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ABSTRACT 

Recommendations from the American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the 

use of computational predictors as Supporting level of evidence for pathogenicity or benignity 

using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, 

and ACMG/AMP recommendations that require the consensus of multiple predictors, lack 

quantitative support. Previously, we described a probabilistic framework that quantified the 

strengths of evidence (Supporting, Moderate, Strong, Very Strong) within ACMG/AMP 

recommendations. We have extended this framework to computational predictors and introduce 

a new standard that converts a tool’s scores to PP3 and BP4 evidence strengths. Our approach 

is based on estimating the local positive predictive value and can calibrate any computational 

tool or other continuous-scale evidence on any variant type. We estimate thresholds (score 

intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen 

missense variant interpretation tools, using carefully assembled independent data sets. Most 

tools achieved Supporting evidence level for both pathogenic and benign classification using 

newly established thresholds. Multiple tools reached score thresholds justifying Moderate and 

several reached Strong evidence levels. One tool reached Very Strong evidence level for 

benign classification on some variants. Based on these findings, we provide recommendations 

for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and 

future assessment of computational methods for clinical interpretation. 
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INTRODUCTION 

Genetic and genomic testing is now standard of care for identifying hereditary susceptibility to 

many conditions (e.g., cancer, metabolic conditions, intellectual and physical developmental 

disorders) as it can provide an etiologic diagnosis and indicate increased lifetime risk to 

manifest symptoms of a monogenic disease. However, testing can also identify variants of 

uncertain significance (VUS), many of which are amino acid substitutions.1 VUS are rapidly 

accumulating in variant databases and their classification represents a major challenge in 

clinical genetics.1 

To help standardize the approach of clinical genetic/genomic testing laboratories, the 

American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology (ACMG/AMP) published recommendations for evaluating the pathogenicity of 

variants in genes associated with monogenic disease.2 The ACMG/AMP recommendations (1) 

list qualitatively distinct lines of evidence (functional, genetic, population, computational, etc.), 

(2) indicate how each evidence type could be applied toward a Pathogenic or Benign 

classification, (3) stratify the strength of evidence as Supporting, Moderate, Strong, Very Strong, 

or Standalone for pathogenicity and benignity, and (4) provide rules for combining evidence 

types that defined the amount of evidence required to reach the classification categories.  

Many computational (in silico) tools have been developed to predict if a variant will disrupt 

the function of a gene product.3–5 Because computational tools can be applied to many different 

types of genomic variation, these methods are attractive for application to variants observed in 

clinical or research testing, particularly in the absence of genetic or functional evidence. 

However, it is critical to recognize that while in silico predictors alone are not capable of 

classifying the pathogenicity of a variant, with adequate calibration and validation they can 

provide a useful contribution to the overall classification. The 2015 version of the ACMG/AMP 

computational classification rules stated that if “multiple lines of computational evidence” 

supported either pathogenic or benign classification, then they could be assigned the lowest 
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level of evidence, “PP3-Supporting Pathogenic” or “BP4-Supporting Benign”. Supporting 

evidence must then be combined with substantial other lines of evidence to classify the variant 

as being pathogenic, benign, or of uncertain significance.  

These rules have presented several challenges that can lead to either overstating or 

understating the strength of computational evidence.3,6 The ACMG/AMP recommendations 

required that two or more algorithms be used and that their outputs can be considered to be 

Supporting evidence only if the predictions from all tested algorithms agree. In practice, many 

methods overlap and thus do not offer independent assessment of pathogenicity.4,6 Accepted 

standards for concordance do not exist, and variability among laboratories has been observed.7  

Finally, the design of several tools was motivated mainly by the discovery of novel variants and 

hypothesis generation for experimental follow-up, rather than clinical pathogenicity 

classification. As a result, the data sets used for validation and calibration of in silico predictors 

present potential sources of error for use of these tools in clinical settings, including the score 

thresholds required to apply evidence from any given predictor. Methods that have been tested 

on a few well-understood genes should be tested on larger data sets before they can be 

considered generalizable. If the variants from certain genes are overrepresented or if the same 

variants or different variants from the same protein occur both in the datasets used for training 

and for evaluation of these tools, the models may be overfitted and biased, and the 

effectiveness of the tool overestimated due to such circularities.8 Thus, the current ACMG/AMP 

rules can be applied by different labs in non-standardized ways that could lead to misestimation 

of the strength of in silico predictors for pathogenicity classification, encouraging inappropriate 

and/or inconsistent variant classification. 

We have previously modeled the ACMG/AMP rules for combining evidence and showed 

how they fit a probabilistic framework.9 Under reasonable assumptions, we used a positive 

likelihood ratio of pathogenicity to quantify the strength of evidence that corresponds to a 

Supporting level of evidence and established that, within this framework, the strength of 
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evidence required for Moderate, Strong, and Very Strong rose exponentially.9 This model gave 

us a basis for developing formal principles that can be used for validating and calibrating 

evidence for pathogenicity classification and potentially expanding the use of predictors beyond 

the Supporting evidence strength.10,11 This approach can also be used for in silico tools to 

establish proper weighting of computational evidence. With these, we can now study, using 

carefully curated data sets, how tools can be calibrated to support a given strength of evidence 

and can be used in the ACMG/AMP classification framework. 

Here we propose a quantitative framework for establishing the level of contributory evidence 

in genomic testing that can be applied to any computational tool. We then focus on missense 

variation and systematically evaluate a set of widely used in silico tools on data sets validated to 

optimize accuracy and minimize circularity. We set out to determine score thresholds 

appropriate for a variant evaluated by the tool to reach various levels of evidence, potentially 

including levels beyond the original ACMG/AMP recommendation of Supporting. Our goal was 

to calibrate in silico tools, tested here for missense variants, so they could be used in a manner 

that is consistent across clinical diagnostic laboratories and properly weighted based on 

evidence. Finally, we discuss our findings and implications for an effective use of computational 

tools in the clinical interpretation of variants. 

 

MATERIALS AND METHODS 

In silico tools considered 

Missense variant interpretation tools for this study were selected based on several factors, 

including their mention in the ACMG/AMP recommendations, their prevalence in current clinical 

workflows, their consistent performance in independent assessments such as the Critical 

Assessment of Genome Interpretation (CAGI), their contribution to methodological diversity, and 

ease to obtain prediction scores. This resulted in a set of 13 tools: BayesDel (without minor 

allele frequency),12 CADD,13 Evolutionary Action (EA),14 FATHMM,15 GERP++,16 MPC,17 
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MutPred2,18 PhyloP,19 PolyPhen-2 (HumVar model),20 PrimateAI,21 REVEL,22 SIFT,23 and 

VEST4.24 Of these, REVEL and BayesDel are meta-predictors and incorporate prediction 

scores from other tools, including some evaluated here. Except for BayesDel, CADD, EA, 

MutPred2, and PolyPhen-2, precomputed variant prediction scores for all tools were obtained 

from the database of human nonsynonymous SNPs and their functional predictions (dbNSFP).25 

For the five tools mentioned above, prediction scores were generated for the variants 

considered in this study. All tools, except for FATHMM and SIFT, output scores such that higher 

scores are indicative of pathogenicity and lower scores are indicative of benignity. For 

consistency, the outputs of FATHMM and SIFT were transformed to be similar to the other tools 

and facilitate more consistent analyses. Note that we did not select any tool designed to 

evaluate splice variants. 

 

Data sets 

The main VCF file containing all variants from ClinVar26 was downloaded from its FTP site in 

December 2019. A series of steps were then undertaken to filter out variants that were not 

relevant to the analyses or could potentially bias them. Only missense variants with an allele 

frequency (AF) below 0.01 in the Genome Aggregation Database (gnomAD v2.1)27 and from 

genes with at least one pathogenic variant of any type in ClinVar were first retained. In this step, 

for each variant, the gnomAD exomes global AF was used. When this was unavailable, the 

gnomAD genomes global AF was used. Among these, all VUS, variants with a zero-star review 

status, i.e., without any detailed review information, and those with conflicting classifications 

were excluded. Next, variants that were present in the training sets of the different tools 

considered in this study were removed whenever available. Excluded variants came from the 

training sets of BayesDel, FATHMM, MPC, MutPred2, PolyPhen-2, REVEL, and VEST4. For 

meta-predictors such as BayesDel and REVEL that incorporate prediction scores from other 

tools, we also removed training variants for their constituent tools when available; e.g., 
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FATHMM, MutPred,28 VEST3,24 and MutationTaster.29 The resulting data set consisted of 

11,834 variants from 1,914 genes and is referred to as the ClinVar 2019 set (Figure 1A). 

A second data set was created using VCF files from gnomAD. Both exome and genome 

data (v2.1.1) were obtained from the gnomAD downloads page, after which a series of filtering 

steps was undertaken. As before, only variants with AF < 0.01 were retained. For quality 

control, only those variants annotated as “PASS” in the “FILTER” column and with median 

genotype quality > 20 were retained. Additionally, all retained variants were required to have a 

median depth ³ 30 if the allele count was < 3 (present in at most two individuals), or ³ 10 if the 

allele count was at ³ 3. As with the ClinVar set, all missense variants from genes without a 

single pathogenic variant of any type in ClinVar were removed. From this point on, data from 

both exomes and genomes were merged into a single data set of 1,449,622 variants by taking 

the union of the two resources. From these, variants in segmental duplications, low-complexity 

and decoy regions were removed. As before, variants present in the various predictors’ training 

sets were also removed. Finally, to ensure no overlap with the ClinVar set, gnomAD variants 

found in ClinVar (December 2019) were removed. The resulting data set consisted of 363,894 

variants from 3,640 genes and is referred to as the gnomAD set (Figure 1B). 

Finally, a test set consisting only of missense variants meeting the previously described 

criteria and present in ClinVar after December 2019 was created. The main VCF file containing 

all variants from ClinVar was downloaded from its FTP site in December 2020. All steps were 

identical to those undertaken for the ClinVar 2019 set, except that filtering against the tools’ 

training sets was undertaken at the end after all other filtering steps. The resulting data set was 

then cross-referenced against the ClinVar 2019 set to obtain the final test set of 9,114 variants 

from 2,197 genes. This is referred to as the ClinVar 2020 set (Figure 1C). 
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Figure 1. Data set preparation. Steps taken to prepare the three data sets in this study, 

extracted from ClinVar (A, C) and gnomAD (B). Numbers on the right side represent the 

numbers of variants remaining after each step and numbers in parentheses represent the 

numbers of genes remaining after each step. The data set resulting from (A) is referred to as the 

ClinVar 2019 set, from (B) the gnomAD set, and from (C) the ClinVar 2020 set. The asterisk 

refers to numbers after removing variants from the MPC training sets. This was done in a post 

hoc manner after all filtering and downsampling steps were carried out for the ClinVar 2019 and 

gnomAD sets. 

 

Estimation of the prevalence of pathogenic variants 

Estimating the prevalence of pathogenic variants, or the prior probability of pathogenicity, 

requires selection of a reference set. We reasoned that rare variants in gnomAD among 

Mendelian disease genes constituted an appropriate set and then adopted a rigorous estimation 

approach using the AlphaMax algorithm.30 AlphaMax is a nonparametric maximum likelihood 

method that relied on a data set of ClinVar variants labeled as pathogenic or likely pathogenic 

and a gnomAD reference set of unlabeled variants. It typically maps high-dimensional input data 

into univariate output data, from which the priors are then estimated using kernel density 

estimation. To obtain a univariate transform, we trained a neural network-based method using 

the same input features and training steps as with MutPred218 based on the result that neural 

networks can be good approximators of posterior distributions.31 This procedure yielded a prior 

probability of pathogenicity (prevalence in the data set) of 4.41%, higher than that estimated 

previously for an exome of a healthy individual18 using a similar procedure but lower than the 

prevalence of 10% assumed by Tavtigian et al.9 for clinical sequencing data. 

 

Statistical framework   
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The ACMG/AMP recommendations suggested multiple levels of evidential strength to consider: 

Supporting, Moderate, Strong, and Very Strong for pathogenic and Supporting, Strong or 

Standalone for benign. Here, we have not considered the Standalone evidence for benignity 

further because variants with MAF > 0.05 were excluded from our data by default. We have 

added Moderate and Very Strong levels for benign in anticipation of future need for such 

strengths although our work here is applicable to both symmetric and asymmetric notions of 

strength for pathogenicity and benignity. In accordance with a recent proposal,32 we included an 

additional category of Indeterminate for variants not reaching evidential strength of Supporting 

for either pathogenicity or benignity. Thus, the indeterminate variants for a given tool would not 

add evidence strength to variant classification. Note that predictors differed in the number and 

identity of indeterminate variants (see Results section). To reduce subjectivity and define 

strengths of evidence in a quantitative framework, these were mapped to odds ratios of 

pathogenicity or positive likelihood ratios,33 as in Tavtigian et al.,9 so that the posterior 

probability of combined evidence listed in the ACMG/AMP recommendations for a likely 

pathogenic variant was at least 0.9 and less than 0.99, and for a pathogenic variant at least 

0.99. Similarly, we required identical values for the posterior probability of benignity, that 

corresponded to the thresholds of 0.1 and 0.001 for the posterior probability of pathogenicity. 

However, as noted above, the estimated prevalence of pathogenic variants in our gnomAD 

reference set was 4.41%. vs. the clinical experience-based 10% value primarily considered in 

Tavtigian et al.9   

We started by connecting the posterior odds of pathogenicity given the evidence and the 

positive likelihood ratio (LR!) using the following expression 

                       posterior	odds	of	pathogenicity = 	LR! × prior	odds	of	pathogenicity                   (1) 

where, for a variant 5, and on a particular reference data distribution 

posterior	odds	of	pathogenicity = "($	&'	()*+,-./&0|.2&3./0.	,4	()*+,-./&0&*5)
78	"($	&'	()*+,-./&0|.2&3./0.	,4	()*+,-./&0&*5)

                (2) 
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and 

			prior	odds	of	pathogenicity = "(9)/3,:;5	(&0<.3	$	&'	()*+,-./&0)
78	"(9)/3,:;5	(&0<.3	$	&'	()*+,-./&0)

                              (3) 

																																		=
0.0441

1 − 0.0441 = 0.0461.													 

In Equations 2 and 3, <(5	is	pathogenic|evidence	of	pathogenicity) is the posterior probability of 

pathogenicity and <(randomly	picked	5	is	pathogenic) is the prior probability of pathogenicity on 

a reference set. When considering computational methods, the “evidence of pathogenicity” 

corresponds to a discretized prediction that the variant is pathogenic.  

It can be shown33 that LR! is independent of the class prior and can be alternatively 

expressed as  

LR! = "(.2&3./0.	,4	()*+,-./&0&*5|$	&'	()*+,-./&0)
"(.2&3./0.	,4	()*+,-./&0&*5|$	&'	=./&-/)

,                                         (4) 

which has a straightforward interpretation for binary classification models, because 

<(evidence	of	pathogenicity|5	is	pathogenic) is the true positive rate and 

<(evidence	of	pathogenicity|5	is	benign) is the false positive rate. 

To incorporate the combining nature of multiple lines of evidence and model the 

ACMG/AMP rules with few parameters, Tavtigian et al. sought to express LR! in an exponential 

form 

LR! = F
!"#
$ !!#%& !

!'(
) !!#*+                                                         (5) 

where G2', G'*, G:,, and G'> are the number of Very Strong, Strong, Moderate, and Supporting 

lines of evidence, respectively. The value of F can be determined either computationally or 

manually so that the ACMG/AMP rules are generally satisfied in that the posterior probability 

reaches the values of 0.9 and 0.99 for likely pathogenic and pathogenic classifications, 

respectively. More importantly, one can readily verify from Equation 5 that a single line of Very 

Strong, Strong, Moderate, and Supporting evidence must reach LR! = F, LR! = √F& , LR! = √F) , 
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and LR! = √F+ , respectively. Given the prior probability of pathogenicity of 0.0441, we obtained 

F = 1,124, from which we further obtained the LR! values of single lines of evidence (Table 1). 

 

Table 1. Posterior probability and positive likelihood ratio values (reduced to four 

significant digits) that define the varying strengths of evidence in this study for the PP3 

and BP4 criteria. 

Criterion Evidence 
Strength 

Posterior probability of 
pathogenicity (for PP3) 
and benignity (for BP4) 

Positive 
likelihood 

ratio 

Reciprocal of 
positive 

likelihood ratio 

PP3 

Very Strong 0.9811 1,124:1 0.0009:1 

Strong 0.6073 33.53:1 0.0298:1 

Moderate 0.2108 5.790:1 0.1727:1 

Supporting 0.0999 2.406:1 0.4156:1 

BP4 

Supporting 0.9812 0.4156:1 2.406:1 

Moderate 0.9921 0.1727:1 5.790:1 

Strong 0.9986 0.0298:1 33.53:1 

Very Strong 1.0000 0.0009:1 1,124:1 

 

 

Most computational tools, however, do not discretize their predictions and instead only provide a 

raw score J ∈ ℝ for a given variant 5, thus leaving it up to the variant analyst to interpret the 

score and define an appropriate threshold. This suggested that in such cases we needed to use 

a continuous score J as evidence of pathogenicity for which Equation 4 breaks down. To 

address this, we defined a local positive likelihood ratio lr!, an equivalent of LR! that could be 

used with continuous evidence, as a density ratio between score distributions on pathogenic 

and benign variants; that is,  
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lr!(J) = ?(@|$	&'	()*+,-./&0)
?(@|$	&'	=./&-/)

                                                       (6) 

and sought to estimate it from prediction data on a set of variants for each considered tool. 

From here, we computed the local posterior probability values as 

<(5	is	pathogenic|J) = ;9,(@)⋅"(9)/3,:;5	(&0<.3	$	&'	()*+,-./&0)
(;9,(@)87)⋅"(9)/3,:;5	(&0<.3	$	&'	()*+,-./&0)!7

.                               (7) 

Equation 7 can be derived from Equations 1, 2 and 3 with lr! in place of LR!. To contrast LR! 

with lr!, we will refer to LR! as the global likelihood ratio. Note further that the posterior 

probability and the likelihood ratio can be expressed as functions of each other and the prior 

probability of pathogenicity. In this study, since the same prior probability of pathogenicity 

(0.0441) is used for all analyses, local posterior probabilities and local likelihood ratios are 

considered equivalent and are used interchangeably. The density ratio and the posterior can be 

practically estimated using a narrow sliding window around each score value J (Figure 2). This 

approach is sound and the local posterior corresponds to the local positive predictive value for a 

computational tool, an equivalent of the local false discovery rate.34,35  

 

Computational objective   

The objective of our approach was to develop a framework that discretizes the prediction range 

for any given computational tool into a set of nine intervals, corresponding to the various levels 

of evidential strength: Supporting, Moderate, Strong, and Very Strong for both benign and 

pathogenic, and Indeterminate (for the scores not satisfying any of the levels of desired 

evidential strength). To do so, we considered an in silico tool, or a scoring function, that outputs 

a pathogenicity score J ∈ ℝ for a variant 5 where the higher scores were designed to suggest 

stronger evidence for pathogenicity than the lower scores. We searched for a set of score 

thresholds MB = {O'>B , O:,B , O'*B , O2'B } such that a prediction score J ∈ [O'>B , O:,B ), J ∈ [O:,B , O'*B ), J ∈

[O'*B , O2'B ), and J ∈ [O2'B , ∞) could be considered Supporting, Moderate, Strong, and Very Strong 

evidence for pathogenicity, respectively. We will refer to MB as the pathogenicity threshold set 
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and for convenience, we will refer to the above-mentioned contiguous prediction intervals as 

IB(su) = [O'>B , O:,B ), IB(mo) = [O:,B , O'*B ), IB(st) = [O'*B , O2'B ), and IB(vs) = [O2'B , ∞). Equivalently, the 

evidence supporting benignity upon seeing a prediction output J requires us to determine the 

benignity threshold set MC = {O2'C , O'*C , O:,C , O'>C }, with the interpretation that J ∈ U−∞, O2'C ] = IC(vs) 

is the Very Strong evidence level for benignity, etc. Variants with predictions J ∈ (O'>C , O'>B ) were 

considered to lie in the indeterminate region, thus neither supporting pathogenicity nor benignity 

for such variants. Without loss of generality, we assumed that each predictor reached all four 

levels of evidential support for pathogenicity and benignity; however, this was not the case in 

practice as the evidence levels achieved by different predictors depended on the characteristics 

of each tool’s score distributions. 

 

Estimating intervals for levels of evidential support 

We then turned to determining the threshold sets MB and MC for each model to establish a set of 

up to nine intervals (four for pathogenicity, four for benignity, and the indeterminate region, see 

Table 1). We focused on the set MB = {O'>B , O:,B , O'*B , O2'B } first, which defined the contiguous 

intervals IB(evidence	level), where evidence	level ∈ {su,mo, st, vs}. To define the threshold set MB 

and, ultimately, the pathogenic intervals IB(evidence	level), we defined the threshold for the 

Supporting level of evidence as 

	τ'>B = min{O: ∀J ≥ O, lr[!(J) − Δ ≥ 2.406},                                            (8) 

where lr[!(J) is estimated lr!(J) using an ] neighborhood around J; that is, all prediction scores 

J ∈ [J − ], J + ]] are considered pathogenic and used to compute lr!(J) and the local positive 

predictive value. The parameter Δ is a nonnegative margin of error selected so that lr[!(J) − Δ is 

the value of the one-sided 95% confidence bound of the estimated lr!(J), and was determined 

via 10,000 bootstrapping iterations. In other words, the threshold for the Supporting level of 

evidence was the smallest value O in the prediction range such that for all scores J greater than 
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or equal to O, the lower error bound of lr[!(J) was greater than or equal to 2.406. The remaining 

thresholds from MB are determined in the same manner, and the procedure is then repeated for 

MC using 

τ'>C = max{O: ∀J ≤ O, lr[!(J) + Δ ≤ 7
D.FGH

},                                           (9) 

and so on. The parameter Δ was incorporated to lead to a more stringent threshold selection. 

 

 

Figure 2. Conceptual representation of the estimation of intervals for evidential support. 

An example in silico tool that is supposed to assign higher scores to pathogenic variants is 

shown. Each filled circle represents a variant, either pathogenic/likely pathogenic (red) or 

benign/likely benign (blue) as recorded in the ClinVar 2019 set. All unique scores were first 

sorted and each score was then set as the center of the sliding window or the local interval 

(black-colored braces), within which posterior probabilities were calculated. Here, to ensure that 

a sufficient number of variants were included in each local interval, ] was adaptively selected to 
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be the smallest value so that the interval [J − ], J + ]] around a prediction score J incorporated 

at least 100 pathogenic and benign variants (combined) from the ClinVar 2019 set and at least 

3% of rare variants from the gnomAD set with predictions in the given local interval, separately 

for each method (technically, ] is a function of score J for each predictor). These numbers were 

proportionally scaled at the ends of the score range. The estimated posterior probabilities were 

then plotted against the output scores. Using posterior probability thresholds defined in Table 1, 

score thresholds were subsequently obtained for pathogenicity (PP3) and benignity (BP4) for 

each method. Here, the number of benign variants was weighted to calibrate methods according 

to the prior probability of pathogenicity. The weight was calculated by dividing the ratio of 

pathogenic and benign variant counts in the full data set by the prior odds of pathogenicity; see 

Eq. 3. The pathogenic and benign counts (and this weight) slightly varied for each method 

because scores were not available for all variants in the data set for some tools. In this study, 

the estimated prior probability of pathogenicity (0.0441) was used to account for the enrichment 

of pathogenic/likely pathogenic variants in ClinVar. The estimated prior probability of benignity 

was assumed to be 1 – 0.0441 = 0.9559. 

 

Validating the local approach for interval estimation 

Variants in the ClinVar 2020 set and the gnomAD set were used to determine if our local 

approach for the estimation of strength-based intervals was robust. For each tool, the thresholds 

selected using the above procedure were applied to assign each variant into an interval of 

evidential strength. Within each interval, two measures were computed: (1) an interval-based 

likelihood ratio was calculated to verify if our estimated intervals did indeed provide evidence for 

pathogenicity/benignity with the expected strength on variants not seen by our estimation 

procedure (ClinVar 2020 set), and (2) the fraction of variants in the gnomAD set that fell into 

each interval was calculated to assess overprediction of pathogenic variants, particularly at 

higher evidential strengths. 
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The interval-based likelihood ratio is simply the global likelihood ratio calculated over a given 

score interval: 

LR!([a, b)) = "(@∈[K,M)|$	&'	()*+,-./&0)
"(@∈[K,M)|$	&'	=./&-/)

,                                           (10) 

where a and b are the lower and upper bound of the score interval, respectively, and J and 5 

are defined as above. In this case, rather than considering a variant’s score directly or a 

binarized version of it as the evidence for pathogenicity/benignity, the categorization of the 

variant into one of the strength categories was used as evidence. We expected LR!(τ'>B , τ:,B ) ≥

2.406, LR!(τ:,B , τ'*B ) ≥ 5.790, LR!(τ'*B , τ2'B ) ≥ 33.53, and LR!Uτ2'B , ∞g ≥ 1124. In other words, the 

interval-based likelihood ratio had to be greater than or equal to that obtained using the local 

likelihood ratio approach. This should have held for benignity intervals as well. Here, each 

interval [a, b) was instantiated from the sets of optimal thresholds obtained using the local 

likelihood ratio approach, MB = hO'>B , O:,B , O'*B , O2'B i and MC = hO'>C , O:,C , O'*C , O2'C i. The interval-based 

likelihood ratio was then operationalized as the ratio of the true positive rate to the false positive 

rate within the interval using the ClinVar 2020 set. Depending on whether the interval was for 

pathogenicity or benignity, the true positive rate was either the fraction of pathogenic/likely 

pathogenic variants falling within the interval or the fraction of benign/likely benign variants. 

Similarly, the false positive rate was the fraction of benign/likely benign variants and the fraction 

of pathogenic/likely pathogenic variants within the interval, respectively.  

 

RESULTS 

In silico tools yield levels of evidence beyond Supporting 

Our local posterior probability-based approach allowed for the systematic identification of 

thresholds corresponding to different strengths of evidence for a given tool. To this end, using 

the ClinVar 2019 set, we applied this approach on thirteen tools: BayesDel,12 CADD,13 EA,14 

FATHMM,15 GERP++,16 MPC,17 MutPred2,18 PhyloP,19 PolyPhen-2,20 PrimateAI,21 REVEL,22 
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SIFT,23 and VEST4.24 We first obtained scores from these tools for variants in this data set and 

then calculated local posterior probabilities for each unique score, as shown in Figure 2. Scores 

that satisfied the posterior probability thresholds presented in Table 1 were then deemed to 

provide the corresponding strengths of evidence (Table 2). 

We were able to identify thresholds for Supporting and Moderate levels of evidence for 

pathogenicity (PP3) and benignity (BP4) for all tools, except for GERP++, which did not yield 

Supporting evidence for PP3, and MPC, which did not yield Supporting evidence for BP4. 

Interestingly, the local posterior probability curves showed that, at appropriate thresholds, 

several tools could provide Strong evidence for pathogenicity (BayesDel, VEST4), benignity 

(CADD) or both (MutPred2, REVEL), as shown in Figure 3, Table 2, and Supplemental Table 

S1. 
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Figure 3. Local posterior probability curves for (A) BayesDel, (B) CADD, (C) Evolutionary 

Action (EA), (D) FATHMM, (E) GERP++, (F) MPC, (G) MutPred2, (H) PhyloP, (I) PolyPhen-2, 

(J) PrimateAI, (K) REVEL, (L) SIFT, and (M) VEST4. For each panel, there are two curves: the 

curve on the left is for pathogenicity (red horizontal lines) and the curve on the right is for 

benignity (blue horizontal lines). The horizontal lines represent the posterior probability 

thresholds for Supporting, Moderate, Strong, and Very strong evidence. The black curves 

represent the posterior probability estimated from the ClinVar 2019 set. The grey curves 

represent one-sided 95% confidence intervals calculated from 10,000 bootstrap samples of this 

data set (in the direction of more stringent thresholds). The points at which the grey curves 

intersect the horizontal lines represent the thresholds for the relevant intervals. 
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Table 2. Estimated threshold ranges for all tools in this study corresponding to the four pathogenic and four benign 

intervals. A “–” implies that the given tool did not meet the posterior probability (likelihood ratio) threshold. See Supplemental Table 

S1 for comprehensive results that include point estimates and one-sided confidence intervals. Intervals follow standard mathematical 

notation in which “(” and “)” indicate exclusion of the end value  and “[” and “]” indicate inclusion of the end value. 

Method 
Pathogenic (PP3) Benign (BP4) 

Very Strong Strong Moderate Supporting Supporting Moderate Strong Very Strong 

BayesDel - ≥ 0.50 [0.27, 0.50) [0.13, 0.27) (-0.36, -0.18] ≤ -0.36 - - 

CADD - - ≥ 28.1 [25.3, 28.1) (17.3, 22.7] (0.15, 17.3] ≤ 0.15 - 

EA - - ≥ 0.821 [0.685, 0.821) (0.069, 0.262] ≤ 0.069 - - 

FATHMM - - ≤ -5.04 [-5.04, -4.14) (3.32, 4.69] ≥ 4.69 - - 

GERP++ - - - - (-4.54, 2.70] ≤ -4.54 - - 

MPC - - ≥ 1.828 [1.360, 1.828) - - - - 

MutPred2 - ≥ 0.932 [0.829, 0.932) [0.737, 0.829) (0.197, 0.391] (0.010, 0.197] ≤ 0.010 - 

PhyloP - - ≥ 9.741 [7.367, 9.741) (0.021, 1.879] ≤ 0.021 - - 

PolyPhen2 - - ≥ 0.999 [0.978, 0.999) (0.009, 0.113] ≤ 0.009 - - 

PrimateAI - - ≥ 0.867 [0.790, 0.867) (0.362, 0.483] ≤ 0.362 - - 

REVEL - ≥ 0.932 [0.773, 0.932) [0.644, 0.773) (0.183, 0.290] (0.016, 0.183] (0.003, 0.016] ≤ 0.003 

SIFT - - ≤ 0.000 [0.000, 0.001) (0.080, 0.327] ≥ 0.327 - - 

VEST4 - ≥ 0.965 [0.861, 0.965) [0.764, 0.861) (0.302, 0.449] ≤ 0.302 - - 
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Validation of estimated score intervals on an independent data set 

Two approaches were adopted to assess the correctness of our local posterior probability 

strategy. First, we verified if the intervals that we estimated corresponded to similar lr! values 

on an independent data set as did those on the estimation data set. We reasoned that the 

likelihood ratios in each interval should equal or exceed those estimated using the sliding 

window algorithm. To this end, we classified variants in the ClinVar 2020 set into each of the 

four intervals for pathogenicity and benignity, and calculated likelihood ratios within each 

interval. We found that all methods that reached the Strong level of evidence for pathogenicity 

exceeded the likelihood ratio value in Table 1 (Figure 4A). In addition, all tools that met the 

threshold for Moderate levels of evidence for pathogenicity resulted in likelihood ratios 

exceeding the corresponding likelihood ratio threshold required, except for PhyloP which had a 

marginally lower likelihood ratio. Similarly, all tools that met the Supporting level of evidence on 

the ClinVar 2019 data exceeded the likelihood ratio threshold for the Supporting evidence 

interval of 2.41 on the ClinVar 2020 data. For benignity, a tool must have had an interval-based 

likelihood ratio lower than those in Table 1 for the relevant evidential strength, a criterion met by 

all tools. 

Second, we verified that these intervals were stringent in their assignment of Strong levels 

of pathogenicity to variants in the gnomAD set. We reasoned that the prior probability of a 

pathogenic variant in a population such as that of the gnomAD set is low. Therefore, the Strong 

pathogenic score interval should ideally classify only a small fraction of variants as Strong. We 

found that for tools that reached the Strong level of evidence for pathogenicity, the fraction of 

gnomAD variants with Strong levels of evidence ranged from 1.4 to 1.7% (Figure 4B). These 

fractions were smaller than the experience-based prior probability assumed by Tavtigian et al. 

(10%) and the prior probability that was estimated in this study using the gnomAD set (4.41%). 

Furthermore, when considering the Strong and Moderate intervals together, all tools except 

CADD yielded a smaller fraction of variants than 10%. Interestingly, for benignity, 6 out of 13 
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tools assigned a majority of variants to Moderate rather than Strong or Supporting evidence. 

Most tools output a score in the Indeterminate range (or did not have scores) for 26-50% of 

variants and would not provide any evidence strength for classification of these variants. 

FATHMM, GERP++ and MPC were outliers, resulting in more than half of variants in the 

Indeterminate range. Taken together, these results suggest that our local posterior strategy 

generally yields robust intervals that are unlikely to overestimate the evidential strength that they 

provide. 
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Figure 4. Evaluation of the robustness of our approach and estimated score intervals. (A) 

The likelihood ratios within each interval on the independent ClinVar 2020 set. (B) The 

percentage of variants predicted to be within the interval in the gnomAD set. Red and blue 

distinguish between the evidential strength intervals for pathogenicity and benignity, 

respectively, with the indeterminate interval colored grey. The color gradient corresponds to the 

value in the cells, regardless of color. In (A), darker colors indicate higher values for 

pathogenicity and lower values for benignity (because these are positive likelihood ratios), and 

in (B), darker colors indicate higher proportions. A grey rectangle is introduced at the center of 

(A) for comparability across the two panels. White cells without values indicate that the tool did 

not yield thresholds corresponding to the relevant intervals. The indeterminate interval in (B) 

also included variants without any scores. For each tool, the fraction of variants with missing 

predictions is reported in Supplemental Table S2. When interpreting these findings, the totality 

of the results in (A) and (B) must be considered to account for the effects of binning of 

continuous scores into discrete intervals. For example, although a tool such as CADD provides 

most predictions classified to be Supporting and Moderate for PP3 (B), it does so with lower 

accuracy (A), measured by the smaller number of true positive predictions for the same number 

of false positive ones, than a tool such as REVEL. Due to the effects of binning, many of the 

true positive predictions for REVEL are in its Strong evidence category, further obscuring 

interpretation. Thus, the results in Table 2 and this figure must be considered with utmost care 

for any use outside our recommendations; see below. 

 

Investigation of developer-recommended thresholds and simple consensus approaches 

We investigated whether in silico tools that are frequently used in clinical variant interpretation 

and their default score thresholds, met the quantitative definition of Supporting evidence as 

described in Table 1. We focused on the local posterior probability curves and score intervals 

estimated above using the ClinVar 2019 data set for three tools and their combinations: SIFT, 
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PolyPhen-2 and CADD. We then checked the local likelihood ratio values at the developer-

recommended thresholds against those in Table 1 to assess the strength of evidence obtained 

at these thresholds.  

At the developer-recommended thresholds, SIFT, PolyPhen-2, and CADD did not meet the 

local likelihood ratio thresholds for Supporting evidence for PP3 (Table 3). Interestingly, the 

developer-recommended threshold of 20.0 for CADD was in the score interval corresponding to 

Moderate evidence for BP4 (Figure 3; Table 2), suggesting an inappropriate use of this 

threshold as evidence for pathogenicity. Furthermore, all tools classified a substantial fraction of 

variants in the gnomAD set as damaging (50.4% by SIFT, 29.3% by PolyPhen-2 and 65.1% by 

CADD) at developer-recommended thresholds. These fractions were considerably larger than 

4.41%, our estimate of the prior probability of pathogenicity (prevalence of pathogenic variants) 

in the gnomAD set, suggesting a high false positive rate with respect to PP3, in agreement with 

previous studies.3 

We also implemented a simple consensus-based predictor using these three tools, 

emulating an approach typically adopted in clinical laboratories. We considered all possible 

pairs of tools and all three tools together by estimating lr!($), where $ is a two-dimensional 

score $ = (s", s#) or three-dimensional score $ = ()", )#, )$). We found that no combination of 

the three tools met the Supporting level of evidence PP3 using developer-recommended 

thresholds, although PolyPhen-2 individually, with score 0.902, was close to the desired lr!()) 

threshold of 2.41. It is worth mentioning that this does not mean that there was no combination 

of scores for which these tools did not reach the Supporting evidence level, but rather that the 

appropriate evidential support was not met when all tools predicted scores at, or slightly better 

than, the developer-recommended minimum scores (or maximum, for SIFT). To the best of our 

knowledge, separate developer-recommended thresholds for predictions of benignity for these 

tools do not exist, and therefore, could not be evaluated. 
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Table 3. Assessment of the strength of evidence for PP3 through local likelihood ratios 

provided by SIFT, PolyPhen-2, and CADD using default developer-recommended 

thresholds. Numbers in parentheses indicate lower and upper (95%) confidence intervals as 

calculated by the bootstrapping method. “Evidence strength” was determined on the basis of the 

point estimate of the positive likelihood ratio. The Pearson correlation between outputs of SIFT 

and PolyPhen-2 on our gnomAD set was 0.47, the correlation between SIFT and CADD was 

0.49, and the correlation between PolyPhen-2 and CADD was 0.67. Correlation between other 

tools is provided in Supplemental Figure S1. 

Method 
Pathogenicity 

score 
threshold 

*+! Evidence 
strength 

Fraction of predicted 
pathogenic variants 
in the gnomAD set 

SIFT 0.050 0.048 
(0.025, 0.075) Not met 0.504 

PolyPhen-2 0.902 1.993 
(1.560, 2.492) Not met 0.293 

CADD 20.000 0.157 
(0.107, 0.215) Not met 0.651 

 

 

DISCUSSION 

Our results provide the basis for refining how computational tools can be used to provide 

evidence for or against pathogenicity of variants using the Bayesian adaptation of the 

ACMG/AMP framework. The thresholds that we calculated show that these tools can provide 

stronger than Supporting evidence and that computational tools varied in their ability to reach 

these levels of evidence.  

 

Recommendations for updates to PP3 and BP4 criteria 

For missense variants, to determine evidence for codes PP3 and BP4, we recommend that, for 

most situations, clinical laboratories use a single tool, genome-wide, that can reach the Strong 

level of evidence for pathogenicity and Moderate for benignity (BayesDel, MutPred2, REVEL, 
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VEST4 among the tools evaluated here). This recommendation maximizes the strength of 

evidence that can be applied while minimizing the number of false positive predictions in the 

Supporting and Moderate categories. However, any method described here is valid to use for in 

silico evidence for PP3 and BP4 at the thresholds described and their relevant strengths. The 

choice of which tool to use for PP3/BP4 missense evidence must always be made before 

seeing prediction results and preferably other lines of evidence, to avoid biases such as those 

from multiple trials.  

In situations where Variant Curation Expert Panels (VCEPs), clinical laboratories or research 

groups have developed gene-specific guidance, such as for the RYR1 gene in malignant 

hyperthermia,11 laboratories could select the recommended alternative single tool and 

thresholds for these variants, instead of their standard tool otherwise used in genome-wide 

application. The importance of selecting a single tool to use for PP3/BP4 missense evidence is 

to avoid biases that could be introduced by, for example, scanning multiple tools for the 

strongest evidence for a given variant. We encourage calibration of tools for specific genes and 

regions using the methods described herein, with attention to the distinguishing features 

described below.  

We have not evaluated the use of combining missense impact prediction methods for 

PP3/BP4 with methods that predict other mechanisms of genetic variant impact (e.g., splicing, 

expression) that could also be reported as PP3/BP4. However, computational methods that 

predict mechanistic consequences of the missense event (e.g., protein stability) should not be 

combined with other missense impact predictors, such as those evaluated here. Additionally, we 

have introduced caveats about combining rules for the moderate and strong PP3/BP4 with other 

evidence codes, as described below. The proposed recommendations for the use of 

computational tools, contrasted with those from the 2015 ACMG/AMP recommendations, are 

summarized in Table 4. 
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We have invoked a level of evidence strength that was not included in the original 

ACMG/AMP recommendations (Benign Moderate, reflected by BP4_Moderate). This evidence 

level, while straightforward to derive from the data we present here, is not compatible with Table 

5 “Rules for combining criteria to classify sequence variants” in the ACMG/AMP 

recommendations.2 There are several pragmatic, interim solutions for this issue. The first is that 

if a variant is shown to have BP4_Moderate evidence, Table 5 can be adapted by allowing that 

Likely Benign combining rule i, which is “1 Strong (BS1–BS4) and 1 supporting (BP1–BP7)”, be 

invoked if there is a strong benign criterion met (BS1-BS4) and use of an in silico tool generates 

BP4_Moderate. For the second Likely Benign combining rule (ii), it could be invoked if the only 

evidence generated is BP4_Moderate or if BP4_Moderate evidence is present along with an 

additional Benign supporting evidence type (BP1-BP3, BP5, or BP7). Other combinations of 

BP4_Moderate evidence are not germane to those combining rules. A second approach would 

be to use the Tavtigian et al. framework9 , in either its initial iteration (see Supplemental 

Methods for suggested modifications), or in its simplified, points-based iteration,32 in which 

BP4_Moderate evidence would count as -2 points toward variant classification.  
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Table 4. Summary of recommendations for updates to PP3 and BP4 criteria in the 

ACMG/AMP recommendations and comparison with the 2015 ACMG/AMP 

recommendations. 

Guidance 2015 ACMG/AMP 
recommendations Our recommendation 

Evidential strength of in 
silico tools 

Supporting. PP3_Strong, PP3_Moderate, 
PP3_Supporting, Indeterminate, 
BP4_Supporting, 
BP4_Moderate, and 
BP4_Strong. 

Tools to be used  No specific recommendation, 
although a list of tools provided 
with the caveat that they have 
not been validated. 

Tools that reach at least Strong 
evidence for pathogenicity and 
Moderate for benignity. It is valid 
to use any tool at the indicated 
evidential strength level as 
determined by our approach, so 
long as it is chosen before 
seeing its scores and preferably 
any other evidence.  

Score thresholds for 
tools 

No explicit recommendations 
but often defaults to developer-
recommended thresholds. 

Specific score thresholds 
calibrated to different evidential 
strengths. 

Number of tools to be 
used 

Multiple lines of evidence, 
suggesting multiple tools (no 
number provided). 

Combinations of tools was not 
systematically assessed but 
results suggest the use of a 
single tool rather than an 
uncalibrated consensus of 
multiple tools. 

Decision-making If all agree, evidence can be 
counted as Supporting. 
Otherwise, evidence from tools 
cannot be used. 

Evidence can be counted at the 
appropriate strength depending 
on the tool and score threshold 
chosen. The maximal strength of 
a tool must be committed to, i.e., 
if a tool provides at most 
PP3_Moderate strength and a 
variant satisfies the 
corresponding score threshold, it 
can only be counted as 
Moderate evidence. 

Combing rules with 
other evidence codes  

PP3 and BP4 can be applied 
for supporting evidence without 
consideration of other codes 
used. 

Limit the combined evidence 
from PM1 and PP3 to Strong. 
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Alternative strategies for interval definition 

We selected the local approach as our main strategy owing to its theoretical foundation and 

simplicity compared with other statistical methods. We investigated two alternative strategies to 

define intervals corresponding to the relevant evidential support. The first alternative strategy 

calculated the global positive likelihood ratio over the entire data set above (for PP3) or below 

(for BP4) a certain score; see Supplemental Methods. Score thresholds were then defined in the 

same manner as those in the local approach, i.e., by selecting the desired likelihood ratio levels 

from Table 1, yielding a global interpretation for evidential strength. However, this strategy had 

two critical flaws: (1) each desired likelihood ratio level was satisfied only on average within any 

interval, likely misclassifying the evidence strengths for variants at the extremes of the range; 

and (2) unlike the local approach, it did not guarantee that the threshold for PP3_Supporting 

was always higher than BP4_Supporting, resulting in difficulties of reconciling the threshold sets 

obtained in this way.  

The second alternative strategy for selecting threshold sets sought to estimate all thresholds 

simultaneously by optimizing the interval-based likelihood ratios in Equation 10 directly, such 

that each interval resulted in a positive likelihood ratio value equal to or greater than the 

corresponding one in Table 1. This approach, however, had three significant flaws: (1) it may 

not have yielded a unique solution and further required an optimization algorithm to select 

thresholds; (2) the threshold set was determined jointly and thus each resulting interval of 

evidential support depended on the number of levels for evidential strength prescribed by the 

ACMG/AMP recommendations, which could change in the future, altering the results; and (3) as 

above, the likelihood ratios were still determined on average within intervals.  

Therefore, we selected the local approach, which is also the most stringent approach to 

determining the thresholds (with respect to avoiding overestimation of evidence) as the 

appropriate evidence level holds for any score in the determined evidence interval.  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.484479doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484479
http://creativecommons.org/licenses/by-nd/4.0/


 33 

Implications for the assessment of additional clinical variant interpretation tools, 

including those developed in the future 

Several studies have attempted to benchmark methods to identify tools and tool-threshold 

combinations that are the most accurate and appropriate for clinically relevant variants.3,36–39 

Key distinguishing aspects of our approach include: (1) constructing evaluation sets that 

exclude variants in the training sets of tools; for meta-predictors, even those from the training 

sets of the constituent tools must be excluded, (2) carefully inspecting whether the precomputed 

scores for a particular tool suffer from issues arising from missing data, outdated versions, and 

identifier mapping discrepancies and, if so, using a tool directly rather than precomputed scores 

deposited elsewhere, (3) calibrating tool scores and/or its assessment to account for the prior 

probability of pathogenicity that must be estimated for each reference set of interest, (4) 

reporting local posterior probabilities or local likelihood ratios, which provide additional 

information to standard evaluation metrics used in machine learning, and (5) providing 

thresholds for clinical use of a tool and the highest strength of evidence that it can provide. 

Laboratories using this strategy should choose one method and consistently use that method in 

evaluating all genes and variants at the determined evidential strength, rather than “cherry 

picking” amongst multiple methods. We nevertheless endorse gene-specific or gene domain-

specific evaluations to identify evidence that demonstrates the superiority of a given tool that 

may be different from the general recommendations that we have specified (such as those in 

ClinGen VCEP recommendations). 

 

Implications for combining rules 

Within the ACMG/AMP variant classification guidelines, there are several evidence criteria that 

can be applied independently of the PP3/BP4 computational tools, but whose underlying data 

may partially be captured by them, especially by the meta-predictor tools. The most obvious fall 

into two groups: allele frequency related codes, i.e., PM2 (absent from controls) and BS1 (more 
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frequent than expected for disorder); and the key domain or critical residue(s) codes PM1 

(located in functional domain or mutation hot spot), and PS1/PM5 (located at an amino acid 

where pathogenic variants have been seen). Increasing the strength of the PP3/BS4 

computational tool codes, while at the same time including these other codes in the final 

classification, poses a risk of double-counting shared underlying attributes of these criteria and 

over-estimating the strength of evidence for or against pathogenicity.  

There are reasonable approaches that can reduce double counting. For allele frequency 

data, classification should use in silico tools that do not make direct use of allele frequency, e.g., 

REVEL or BayesDel with the allele frequency option turned off (as was done in this study). 

Therefore, we recommend that the PM2 and BS1 codes may be combined with the PP3/BP4 

codes at the strengths we have recommended here without any limits or additional criteria. 

However, the overlap of key domain / critical residue codes is more difficult to separate because 

it is oftentimes very highly correlated with attributes measured by an in silico tool (e.g., 

evolutionary conservation). Furthermore, it is challenging to separate these shared attributes for 

tools such as MutPred2 and VEST4 that implicitly incorporate some notion of structural and 

functional importance to each variant position. To address this potential overlap or double-

counting of PP3/BP4 and PM1, we recommend that laboratories limit the sum of the evidence 

strength of PP3 and PM1 to Strong. This would allow PP3 to be invoked as Supporting or 

Moderate along with PM1 to be invoked as Moderate, which would be the same as limiting the 

sum of PP3 and BP4 to 4 points in the Bayes points implementation. Future stratified analyses, 

or integrated predictors amalgamating multiple codes, will be required to determine if or when 

these codes can be combined to provide even stronger evidence and the appropriate maximum 

allowable points for the different combinations.  

 

Limitations and future directions 

There are caveats to our evaluation framework and, as a consequence, our recommendations. 
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In this study, we estimated prior probabilities, calibrated tools, and estimated score thresholds 

using a genome-wide set of known disease-associated genes. As we noted above, in some 

circumstances it may be appropriate for a laboratory that focuses on a single or a few genes, to 

independently calibrate one of these tools using the method we describe here, which could lead 

to distinct numerical thresholds for the various evidence levels for that (those) specific gene(s). 

As well, VCEPs that assess specific genes can use our approach to establish predictive 

thresholds that can optimize the performance of computational tools in their specific systems. 

Determination of different thresholds for the use of computational tools merits investigation 

of variants in ClinVar and potential re-classification of those where prediction models with 

insufficiently high (or low) scores played deciding roles. At the same time, the use of our 

approach will require detailed cataloguing of information in ClinVar such as the exact version of 

the tool, the raw prediction score, as well as whether a standalone tool or precomputed scores 

were used. This will be necessary to avoid circularities in future evaluations of computational 

tools. If our approach is adopted, we also suggest periodic investigation of the accuracy of the 

calibration we have proposed as ever-increasing data sets offer future potential to further 

improve the precision and accuracy of our thresholds. 

Finally, it is important to emphasize that the approach presented herein is intended for the 

use alongside the ACMG/AMP rules2 and could lead to unintended consequences if used for 

variant classification outside of this setting. 
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