 2). 

 

Pairwise correlation among ADAS-Cog13 sub-scores 

We also calculated pairwise correlation among ADAS-Cog13 sub-scores Q1, Q4, Q7, 

and Q8 in terms of their associations with brain features (see Methods section for details). In 

the MRI based model, the strongest correlation was between Q1 and Q4 (Spearman’s 

correlation=0.94), followed by Q4 and Q8 (Spearman’s correlation=0.91). In comparison, Q7 

had lower correlations with other sub-scores. All pairwise correlations are shown in Figure 4 

A. Note that Q1 measures function for word recall, Q4 measures delayed word recall, Q7 

measures orientation, and Q8 measures word recognition. The pairwise correlations of sub-

scores based on brain feature importance scores were higher within language related sub-scores 

than those between language and orientation sub-scores. In the FDG-PET model, the strongest 

pairwise correlation of cognitive functions was between Q1 and Q4 (Spearman’s 

correlation=0.96), followed by Q4 and Q8 (Spearman’s correlation=0.95). All pairwise 

correlations are shown in Figure 4 B. Like the observation for the MRI based model, the 

pairwise correlations were higher within language related sub-scores than those between 

language and orientation related sub-scores.  

 

DISCUSSION 
 In this study, we made a first attempt to train 3D CNN models based on brain imaging 

data for predicting four ADAS-Cog13 sub-scores that were crucial for AD diagnosis, and then 

investigated the CNN models to identify brain regions strongly associated with these sub-

scores.  

 

The MRI and FDG-PET based 3D CNN models predicted the ADAS-Cog13 sub-scores 

with R2 above 60%, except for low performance of FDG-PET based model on predicting sub-

score Q8. The MAEs of these models’ prediction on ADAS-Cog13 sub-scores were 

comparable to the ITVs of these sub-scores, indicating that errors in CNN models’ prediction 

were comparable to natural variations of the ADAS-Cog13 sub-scores. We provided additional 
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internal validation of the MRI and FDG-PET based models by demonstrating that they can be 

applied to classifying nAD vs. AD subjects accurately (with an AUROC of 0.89 and 0.9, 

respectively). Further, the MRI based model performed well in classifying nAD vs. AD 

subjects when applied to an external test dataset, RADC, without any modifications. Compared 

to MRI and FDG-PET based CNN models, the AV45-PET CNN model performed worse in 

predicting ADAS-Cog13 sub-scores but had comparable performance in identify AD vs nAD. 

As revealed in previous studies, amyloid deposition as measured by AV45-PET has an impact 

on cognition in early stages, while ADAS-Cog13 is not sensitive enough for measuring changes 

in early cognitive stage of MCI or AD 21,22. This is a potential explanation for poor performance 

of AV45-PET based model in predicting ADAS-Cog13 sub-scores. In real-world practice, 

many clinical trials for AD drugs monitor cognitive endpoints like ADAS-Cog13 and amyloid 

beta based on AV45-PET imaging 23. Our observation suggests that cognitive functions had a 

stronger association with MRI and FDG-PET imaging signals than with AV45-PET imaging 

signals. Additionally, MRI and/or FDG-PET neuroimaging biomarker monitored during drug 

treatments can provide valuable information on change in brain structure & metabolism in 

response to treatment and overall progression of disease. 

 

After training MRI and FDG-PET based 3D CNN models, we identified brain regions 

associated with key ADAS-Cog13 sub-scores through investigating these models with 

occlusion method. Thanks to the statistical nature of this method, we were able to quantify the 

contribution of each brain region on prediction of ADAS-Cog13 sub-scores, which was not 

encoded in other brain regions. We found that these models utilized distinct sets of brain 

regions for predicting the sub-scores. For example, the hippocampus region had a high 

importance score in predicting all ADAS-Cog13 sub-scores in MRI based CNN model (Figure 

3, Supplementary Table 5). This is a subcortical region important for memory formation and 

is well known to undergo atrophy in AD patients 10,13.  In comparison, the hippocampus region 

didn’t appear to be highly important for the FDG-PET based CNN model. Instead, a network 

of cortical regions, led by cingulate gyrus, appeared to be highly important for all the sub-

scores in the FDG based model (Supplementary Table 6). This finding corroborated previous 

studies that reported abnormal metabolism in cingulate cortex of AD patients 11,12. Further, we 

found that cerebellum, which is essential for motor activity and motor learning, was an 

important region associated with cognitive functions, especially Q1, Q4, and Q8, in the FDG-

PET modality. Previous studies have reported that metabolites of cerebellar neurons promote 
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amyloid-β clearance, and that cerebellar glucose metabolism was significantly lower in AD 

patients compared to control subjects 24,25.  

 

Our study also showed that within an imaging modality (MRI or FDG-PET) each 

ADAS-Cog13 sub-scores were associated with a specific set of brain regions. In the MRI based 

model, sub-score Q1 was most strongly associated with brain structural changes in the 

hippocampus and the putamen, etc. Q4, Q7, and Q8 were strongly associated with changes in 

the hippocampus and the amygdala, etc. In the FDG-PET based model, Q1 and Q4 were most 

strongly associated with brain metabolic changes in the cerebellum and the cingulate gyrus 

(posterior division), etc. Q7 was strongly associated with changes in the cingulate gyrus 

(posterior division) and the thalamus, etc. Q8 was associated with changes in the cingulate 

gyrus (posterior division) and the putamen, etc. These findings indicate a complex underlying 

relationship between structural and functional changes in brain regions (as measured by brain 

biomarkers) and changes in specific cognitive functions as observed in AD etiology. 

Nevertheless, the cognitive function pairs that were similar to each other were highly correlated 

in terms of their associations with brain features as well. We further made a first attempt to 

investigate the CNN models within each disease sub-group and found that ranks of brain region 

importance scores were different among disease sub-groups (Supplementary Figure 2). For 

example, the hippocampus, a most important region in the MRI based model in CN subjects 

for all ADAS-Cog13 sub-scores, showed lower importance score in MCI and AD patients. This 

indicated that AD etiology is dynamic, with different brain regions becoming strongly 

associated with cognitive function as the disease progresses.  

 

Our study had some limitations. First, we chose our 3D CNN model structure and 

parameters based on previous knowledge on training CNNs. CNNs have lots of variations in 

their structures and parameters. Exploring more combinations of CNN structures and 

parameters may improve the model’s accuracy in predicting ADAS-Cog13 sub-scores. Second, 

our definition of brain feature importance was based on occlusion method, while alternative 

definitions such as GRAD-RAM are available and may reveal other insights 20,26. Third, our 

current model predicted cognitive functions collected at a single time point. A natural extension 

of this model would be to incorporate time factor, so that it predicts the change of cognitive 

function in the future. 
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In clinical practice, our findings may help to refine the process of AD early 

interventions and clinical trials. It is known that the changes of the brain, although associated 

with cognitive function changes, can occur a long time before changes in cognitive function. 

For example, it was reported that brain structural changes were detectable in the hippocampus 

and the medial temporal lobe up to ten years before any AD symptom arises 27. Also, 

researchers were able to predict progression from mild cognitive impairment to AD two years 

in advance using FDG-PET or MRI data 14,28. Based on our analyses, we further suggest that 

brain features identified in our model, along with the cognitive scores predicted based on brain 

imaging data, may assist AD risk assessment before diagnoses, allowing early disease 

intervention. During patient enrollment for clinical trials, our model may also help to stratify 

the patients in terms of their disease progression risk and increase the power of these trials. 

Most such current applications use more traditional radio-imaging features like volume, 

average grey value etc., which ignore the deeper associations in the grey-values across the 3D 

space. CNN models can capture deeper associations and generate more nuanced brain feature 

based patient stratification. We further propose that brain structural and metabolic features be 

monitored after initiation of drug intervention: changes of these features, while highly 

associated with ADAS-cog sub-scores, may occur well before any change of cognitive 

functions and can therefore suggest AD stabilization (or even reversion) and help clinicians to 

better understand and evaluate drug efficacy.  

 

In sum, we developed 3D CNN models for analyzing 3D brain imaging data. These 

models predicted ADAS-Cog13 sub-scores based on different imaging modalities and brought 

insights for the association between cognitive functions and brain imaging features. Our models 

can hopefully accelerate clinical trials for AD and can be further expanded to analyze imaging 

data for different types of brain diseases.  

 
MATERIALS AND METHODS  

 

ADNI data 

The data used was obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (http://adni.loni.usc.edu). Data used in the preparation of this article were 

obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 
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whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease 

(AD). For up-to-date information, see www.adni-info.org. As specified by the ADNI protocol, 

each participant within the study was willing, spoke English or Spanish, was able to perform 

all test procedures described in the protocol and had a study partner able to provide an 

independent evaluation of functioning. We used 9,862 unique imaging entries with cognitively 

normal (CN), mild-cognitive impairment (MCI) or AD diagnosis from ADNI. Demographic 

and clinical characteristics of these entries are shown in Supplementary Table 1.  

 

Random forest (RF) classifier for Alzheimer’s Disease (AD) vs non-AD (nAD) 

A random forest model29 was used to classify AD versus nAD with 13 ADAS-Cog13 

sub-scores as predictors. MCI and CN participants were grouped into the nAD class. To 

balance the weights of the 13 ADAS-Cog13 sub-scores, each sub-score was normalized to a 

scale of 0 to 1 using min-max scaling. Train / test splitting with a ratio of 80:20 was carried out 

before model training process. The training and testing sets were balanced by random sampling 

to adjust for the ratio of nAD and AD. During the training process, model hyperparameters 

were optimized using grid search 30. 

 

Imaging pre-processing 

3D brain images used in this study underwent multiple preprocessing steps as illustrated 

in Supplementary Figure 3. First, images were registered with the MNI152 standard space 

structural brain template 31. Brain volumes and positions were standardized. Second, a 

standardized brain mask was applied to strip the cranium and brain stem, retaining only the 

cerebrum and cerebellum.  

 

For MRI imaging data, white stripe normalization 32 was applied. The normal-appearing 

white matter (NAWM) with least pathological variation was selected as the reference tissue 32. 

All MRI images were then transformed by matching their distributions of NAWM to that of 

the reference MRI with a fixed mean (µref) and standard deviation (σref), as shown in 

Supplementary Figure 3. Mathematically, the histogram distribution of a specific MRI image 

was transformed using 
(1)					𝑥!"#$ ∗ 	𝜎#%& + µ#%& 
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where 𝑥!"#$ = (𝑥 − 	µ)/𝜎 is the normalized distribution with a mean of zero and a standard 

deviation of 1 for NAWM. µ and σ are the mean and standard deviation of NAWM from the 

MRI image to be normalized. Note that some MRI images failed white stripe normalization, 

showing a mismatched NAWM peak following normalization (Supplementary Figure 3). 

Abnormal and low-quality MRI images were excluded from subsequent experiments. 

 

For PET imaging data, normalization was done following the ADNI protocol, where 

the intensities were pre-normalized by the ratio between the radiotracer and the body weight 33. 

In addition, we applied a customized “cohort normalization” to scale PET images into a range 

between 0 to 1 at a cohort level. Mathematically, all PET images were divided by the maximum 

of nstats from the training cohort, where nstats was the voxel intensity at the 99.9 percentile from 

the PET image from an individual patient. We used 99.9 percentile instead of the maximum 

intensity value was to avoid the influence from outliers.  

 

Building 3D convolutional neural networks (3D CNNs)  

We built a 3D convolutional neural network (3D CNN) with skip connection and 

inception units to analyze 3D brain imaging data. The backbone of the 3D-CNN is based on 

VGG16 34, which consists of 14 convolutional (conv) layers (including 4 max pooling layers), 

followed by 2 fully connected layers (FC1 and FC2) and a final output layer which generates 

predictions of four ADAS-Cog13 sub-scores as in a multi-task feature learning process 35. 

When training the model, a batch size of 8 imaging samples was used. Rectified linear unit 

(ReLU) was applied as the activation functions for all the conv layers. Batch normalization 

(BN) was applied before the activation function. The channel number (nchannel) for the conv 

layers inside Conv 1, Conv 2, Conv 3 and Conv 4 were 16, 32, 64 and 128. At the end of Conv 

1, Conv 2, Conv 3 and Conv 4, a max pooling operation with kernel size of 2 were applied to 

reduce the spatial size of activation maps into half. Conv 3 and Conv 4 were modified into 

residual blocks 36 with skip connections which aggregate the output of the 1st and 2nd conv layers 

in the group before feeding the results into the 3rd conv layer. The output of the Conv 4 with a 

size of (nbatch, 7, 7, 7, 128) was flattened into an array with size (nbatch, 43,904) before proceeding 

to the fully connected (FC) layers: FC1 and FC2. Both FC1 and FC2 contained 1024 neurons 

which converted the input array into arrays of size (nbatch, 1024). The tanh activation function 

was applied to both FC layers. Finally, the output layer with a customized sigmoid activation 
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function ( %
%&''()

 where 𝜂 was a trainable parameter) that converts the FC2 layer output into the 

final predictions of size (nbatch, 4).  

 

To train the model, the samples were split into training and test sets with a ratio of 

80:20. The mean squared error (MSE) between the true ADAS-Cog13 scores and the predicted 

scores were used as the loss function. Model parameters were then optimized using the Adam 

algorithm 37 to minimize the MSE of the training set. Cosine annealing 38 was used as the 

learning rate scheduler to help the model converge rapidly to a local minima and at the same 

time prevent the model from getting stuck in one single local minima by abruptly increasing 

the learning rate to maximum at the beginning of each cycle. The maximum and minimum 

learning rate used in our study were 0.01 and 0.0001, respectively. To boost the model 

accuracy, ensemble technique was applied by selecting 5-7 best models (models with minimum 

MSE on the test set) from the saved models and calculated the mean of predictions from 

multiple models for each ADAS-Cog13 sub-score. 

 

To evaluate model performance, we used multiple metrics including the mean absolute 

error (MAE) and R2. The MAE for each ADAS-Cod sub-score was defined as the mean of |ytrue 

- ypred| across the cohort where ytrue and ypred are the true and predicted ADAS-Cog13 scores.  

 

To compare the model performance with clinical practice, we calculated the inter-test 

variability (ITV) for each ADAS-Cog13 sub-score on a complete ADNI ADAS-Cog13 dataset 

with 9,862 unique samples (the same cohort as listed in Supplementary Table 1). ITV was 

calculated as the maximum difference in recorded score for each ADNI participant within a 

period of +/- 3 months. Mathematically, the ITV for entry i (𝐼𝑇𝑉() was defined as  

(2)				𝐼𝑇𝑉* = max2𝑞*,,, 𝑞*,-, … , 𝑞*,.6 − min	(𝑞*,,, 𝑞*,-, … , 𝑞*,.) 

where 𝑞(,%, 𝑞(,*, … , 𝑞(,+ were the ADAS-Cog13 cog sub-score (Q1, Q4, Q7 or Q8) from all the 

visits that were within +/- 3 months with regards to entry i. The mean ITV for each sub-score 

represents the mean of all ADNI participants’ ITV.  

 

Diagnostic extension & validation of 3D CNN models 

The diagnostic extension of the 3D CNN predicted AD vs. nAD, where the penultimate 

layer (FC2) output with a size of (nentries, 1024) was utilized to train a binary classification 

model, where nentries was the number of entries. Classification models, including logistic 
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regression39, k-nearest neighbor (KNN) 40 and random forest 29, were trained to predict 

diagnosis using the values in the penultimate layer. Similar to the main AI model, multiple sub-

models with the same architecture were ensembled and a voting classifier was applied to 

generate final predictions.  

 

The validation dataset for nAD and AD diagnosis was obtained from the Rush 

Alzheimer’s Disease Center (RADC) Religious Order Study (ROS) 41, a clinical-pathologic 

study of aging and dementia. The demographic information of samples from RADC is 

summarized in Supplementary Table 4. MRI images from RADC were processed in the same 

way as for ADNI images.  

 

Identifying features important for 3D CNN model 

We estimated feature importance scores of 56 brain regions using occlusion method as 

described in previous studies 18-20. The feature importance of a specific brain region quantifies 

its importance that was not encoded in other brain regions. In our analyses, the cortical and 

subcortical atlases were obtained from the Center for Morphometric Analysis 

(https://cma.mgh.harvard.edu). With the occlusion method, the change of model prediction 

error after removing a brain region was measured. More specifically, the CNN feature 

importance score of brain region i was defined as 

(3)						𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 	
∆𝑀𝐴𝐸*
𝑀𝐴𝐸	  

, where ∆𝑀𝐴𝐸( is the absolute change of CNN MAE after removing the ith brain region from 

model input.  

 

Calculating pairwise correlation among ADAS-Cog13 sub-scores 

We calculated pairwise correlation among ADAS-Cog13 sub-scores Q1, Q4, Q7, and 

Q8 based on their associations with 56 brain regions. To be specific, for each ADAS-Cog13 

sub-score we obtained feature importance scores of 56 brain regions in a CNN model. We then 

calculated Spearman’s correlation between each pair of sub-scores based on the 56-dimentional 

feature importance scores.  The pair-wise correlations among sub-scores were obtained for 

MRI and FDG-PET based CNN models separately. 
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Figures 

 

Figure 1. 3D CNN model architecture. The CNN model is composed of 10 convolutional 

layers grouped: Conv 1 (2 layers), Conv 2 (2 layers), Conv 3 (3 layers) and Conv 4 (3 layers). 

This model processes brain imaging data, and can predict both AD diagnosis (yellow box) and 

ADAS-Cog13 sub-scores (gray box).  
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Figure 2. Model metrics on ADAS-Cog13 predictions. A-C: Graphical representation of the 

mean absolute error (MAE) across ADAS-Cog sub scores for the MRI (A), FDG-PET (B) and 

AV45-PET (C) CNNs. The inter-test variabilities (ITVs) for four ADAS-Cog13 sub-scores are 

represented by the red horizontal line. One-tailed t-tests was performed to compare MAEs and 

ITVs for each ADAS-Cog13 sub-score. ‘n.s.’ means there is no significant difference between 

MAE and ITV. D: Test set MAE and R2 for the MRI, FDG-PET and AV45-PET based CNN 

models, along with the mean ITV and scale of each ADAS-Cog13 sub-score.  
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Figure 3. Important brain regions in MRI and FDG-PET based 3D CNN models. A-D: Feature 

importance scores of top five brain regions for ADAS-cog13 sub-scores Q1, Q4, Q7, and Q8 

in the MRI based CNN. E-H: Feature importance scores of top five brain regions for Q1, Q4, 

Q7, and Q8 in FDG-PET based CNN. I-L: Coronal views of top five important brain regions 

for each ADAS-Cog13 sub-scores in the MRI (red) and the FDG-PET (green) 3D CNNs. 

Regions that are important for both MRI and FDG-PET models are highlighted in yellow 

colour.  
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Figure 4. Pairwise correlations among ADAS-Cog13 sub-scores Q1, Q4, Q7, and Q8. A: 
Correlations in MRI based CNN. B: Correlations in FDG-PET based CNN. 
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Supplementary Figures and Tables 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Receiver Operating Characteristic (ROC) curves of classification 

models on the ADNI and RADC datasets. A-C: MRI, FDG-PET, and AV45-PET based CNN 

models with diagnostic extension applied to ADNI samples. D: MRI based CNN models with 

diagnostic extension applied to RADC samples. Random forest (black), K nearest neighbours 

(grey), and logistic regression (blue) were used for the diagnosis extension.  
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Supplementary Figure 2. Feature importance scores of selected brain regions within MRI (A-

D) and FDG-PET (E-H) in different diagnosis sub-groups.   
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Supplementary Figure 3. Imaging preprocessing. A) Schematic representation of the image 

processing pipeline. Example of white-stripe normalization for MRI images, with pixel 

intensity distributions of the reference MRI (grey lines), a successfully normalized MRI (black 

lines) and an abnormal MRI that fails white stripe normalization (red lines) from raw imaging 

(B)  to normalized imaging (C). 
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Supplementary Table 1. Demographic information of ADNI samples.  

    
Normal cognition Mild cognitive impairment Alzheimer’s Disease 

(n = 3314) (n = 4412) (n = 2136) 

    Count (%) Count (%) Count (%) 

Sex F 1722 (52) 1747 (39.6) 909 (42.6) 
 M 1592(48) 2665(60.4) 1227(57.4) 

  Mean (stdev) Mean (stdev) Mean (stdev) 

Age 76.9 (6.6) 75.1 (7.8) 76.7 (7.5) 
Total ADAS-Cog13 9.4 (4.6) 16.3 (7.5) 32.5 (11.2) 

 
 
 
 
 
Supplementary Table 2. Random forest feature importance for predicting AD vs. nAD based 
on ADAS-Cog13 sub-scores. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

ADAS-COG SUB-SCORE 
FEATURE 
IMPORTANCE (%) 

Q1 – WORD RECALL 16 
Q2 – COMMANDS 1 
Q3 – CONSTRUCTIONAL PRAXIS 1 
Q4 – DELAYED WORD RECALL 29 
Q5 – NAMING OBJECTS/FINGERS 2 
Q6 – IDEATIONAL PRAXIS 3 
Q7 – ORIENTATION 25 
Q8 – WORD RECOGNITION 11 
Q9 – REMEMBERING TEST 
INSTRUCTIONS 

1 

Q10 – COMPREHENSION 1 
Q11 – WORD FINDING LANGUAGE 
ABILITY 2 

Q12 – SPOKEN LANGUAGE ABILITY 1 
Q13 – NUMBER CANCELLATION 5 
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Supplementary Table 3. Accuracy of CNN model extension for AD diagnosis. 
 
Model AUROC 

MRI 

Logistic regression 0.78 

K-nearest neighbors 0.89 

Random forest 0.83 

FDG-PET 

Logistic regression 0.85 

K-nearest neighbors 0.9 

Random forest 0.86 

AV45-PET 

Logistic regression 0.61 

K-nearest neighbors 0.84 

Random forest 0.71 

 
 
 
 
Supplementary Table 4. Demographic information of RADC samples. 

    
Normal cognition Mild cognitive impairment Alzheimer’s Disease 

(n = 1641) (n = 325) (n = 30) 

    Count (%) Count (%) Count (%) 

Sex F 1271 (77) 246 (75) 20 (66) 
 M 370 (23) 79 (24) 28 (34) 

  Mean (stdev) Mean (stdev) Mean (stdev) 

Age 81.0 (7.3) 85.0 (6.2) 86.7 (7.6) 
Total MMSE 28.6 (1.3) 26.9 (2.1) 23.0 (3.1) 
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