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ABSTRACT

Post-translational methylation of proteins, which occurs in arginines and lysines, modulates several
biological processes at different levels of cell signaling. Recently, methylation has been demonstrated in
the regulation beyond histones, for example, in the dynamics of protein-protein interaction and protein-
nucleic acid. Mass spectrometry-based proteomics has allowed a large-scale identification of protein
methylation - mainly in arginine residues-, in different organisms, including some trypanosomes. However,
the presence and role of protein methylation in Trypanosoma cruzi, the etiologic agent of Chagas disease,
has not yet been elucidated. In this work, we applied mass spectrometry and described the arginine and
lysine methylproteome of T. cruzi. In epimastigotes, 1336 methylsites (657 methyl-arginines and 679
methyl-lysines) in 878 methylated proteins were identified by LC-MS/MS. Our functional and interaction
analyzes show that protein methylation impacts different biological processes, with emphasis on
translation. Separately, protein arginine methylation is related to oxireduction and carbohydrate
metabolism, while lysine methylation impacts the protein synthesis. In addition, 50 methylated proteins
have been previously described with phosphorylation sites in T. cruzi, represented by RNA binding

proteins, sterol methyltransferase activity and calpain peptidases, indicating the possibility of crosstalk in
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the regulation of these proteinsThis work represents the first proteomic analysis of T. cruzi
methylproteome and is the first to characterize lysine methylation in trypanosomatids. Collectively, these
data inform about new fundamental biological aspects of this organism impacted by protein methylation,
that can contribute to the identification of pathways and key pieces in the biology of this human pathogen.

Keywords: Trypanosoma cruzi. Protein methylation. Proteomics. LC-MS/MS.

Biological significance

Trypanosoma cruzi is a protozoan parasite that causes Chagas' disease in humans and throughout its life
cycle faces different environment changes. Protein methylation is an important post-translational
modification by which cells respond and adapt to the environment. To understand the importance of
protein methylation in T.cruzi biology, we applied a mass spectrometry-based proteomics (GeLC-MS/MS)
and report the first proteomic analysis of both arginine and lysine methylproteome in T. cruzi, being the
first large-scale characterization of lysine methylation in trypanosomes. Our data demonstrate that the
methylation of proteins in T. cruzi is broad and impacts different cellular processes. This study represents

a significant advance on the importance of protein methylation in trypanosomes.

Highlights

First methylproteome description of human parasite T. cruzi and first of lysine methylation in
trypanosomes;

e Protein arginine and lysine methylation is widely found in T. cruzi epimastigotes;

o Different processes are impacted by protein methylaton in T. cruzi, mainly the protein synthesis;

e 50 methylated proteins have been previously described with phosphorylation sites in T. cruzi.

1. Introduction

Post-translational modifications (PTMs) impact different biological functions and significantly contribute to
cellular homeostasis and environment adaptation [1]. Among them, an important PTM is protein
methylation [2,3], which occurs in lysine and arginine residues and impacts fundamental cellular events,

from gene transcription and RNA processing to protein translation and cell signaling [4].
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Arginine and lysine methylation are catalyzed by S-adenosylmethionine (SAM)-dependent protein arginine
methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTSs), respectively [5]. In humans,
the most common PRMT is the type I, which catalyzes the formation of monomethyl-arginine
(MMA/Rme1l) transferring a methyl group from SAM to guanidino nitrogen, and can add a second methyl
group at the same nitrogen, resulting an asymmetric dimethyl-arginine (ADMA/Rme2a) [6]. Type Il PRMTs
also catalyze the synthesis of MMA and can add one second methyl group at the terminal nitrogen
adjacent, resulting in symmetric dimethyl-arginine (SDMA/Rme2s) [6]. Protein lysine methyltransferases
(PKMTSs) catalyze the addition of up to three methyl groups at the e-amino group of lysine residue (Kmel,
Kme2 and Kme3). Most known human PRMTs and PKMTs can methylate both histone and non-histone
proteins [7] and are potential drug targets due to the fundamental roles in the cell biology [8].

The kinetoplastid protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease [9], an
illness that is estimated to affect about 6 to 7 million people worldwide [10] and represents a significant
burden to the health-care system [11,12]. No vaccine is available and treatment is carried out with
inefficient and highly toxic drugs [13]. In addition, T. cruzi is a parasite that has a complex life cycle (such
another trypanosomes like T. brucei and Leishmania sp.) with different stages of development, such as
epimastigote form that is subject of this study, and different hosts therefore is necessary to adapt to
different conditions and for that is an interesting organism to study the biological impact of PTMs.
Large-scale protein methylation analysis although relatively well known in higher eukaryotes [14-20], in
protozoan parasites are scarce and the function of arginine and lysine methylation in these organisms is
still poorly understood, especially for the kinetoplastids. In Plasmodium falciparum, arginine [21] and lysine
[22] methylated proteins are involved in diverse biological pathways, for example, RNA metabolism,
protein synthesis, transport, proteolysis, protein folding and chromatin organization. In the deep-branching
Giardia duodenalis [23], interestingly, methyl-arginines (and arginine-methyltransferases) are absent, but
their biological functions appear to be compensated by methyl-lysines, which are regulated between its
different life-cycle stages. For the TriTryps, global studies about protein methylation are only available for
Leishmania and T. brucei. For Leishmania, only 19 methylated proteins were identified in L. donovani,
among them are RNA binding proteins, ribosomal proteins, Elongation factor 1-alpha[24] and, more
recently, 40 putative PRMT7 targets were described in L. major [25], including 17 RNA binding proteins
(RBPs), introducing the importance of arginine methylation in the RNA metabolism of this parasite. In T.

brucei, approximately 10% of the proteome contains methyl-arginines, which potentially impact diverse
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cellular pathways in this parasite [26,27], but no global study about lysine methylation is available. Here,
we applied a bottom-up proteomic approach to comprehensively characterize the T. cruzi methylproteome
of arginine and lysine residues. Using mass spectrometry (MS), we identified more than a thousand of
methylsites present in proteins involved in many biological functions and interesting features are
associated to the T. cruzi arginine and lysine methylated proteins. To the best of our knowledge, this is the
largest study of methylproteome of protozoa parasites. It sheds light to important processes that are
potentially regulated by protein methylation and provides another promising landscape to understanding

the biology of this pathogen.

2. Materials and Methods

2.1 Cell culture
T. cruzi Dm28c epimastigotes in exponential growth phase were cultured in Liver Infusion Tryptose (LIT)
medium [28] supplemented with 10% fetal bovine serum and incubated without agitation at 28 °C.

Exponential epimastigotes were obtained in the order of 4.3 x10° cells.

2.2 Protein extraction, separation and digestion

For protein extraction, epimastigotes cells were washed in PBS, resuspended in lysis buffer (4% SDS, 10
mM Tris-HCI pH 7.5, 100 mM DTT) in a proportion of 240 uL for each 3 x 10°® cells, vortexed for 30
seconds, heated for 3 min at 95 °C and sonicated for 1 hour at room temperature. To remove debris,
samples were then centrifuged at 20,000 xg at 20 °C for 5 min and the supernatant (protein extract) was
transferred to a clean tube. T. cruzi protein extract (25 ug) was separated by SDS-PAGE (5 - 20%
acrylamide) in five lanes (5 pg/lane) and stained with Coomassie Blue. Each lane was sliced horizontally
into 10 fractions covering the different molecular weight ranges and each gel fraction was cut into 1 mm?®
cubes, which were transferred to a clean microfuge tube and submitted to in-gel digestion as previously
described [29]. Briefly, the gel pieces were destained twice with 25 mM ammonium bicarbonate (ABC) in
50% ethanol, dehydrated with 100% ethanol, reduced with 10 mM DTT in 50 mM ABC, alkylated with 55
mM iodoacetamide in 50 mM ABC and digested with 12.5 ng/pL trypsin in 50 mM ABC and incubated for
16h at 37°C. Digestion was stopped by adding trifluoroacetic acid (TFA) to a final concentration of

0.5%.Peptides were extracted twice with 30% acetonitrile (MeCN) in 3% TFA and twice with 100% MeCN,


https://doi.org/10.1101/2022.03.12.484072
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.12.484072; this version posted March 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137
138

139

140

141

142

143

144

145

146

available under aCC-BY-NC-ND 4.0 International license.

them dried in a Speed Vac (Thermo Scientific) and desalted using C18 StageTips [30] prior to hanoLC-
ESI-MS/MS.

2.3 NanoLC-ESI-MS/MS analysis

Tryptic peptides were separated by online reverse phase (RP) nanoscale capillary liquid chromatography
(nanoLC) and analyzed by electrospray mass spectrometry in tandem (ESI-MS/MS). The samples were
analyzed at the mass spectrometry facility P02-004/Carlos Chagas Institute - Fiocruz Parana with an
Easy-nLC 1000 system (Thermo Fisher Scientific) connected to an LTQ-Orbitrap XL ETD mass
spectrometer (Thermo Fisher Scientific) equipped with a nanoelectrospray ion source (Phoenix S&T).
Peptide mixtures were injected in a 30 cm analytical column (75 ym inner diameter) in-house packed with
C18 resin (ReproSil-Pur C18-AQ 2.4 um), eluted from 5 to 40% MeCN in 5% DMSO and 0.1% formic acid
in a 120 min gradient. The nanoLC column was heated at 60 °C to improve both chromatographic
resolution and reproducibility. Peptides were ionized by nanoelectrospray (voltage, 2.7 kV) and injected
into the mass spectrometer. Mass spectra were obtained by Data-Dependent Acquisition (DDA), with an
initial Orbitrap scan with resolution R = 15,000 followed by MS/MS of the 10 most intense ions in LTQ
(lontrap). These precursor ions are fragmented by Collision-Induced Dissociation (CID) with normalized
collision energy = 35%, activation time of 30 ms and activation q = 0.25. Singly charged precursor ions
were rejected. Parallel to the MS2 was conducted a full scan in Orbitrap with a resolution R = 60,000
(mass range m/z 300-2000) and selected ions were dynamically excluded for 90 seconds. The lock mass
option [31], in presence of DMSO peaks [32], was used in all full scans to improve mass accuracy of

precursor ions.

2.4 Search and identification of peptide/protein

The analysis of the raw data from the LC-MS/MS was performed by MaxQuant platform [33], version
1.5.2.8. The proteins were identified against a database with a total of 19,242 protein sequences of T.
cruzi CL Brener, downloaded on January 04, 2016 from UniProt (www.uniprot.org). Contaminants (human
keratins, BSA and porcine trypsin) were added to the database, as well as their reverse sequences. The
search for methylated sites follows the criteria: MS tolerance of 20 ppm (Orbitrap), MS/MS tolerance of 0.5
Da (lontrap), allowing for 2 missed cleavages. The peptides length searched with at least 7 amino acids.
Carbamidomethylation of cysteines was determined as fixed modification. Monomethylation and

dimethylation of lysines and arginines and trimethylation of lysines were searched as variable
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modifications, as well as oxidation of methionines. A false discovery rate (FDR) of 1% was applied to the

protein, peptide and methylsite level.

2.5 Bioinformatics analyses of T. cruzi methylproteome

The functional classification and enrichment analyzes of Gene Ontology (GO)[34], Clusters of Orthologous
Groups (COG) [35] and Kyoto Encyclopedia of Genes and Genomes (KEGG)[36] were performed using
the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool [37,38], version 6.8
(https://david.ncifcrf.gov). For the enrichment analysis, FDR was applied for multiple tests correction , as
proposed by Benjamini and Hochberg [39] with cutoff <0.05. Protein consensus sequences analyses
were performed using the iceLogo [40] with the T. cruzi Swiss-Prot proteome as reference set. The

protein-protein interactions were visualized using STRING[41] in Cytoscape (v.3.8) [42].

3. Results

3.1 GeLC-MS/MS analysis reveals abundant arginine and lysine methylation in T. cruzi
epimastigotes
We applied a typical bottom-up proteomic approach to characterize the methylproteome of arginine and

lysine residues of T. cruzi epimastigotes (Fig. 1).
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Figure 1. Proteomic workflow applied to characterize the T. cruzi methylproteome of arginine and lysine. Cells
are harvested and proteins extracted through SDS lysis, followed sonication and centrifugation. Protein was
separated by SDS-PAGE 5 to 20% acrylamide gradient. Gel was fractionated in 10 fractions, each fraction was
reduced, alkylated and then digested with trypsin for 16h. Peptides were purified on C18 microcolumns and analysed
by LC-MS/MS. Proteins and methylsites was searched on MaxQuant. Data was analyzed with different proteomic
tools.
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Our analysis of the total T. cruzi protein extract resulted in the acquisition of 116405 MS/MS spectra,
51323 (approximately 44%) of which were identified when confronted with the database. After exclusion of
the identified contaminants and reverse sequences, a total of 20577 peptides and 4133 proteins were
identified. Among them, 878 methylated proteins (Table S1) and total of 1336 methylsites (Table S2)
were detected, 1263 (94.5%) with a high localization probability score (20.75) according with MaxQuant
analysis [43] . The frequency and distribution of the different methylation types (mono-, di- and
trimethylation) in T. cruzi epimastigotes are shown in Fig. 2. Among the methylated proteins identified
(878), the majority was identified with methylpeptides bearing only one type of methylation, being
monomethyl sites (58.3%) the most abundant, followed by dimethyl (24.8%) and trimethyl sites (5.6%).
Moreover, some methylated proteins were identified with more than one type of methylation: mono and
dimethylation sites (5.2%), mono and trimethyl sites (0.3%), di and trimethyl sites (5.1%) and mono, di and
trimethylation sites (0.5%). Overall, methylation sites were almost equally distributed between arginine
(657; 49%) and lysine (679; 51%) residues. Among the methylation sites, 700 (52%) represent
monomethylation (363 Kme, 337 Rme), 507 (38%) dimethylation (187 Kme2, 320 Rme2) and 129 (10%)

trimethylation (Kme3).
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Figure 2. Distribution of methylation events identified in T. cruzi epimastigotes. Venn diagram showing the
overlap of methylation types (Me, Me2 and Me3) in the identified methylated proteins (A), distribution of the identified
methylation sites for the methylation type (Me, Me2 and Me3) (B); and distribution of the methylation sites (Me, Me2
and Me3) in the amino acids arginine (R) and lysine (K) (C).

3.2 T. cruzi arginine and lysine methylsites are surrounded by different amino acid pattern

In order to identify amino acids patterns surrounding methylsites in T. cruzi, we investigate the amino
acids frequencies surrounding sites and different amino acids are more frequent in the vicinity of lysine
and arginine (Fig. 3). Methyl-lysine sites are enriched for glutamic acid (E/Glu at 192 positions -1, +2, +3
and +4) and cysteine (C/Cys at positions -1, -2, -3 and -4 positions). Methyl-arginines are enriched

upstream for Methionine (M/Met), Cysteine (C/Cys) and Arginine (Arg) and downstream for Arginines
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(R/ArQ).

Figure 3. Visualization of protein consensus sequences for methyl-arginines and methyl-lysines in T. cruzi.
Frequency of residues in modification window +15 residues from the lysine (A) and arginine (B) modification site, only
significant amino acids are shown (p-value 0.05).

3.3 Methylated proteins impact numerous processes in T. cruzi

To identify the pathways potentially regulated by methylated proteins in T. cruzi epimastigotes, we
performed functional classification and enrichment analysis of GO, COG and KEGG terms. For the
presentation of the results, classes containing 5 proteins or more were illustrated individually, while
classes containing less than 5 proteins were grouped in the “other” category. The complete classification
and enrichment lists are available in Table S3 and Table S4, respectively.

For cellular component (CC) analysis (Fig. 4), the GO classification terms were available for a subset of
285 (32.4%) of the methylated proteins, distributed in 59 (Table S3) and enriched in 5 (Table S4) different
classes. As shown in Fig. 4A, the methylated proteins are localized across the entire cell, from
membranes, to cytoplasm to nucleus and other organelles, while the enrichment analysis (Fig. 4B)
revealed that they are mainly involved with ribosomes, nucleosomes and cytoplasm.

For the biological process (BP) analysis (Fig. 5), the GO classification terms were available for 295
(33.6%) of the methylated proteins, distributed in 143 (Table S3) and enriched in 11 (Table S4) different
classes. Methylation proteins of T. cruzi was mainly related to translation, protein folding, cellular
movement, pathogenesis, membrane and intracellular transport, redox metabolism and a wide variety of
other processes (Fig. 5A). For the enriched biological processes are spotlighted the response to stress,
metabolism of amino acids and carboxylic acid, among others, such translation and oxidation-reduction
process (Fig. 5B).

For the molecular function (MF) analysis (Fig. 6), the GO classification terms were available for a subset
of 415 (47,2%) of the methylated proteins, distributed in 210 (Table S3) and enriched in 8 (Table S4)
different classes. In agreement with the cellular component and biological processes results, the most
represented (Fig. 6A) and enriched (Fig 6B) molecular functions affected by methylation included nucleic
acid, metabolite and ion binding, among others, which are ultimately related to protein synthesis, cellular

redox homeostasis and other metabolic and catabolic processes.
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242 Figure 5. Analysis of methylated proteins according to biological process. Functional classification (A) and
243 significantly enriched biological processes (B) of methylated proteins identified.
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245 Figure 6. Analysis of methylated proteins according to molecular function. Functional classification (A) and
246 significantly enriched molecular functions (B) of methylated proteins identified.
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The analysis of the T. cruzi methylproteome against the other two systematic gene functional databases
(COG and KEGG) support the multiple functions associated to methylated proteins described above. The
COG classification showed clusters of proteins with functions commonly associated to methylproteomes
analysis in other species [27], such RNA metabolism and intracellular trafficking and cytoskeleton (Fig.
S1). The KEGG classification identified multiple pathways associated to the methylated proteins (Fig. S2)
and, interestingly, biosynthesis of secondary metabolites and antibiotics are also well represented.

In order to ensure the comparison of our data with previously reported, we reanalyzed the T. brucei data
[27] with the same tools and parameters used for T. cruzi in the present work. As expected, the
methylated proteins in arginine are associated with the cytoskeleton and involved with locomotion,
including the presence of kinesins. The comparison between the processes impacted by the arginine

methylproteome in T. cruzi and T. brucei presents marked differences.

3.4 Lysine methylation impact different processes compared to arginine methylation in T. cruzi

To evaluate whether different cellular functions are being regulated by the Kme and Rme subproteomes,
we performed enrichment analysis with the sets of arginine and lysine-methylated proteins separately
(Table 1 and Table 2). As can be seen, a wider variety of functional categories have been enriched among
the lysine-methylated proteins in relation to the arginine-methylated proteins. In addition, the terms
enriched are indeed different between the two subproteomes. Lysine methylation appears to be more
strongly associated with the translation and other protein-related processes, as indicated by the
enrichment of several related classes, such as amino acid transport and metabolism (COG), translation
(BP), ribosome (CC), structural constituent of ribosome (MF) and ribosome (KEGG) (Table 1). On the
other hand, arginine methylation mainly impacts oxidation processes and metabolism of carbohydrates, as
illustrated by the enrichment of classes such as oxidation-reduction and carbohydrate metabolic process
(BP), Proton-transporting two-sector ATPase complex and catalytic domain (CC) and Pyridoxal phosphate

binding (MF), among others (Table 2).
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281  Table 1 - Functional categories enriched among proteins observed to be lysine-methylated in T. cruzi

*

Category Term Count Fold Enrichment PValue BH
glrl:r?g?(r)zg;s Groups Amino acid transport and metabolism 11 2.89 2.94E-03 4.89E-02
Translation 50 2.66 8.93E-11 8.84E-09
Cysteine biosynthetic process from serine 8 10.62 1.66E-06 8.23E-05
Biological Process
Response to stress 7 7.3 1.80E-04 5.92E-03
Glycolytic process 9 4.69 3.96E-04 9.76E-03
Ribosome 45 4.22 1.04E-16 4.77E-15
Large ribosomal subunit 9 10.97 5.25E-07 1.13E-05
Cytoplasm 30 2.65 1.97E-06 2.82E-05
Cellular Component
Cell 12 4.41 6.31E-05 6.78E-04
Endoplasmic reticulum 5 7.24 4.04E-03 3.42E-02
Proteasome activator complex 3 23.16 5.37E-03 3.79E-02
Structural constituent of ribosome 52 2.97 1.19E-12 1.84E-10
GTPase activity 16 4 6.02E-06 4.67E-04
Molecular Function Cystathionine beta-synthase activity 6 13.73 1.73E-05 8.94E-04
Translation elongation factor activity 16 3.16 1.16E-04 4.47E-03
NADP binding 7 7.01 2.64E-04 8.14E-03
Ribosome 56 1.87 6.17E-07 4.01E-05
Biosynthesis of amino acids 26 2.06 3.41E-04 1.10E-02
Biosynthesis of antibiotics 47 1.61 3.99E-04 8.61E-03
KEGG Pathways
Cysteine and methionine metabolism 16 2.64 4.80E-04 7.76E-03
Glycolysis / Gluconeogenesis 19 2.34 5.92E-04 7.66E-03
Glycine, serine and threonine metabolism 11 2.75 3.98E-03 4.23E-02

282  ’Benjamini-Hochberg <0.05.

283
284  Table 2 - Functional categories enriched among proteins observed to be arginine-methylated in T. cruzi

Fold .

Category Term Count Enrichment PVvalue BH

Oxidation-reduction process 6 8.37 4.00E-04  4.11E-02
Biological Process Biosynthetic process 10 4.19 4.29E-04  2.23E-02

Carbohydrate metabolic process 10 3.99 6.31E-04 2.18E-02

Cytoplasm 34 3.25 2.00E-09  8.80E-08
Cellular Component Cytosolic small ribosomal subunit 4 14.32 1.92E-03  4.15E-02

Proton-transport_lng two-_sector ATPase 3 2506 4.59E-03 4.94E-02

complex, catalytic domain

Pyridoxal phosphate binding 12 6.21 1.72E-06 2.55E-04
Molecular Function

L-alanine:2-oxoglutarate aminotransferase 4 20.19 4.59E-04 3.34E-02

285  "Benjamini-Hochberg <0.05.

286
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3.5 Protein-protein interaction analysis present a global view of the methylproteome network

To evaluate the protein network impacted by methylated proteins in T. cruzi, we performed protein-protein
interaction (PPIs) analysis for the subset of 187 proteins present in the PPl database. As can be seen in
Fig. 7, proteins bearing K and R methylation (or both) vastly interact with each other. The highest degree
of interaction occurs for methylated proteins related to translation, such as ribosomal proteins and
translation initiation factors. A few clusters of interaction that are biased, or exclusive, to only to one type
of methylation also exist. For example, the network related to aminoacyl-tRNA synthesis, which is mainly
R-Me modified, similarly to that shown for other eukaryotes [14] and the small ones related to splicing and
fatty acid metabolism, which have only K-methylated proteins. In addition, we also constructed the
interaction network of the K-Me and R-Me subproteomes separately (Fig. S4), to which 95 and 93 proteins
could be mapped, respectively. Despite the similar number of proteins mapped on both maps, the clusters
of the R-Me map are more connected than the clusters of the K-Me map, which has smaller and isolated

clusters. Detailed data about protein interaction analysis are available in Table S5.
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Figure 7. Interaction network of methylated proteins in T. cruzi. Visualization of functional connection between
lysine (K-Me) and arginine (R-Me) methylated proteins. Node degree correspond to number of interactions between
proteins. Detailed data are listed in Table S5.
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328

329 3.6 Methylation presents co-occurrence with phosphorylation in T. cruzi proteins

330 To investigate the co-occurrence of methylation and other PTMs, we compared our methylproteome with
331  the phosphoproteome of T. cruzi available in the literature. Of the 878 methylated proteins identified in our
332 study, 50 were also found to be phosphorylated in epimastigotes [44], among them there are cytoskeleton
333 proteins, kinases, RNA-binding proteins, calpain cysteine peptidases and hypothetical conserved proteins
334  (Table 3).

335

336  Table 3. Proteins with co-occurrence of methylation and phosphorylation in T. cruzi

Description Uniprot Gene Methylation site  Phosphorylation site
Ids Ids (K, R) position (S, T, Y) position

calpain cysteine peptidase, Q4CPQ6 Tc00.1047053505985.9 R1356 S346

putative

calpain-like cysteine peptidase, Q4CW64 Tc00.1047053509003.30 K72 S20

clan CA, family C2, putative

cysteine peptidase, Clan CA, Q4D6J0 Tc00.1047053506721.30 R3348; R3357 S970; S1889; T4555

family C2, putative

cysteine peptidase, Clan CA, Q4E0DS8 Tc00.1047053508999.190 K732 S822

family C2, putative Q4CLO0  Tc00.1047053510957.9

cAMP-specific phosphodiesterase,  Q4DUD4 Tc00.1047053506625.80 R635; R636 S485

putative

cytoskeleton-associated protein Q4DJs7 Tc00.1047053509237.130 R214 S759; S769

CAPS5.5, putative

cytoskeleton associated protein, Q4CsI2 Tc00.1047053506441.20 R231; K364 S91; T114,; S615; Y618;

putative S619; S653; S674;

S892; S927; T10583;
S$1055; S1075

cytoskeleton associated protein, Q4DJ92 Tc00.1047053511815.170 R322; K374 S427; S428

putative Q4DVF9  Tc00.1047053506859.170

cytoskeleton associated protein, Q4DVF8 Tc00.1047053506859.180 R157; K209 S14; 121

putative

cytoskeleton associated protein, Q4D770 Tc00.1047053508265.100 R231; K364 S91; T114,; S653; S695;
putative S$987; S1005; S1132;

T1137; S1139; S1150;
S1153; S1154; S1159

Dpy-30 motif containing protein, QACYETY Tc00.1047053507629.30 R938; R946 S767

putative

dynein heavy chain, putative Q4DX29 Tc00.1047053508831.4 K124; R126; S483
Q4CPP9  Tc00.1047053508275.9 K131

eukaryotic initiation factor 5a, Q4E4N4 Tc00.1047053506925.120 K42 S2

putative Tc00.1047053506925.130

flagellum targeting protein Q4DNH8 Tc00.1047053509791.189 R146 S77; S79

kharon1l, putative (fragment)

flagellum targeting protein Q4D3F7 Tc00.1047053508719.70 K146 S77; S79; S276; S332;

kharon1l, putative S344; S381

Gem-associated protein 2, putative  Q4DO0OP8 Tc00.1047053510301.40 K305; K313 S97; S99

Q4D4R7 Tc00.1047053504163.70
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heterogeneous nuclear Q4DGN8 Tc00.1047053504157.10 K147 S123; S125; T126; T128;
ribonucleoprotein H/F, putative Q4DFM4 Tc00.1047053511109.130 S339
leucine rich repeat protein, putative  Q4E246 Tc00.1047053508707.310 R512; K548; S898; S906; S910
Mitochondrial import receptor Q4D015 Tc00.1047053511803.40 iggz S502; T505
subunit ATOMG69, putative
p25-alpha, putative Q4CVvJ1 Tc00.1047053504199.20 R96 S128; S130; S132
Q4DIP8 Tc00.1047053506635.130
phosphoprotein phosphatase, Q4DDM9 Tc00.1047053507601.10 K625 S5; S8; S9; S270; T272
putative
prostaglandin F2alpha synthase Q4EA4VT Tc00.1047053508461.80 R9 S215
Q4CNI1 Tc00.1047053507617.9
protein kinase A catalytic subunit Q4EAT3 Tc00.1047053508461.280 K18; K160 T174; T230
isoform 2, putative
protein kinase, putative QAD5A8 Tc00.1047053511633.70 R387; R389 S318; S319; S322
protein associated with Q4DZzJ0 Tc00.1047053508799.270 R412 T588
differentiation 8, putative Q4CUGO  Tc00.1047053509713.10
Q4Dz19 Tc00.1047053508799.280 R401
Putative intraflagellar transport Q4CP52 Tc00.1047053503539.20 R4; R7 S362; S363; S365;
protein A1 S436; S441; S442;
S445; Y447
pyruvate phosphate dikinase, Q4E0QO0 Tc00.1047053506297.190 R365; R587; T481; S482; S680
putative Q4E3P5  Tc00.1047053510101.140 K871
retrotransposon hot spot (RHS) Q4E3H4 Tc00.1047053507611.10 K553 S32; S34; T36
protein, putative
RNA guanylyltransferase, putative Q4D3H7 Tc00.1047053507511.30 K445 S30; S34
RNA-binding protein, putative Q4E5D6 Tc00.1047053511277.580 R8; R251 S302; S304; S307;
S308; S412; S414
RNA-binding protein, putative Q4D7Y1 Tc00.1047053510755.120 R213 S7; S9; S188
Q4D3A9 Tc00.1047053508413.50
RNA-binding protein, putative Q4D488 Tc00.1047053509317.60 R36 S375; S377; S379
Q4DT61 Tc00.1047053511621.50
RNA-editing-associated protein 1, Q4DzZM3 Tc00.1047053504147.224  K362; K375 S188; S189; S193; S194
putative
sterol 24-c-methyltransferase, Q4CLW8 Tc00.1047053505683.10 R91 S235
putative

Q4CMB7 Tc00.1047053504191.10
Q4CM63 Tc00.1047053510185.10
tyrosine aminotransferase Q4cCVIo Tc00.1047053510795.10 K60; R196 S77
QA4E4E7 Tc00.1047053510187.30
Tc00.1047053510187.40

ubiquitin hydrolase, putative Q4DG39 Tc00.1047053510761.70 R540; K544 S947; S949; S952;
T955; S956
hypothetical protein Q4DWC8  Tc00.1047053509733.60 R8 S10; S13; S144; Y146;
T183; S185; S248;
S402; S411
hypothetical protein, conserved Q4CYL3 Tc00.1047053504423.30 K308; R408 S57; S618; T622; S813
hypothetical protein, conserved Q4D0ouU3 Tc00.1047053508051.20 R1419 S256; S260; T263;

S265; S266; S267,
$1403; S1406

hypothetical protein, conserved Q4DRF1 Tc00.1047053508547.160 K756; K760 S15; S81; T83
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hypothetical protein, conserved Q4DIu6 Tc00.1047053511389.50 R237; R239 T221

hypothetical protein, conserved Q4DPAS5 Tc00.1047053509647.130 K7;R9 S91; S95

hypothetical protein, conserved Q4CTC8 Tc00.1047053507569.10 R266; K308; S57; S241,; T246,; S618;
R408 T622; S810

hypothetical protein, conserved Q4DG58 Tc00.1047053511693.20 R200 S90; S92

hypothetical protein, conserved Q4E2Q5 Tc00.1047053504153.280 R171 S366; S370

hypothetical protein, conserved Q4D2L5 Tc00.1047053511435.40 R115; R118; S88; T90; S91; S305;
R126 S311; S352; S355; S359

hypothetical protein, conserved Q4D442 Tc00.1047053510733.50 K70; K77 S484

hypothetical protein, conserved Q4CWG6  Tc00.1047053508145.49 R4; R8 S1788; S1792; S1793;

S1796

Q4D106 Tc00.1047053504243.30

hypothetical protein, conserved Q4CY87  Tc00.1047053510001.20  R507; K508 S17; S21; S48; S51;
Q4D238  Tc00.1047053507529.20 S56; 5497; 5502

hypothetical protein, conserved QAESE4 Tc00.1047053511277.490 R7; R10 S186; S189
Q4E1X3 Tc00.1047053507993.40

In order to better evaluate which pathways and processes are related to the proteins that present co-
occurrence of methylation and phosphorylation, we performed a functional clustering analysis based on
the annotations in the INTERPRO, SMART, GO and KEGG databases, using the DAVID [38] tools. The
analysis identified three enriched functional clusters (Table S6). In the first cluster there are proteins
involved in RNA binding and belong to family proteins with RNA recognition motifs (RRM), the second
cluster groups proteins related to sterol methyltransferase activity and the third one represents proteins

with cysteine peptidase activity.

4. Discussion

PTMs can be found across the entire cell and are involved in various processes in eukaryotes [45].
Nonetheless, in trypanosomes only a few large-scale studies have been conducted to elucidate the global
impact of PTMs at the cellular level, mainly for phosphorylation [44,46-50] and acetylation [51].
Methylproteome characterization studies have generally analyzed methylation in arginine (R) and lysine
(K) separately and different processes have been identified impacted by the modification in these different
residues. To date, while R-methylated proteins are involved in RNA processing, transcriptional regulation

and repair of DNA damage, K-methylation has been extensively described in many histone residues,
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playing a role in the regulation of chromatin compaction and gene transcription. In our work we
characterize methylation in both residues and reported the first large-scale analysis of lysine and arginine
methylation of T. cruzi proteins.

Our data shows thatdifferent types of protein methylation is widely found in T. cruzi, were identified
monomethylated, dimethylated and trimethylated proteins. These methylated proteins are located in
different cell compartments and present a wide range of functions, suggesting an influence of the
methylation in several biological processes of the parasite, including metabolism, oxireduction, protein
folding, and RNA metabolism, were identified here, for the first time, in large-scale.

Under the conditions applied in this study, arginine and lysine methylation occurred almost in equal
abundance in the substrates, however the biological processes that impact on T. cruzi are different.
Arginine-methylated proteins are involved in several processes, in particular, oxireduction and
carbohydrate metabolism, whereas lysine-methylated proteins are mainly involved in the protein
synthesis.

This last one is fundamental to differential gene regulation processes in trypanosomes. Due the post
transcriptional events regulating the gene expression in T. cruzi and others trypanosomatids, the presence
of RNA binding proteins is even more crucial. RNA binding proteins are known substrates of PRMT in
different organisms [19,27,52-54]. We identified proteins involved in RNA processing with methylsites
and, analyzing data previously reported, these proteins also have phosphosites. In T. brucei, Lott and
colleagues [27] also reported RNA processing having identified only arginine methylated proteins in T.
brucei procyclic form, while the main represented function was proteins associated with cytoskeleton and
locomotion. Here, the main function represented by the majority of methylated proteins identified was
protein synthesis, and, interestingly, mainly in lysine methylated proteins. Indeed, the same PTM can
affect different processes in the cell, thereby this dissimilarity can be explained by the differences in
parasite’s biology in a PTM level. For example, recently, Schenkman et al. [51] analyzing lysine
acetylation in trypanosomes, revealed that protein acetylation is involved in very distinct set of acetylated
proteins when comparing T. cruzi and T. brucei. Therefore, these functional differences between
methylproteomes (and acetylomes) is compatible to the broad role of PTMs in cell signaling already

demonstrated in other eukaryotes and that seems to also exist between trypanosomes.
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Methylated proteins also impact important process like RNA processing, that is responsible for direct
assembly of multiprotein complexes on primary transcripts, mature mRNAs, and stable ribonucleoprotein
components of the RNA processing machinery [55]. Recently, Amorim and colleagues [49] demonstrated
that EF-1-a and EF-2 are phosphorylated in T. cruzi during the final phase of metacyclogenesis. This
demonstrates that different post-translational modifications are present and may be regulating different
forms of T. cruzi throughout their life cycle as a response to environment changes. Here, we identified 9
proteins methylated in translation elongation factor activity GO-MF, among them elongation factor 1-alpha
(EF-1-a) (Tc00.1047053511367.360), elongation factor 1-gamma (EF-1-gamma)
(Tc00.1047053510163.20), elongation factor 2 (EF-2) (Tc00.1047053508169.20) and transcription
elongation factor-like protein (Tc00.1047053507715.30). These elongation factors are key pieces of
translation process and, especially EF-1- a, may act beyond the canonical process in eukaryotes,
including in T. cruzi [56] and therefore can be potential drug targets, such as EF-2 in P. falciparum [57].
Other important class of protein is kinases, that are key mediators of signal transduction and we detected
methylsites in 18 proteins annotated with kinase function, among them serine/threonine and protein
kinase activity classes with 11 and 7 proteins, respectively (Table S3). Interestingly, 3 of proteins related
to kinases identified here (Q4E2T4, Q4D9W8 and Q4CXF6) present GO related to transmembrane and
integral component of membrane. An in silico approach also found kinases with annotation of a
transmembrane domain in T. brucei, suggesting that kinases, if located on the surface of trypanosomatids,
can phosphorylate host molecules or parasites to modify its environment [58].

Our analysis of amino acids patterns surrounding methylation sites reveal different residues in K-Me and
R-Me (Fig. 3). The vicinity of lysine methylated sites are enriched for glutamic acids (E/Glu), something
also seen in P. falciparum [22] and Giardia duodenalis [23] and arginine methylated sites are enriched
upstream for arginine (R/Arg) and downstream for methionine (M/Met). Well-defined patterns of amino
acids, such “RGG”, are not always surrounding targets of PRMTs [59] and, likewise, are not always
defined for PKMT [18]. Our data for T. cruzi reinforces that the writers target motifs seems to be broader in
methyl-arginine and for methyl-lysine the motifs seem to carry a certain ancestry of older eukaryotes.
Another important aspect of PTMs in cell signaling is the crosstalk [45]. Different PTMs can occur in a
same protein at any given time, the incredible dynamic changes of this allows a synergistic or antagonistic
action, because depending on their combination, the crosstalk between these different modifications

triggers other functions in the protein, affecting their interactions with other molecules [60]. Since the code
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of combinations between PTMs has been proposed [61] the crosstalk among the modifications has been
uncovered, mainly through the mass spectrometry-based proteomics [62]. It is known, for example, that
arginine methylation affects other methylated residues, such as lysines themselves, and other
modifications such as acetylation and phosphorylation [52]. In addition, there is an interrelationship
between the methylation of lysines 4 and 79 of histone H3 (H3K4 and H3K79) with the ubiquitination of
lysine 123 of histone H2B (H2BK123) in Saccharomyces cerevisiae, where the non-ubiquitination of K123
prevents methylation of K4 and K79 [63]. There is also antagonism between arginine methylation and
serine phosphorylation in the C-terminal domain of RNA polymerase I, which impacts the transcription of
specific genes in mammals [64]. Among the effects of lysine methylation and interaction with
phosphorylation, crosstalk between lysine 810 (K810) methylation in retinoblastoma tumor suppressor
protein, that preventing recognition by a cyclin-dependent kinase (Cdk) in serine residue, does not allow
the phosphorylation of this substrate, controlling the progression of the cell cycle [65].

We found sites of methylation and phosphorylation in 50 proteins when compared with data from the T.
cruzi phosphoproteome, suggesting the occurrence of different types of PTMs even in non-histone
proteins, this leads to believe that there is a potential crosstalk between these modifications working to
adjust the function of the protein. Although the methylation and phosphorylation sites are not so close in
the primary sequence (Table 3) they may be close within the tertiary structure of the protein and together
influence the interaction with other binding molecules or they may be further away to prevent interference,
so that modifying enzymes can independently bind to the respective sites [66]. Our functional
clusterization analysis of proteins with methylation and phosphorylation sites grouped with highest
stringency three clusters related to RNA binding proteins, sterol methyltransferase activity and calpain
peptidases (Table S6). Related to first cluster the presence of proteins methylated involved with RNA
metabolism is commonly reported and in T. brucei where was identified 10 protein with RRM [27], the
proteins identified in T. cruzi are all arginine-methylated proteins. These proteins interact with RNA
typically through aromatic residues within the RNP1 and RNP2 domains located on conserved B-sheets
and are directly involved in RNA processing [55,67]. In this regard, the methylation typically impacts
mainly the protein-protein interaction and subcellular localization, but does not directly impact protein-RNA
interactions. On the other hand, with phosphorylation site occurring in the same protein, the protein
function or recruitment could be, perhaps, modified. The second cluster have proteins with sterol

methyltransferase activity, these enzymes are involved in the ergosterol and related 24-alkyl sterols
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metabolism. The steroid biosynthesis is a target of inhibitors for the treatment of both Chagas’s disease
and leishmaniasis [68,69]. The third cluster have proteins from the family of calpains, which is an
intracellular protease involved in many cellular functions that are regulated by calcium. Our results of
methylproteome and the analysis of previously phosphoproteome data of T. cruzi provide candidates to
study of potential crosstalk between methylation and phosphorylation in T. cruzi. Further characterization
is necessary to identify such crosstalk, for example through protein interaction assays, to identify partners

linking the specific sites of methylation and phosphorylation [70].

5. Conclusion

Collectively, our data gave another status for protein methylation in the biology of T. cruzi and indicate that
it has great potential to be at the level of other PTMs, such acetylation and phosphorylation, acting in the
cell regulation. Finally, our data show that important processes are being regulated by protein methylation
in T. cruzi and that this modification should be further investigated, in order to reveal key parts in the

biology of this parasite and potential chemotherapeutic candidates.
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694 Figure S3. Heatmap results of iceLogo analysis (related to Fig. 3). Increased or decreased amino acid
695 frequencies are shown in a gradient of respectively green or red shades for K-Me (A) and R-Me (B) sites.
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Figure S4. Interaction network maps of lysine (A) and arginine (B) methylated proteins in T. cruzi. Detailed data are
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SUPPLEMENTARY TABLES

Table S1 — Methylated proteins identified in T. cruzi. List of all methylated proteins identified, with

information about sequence coverage, statistics on the detection and type of methylation.

Table S2 — Methylated sites identified in T. cruzi. List of all arginine and lysine methylated sites

identified, with type of methylation and statistics on the detection.

Table S3 — Functional classification of T. cruzi methylproteome. List of the terms of GO, COG and

KEGG associated with the methylated proteins of our dataset.

Table S4 — Functional enrichment of T. cruzi methylproteome. List of the terms of GO significantly

enriched in the methylated proteins dataset.

Table S5 — The interaction network of T. cruzi methylproteome. List of methylated proteins of the

network analysis and their interaction information.

Table S6 — Functional clustering of T. cruzi methylated and phosphorylated proteins. The statistics
of functional clusterization analysis of proteins with co-occurrence of methylation and phosphorylation in

T. cruzi.
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