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2 

Abstract  19 

The phylum Chlamydiae consists of obligate intracellular bacteria including major human 20 

pathogens and diverse environmental representatives. Here we investigated the 21 

Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, 22 

with the few described members known to infect arthropod hosts. Using published 16S rRNA 23 

gene sequence data we identified at least 388 genus-level lineages containing about 14 051 24 

putative species within this family. We show that rhabdochlamydiae are mainly found in 25 

freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. 26 

Next, we used a comprehensive genome dataset including metagenome assembled genomes 27 

classified as members of the family Rhabdochlamydiaceae, and we added novel complete 28 

genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, 29 

and of ‘Candidatus R. oedothoracis’ associated with the linyphiid dwarf spider Oedothorax 30 

gibbosus. Comparative analysis of basic genome features and gene content with reference 31 

genomes of well-studied chlamydial families with known host ranges, namely 32 

Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) 33 

suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that 34 

members of the family represent intermediate stages of adaptation of chlamydiae from protists 35 

to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction 36 

could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases 37 

suggests transposable element expansion and subsequent gene inactivation as a mechanism of 38 

genome streamlining during adaptation to new hosts. This type of genome reduction has never 39 

been described before for any member of the phylum Chlamydiae. This study provides new 40 

insights into the molecular ecology, genomic diversity, and evolution of representatives of one 41 

of the most divergent chlamydial families.  42 
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Introduction 43 

The phylum Chlamydiae was originally regarded as a small group of obligate intracellular 44 

bacteria infecting humans and few animal species [1]. Today, the chlamydiae are known to be 45 

associated with a broad spectrum of host organisms including protists, arthropods, and diverse 46 

vertebrates [2–6]. Some of those may also infect mammalian cells and have thus been 47 

proposed to represent emerging human pathogens [7–9]. While cultured representatives of 48 

only six families are available to date, molecular surveys suggest that a large undiscovered 49 

diversity exists, with over one thousand family-level lineages in various environments 50 

worldwide [6, 10]. 51 

All chlamydiae share a common ancestor that has lived around one billion years ago, and there 52 

is evidence that the emergence of their unique and strictly intracellular lifestyle dates back to 53 

these Precambrian times [11–13]. The characteristic biphasic developmental cycle of 54 

characterized representatives consists of the infective elementary bodies (EBs) that enter 55 

eukaryotic host cells and transform into replicative reticulate bodies (RBs). Inside the host cells, 56 

chlamydiae stay in host-derived vacuoles termed inclusions. Eventually, RBs differentiate back 57 

to EBs, exit the host cell either by lysis or extrusion and start a new infection cycle [14]. 58 

Genomics has helped to gain fundamental insights into chlamydial biology, host 59 

adaptation, and evolution. Chlamydiae generally have small, reduced genomes, and lack 60 

metabolic pathways that are complemented by importing host cell metabolites [15]. Despite 61 

recent advances in genetic manipulation of members of the well-studied family 62 

Chlamydiaceae, like Chlamydia trachomatis [16, 17], genomics remains of utmost importance 63 

to study the more elusive chlamydiae found in the environment, collectively referred to as 64 

environmental chlamydiae. For instance, genomics revealed that the chlamydial developmental 65 

cycle, including major virulence mechanisms such as the type III secretion system, is well 66 

conserved also among the environmental representatives [3, 11, 12, 18]. Yet, the genetic 67 

repertoire of environmental chlamydiae is generally more versatile than that of Chlamydiaceae, 68 

including more complete metabolic pathways and richer arsenals of predicted effector proteins 69 

to interact with their evolutionary distinct eukaryotic host cells [19–21]. More recently, single 70 

cell genomics and large-scale metagenomics revealed a surprising biological variability of 71 

environmental chlamydiae, including evidence for motility and a widespread potential for 72 

anaerobic metabolism [6, 22–24].  73 
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The family Rhabdochlamydiaceae is putatively one of the largest and most diverse - yet poorly 74 

studied clades - within the phylum Chlamydiae  [10]. The only known hosts of 75 

rhabdochlamydiae are arthropods including ticks, spiders, cockroaches, and woodlice [25–28]. 76 

An infection with rhabdochlamydiae was reported to be detrimental for cockroaches and 77 

woodlice, leading to severe abdominal swelling [26, 29] or heavy tissue damage [30] in the 78 

respective host. However, the prevalence was reported to be low, accounting to 1 % on average 79 

for ticks [31], and to 15 % on average for woodlice [30]. Although rhabdochlamydiae are 80 

potentially important members of the phylum, so far there is only one described draft genome 81 

sequence available from ‘Candidatus Rhabdochlamydia helvetica’ [28]. Here we add the 82 

complete genome sequences of Rhabdochlamydia porcellionis [25] and the new species 83 

‘Candidatus Rhabdochlamydia oedothoracis’ [27], and we use a collection of metagenome 84 

assembled genomes (MAGs) to investigate the biology and evolution of members of the 85 

Rhabdochlamydiaceae. We provide evidence for a large, yet undiscovered diversity of 86 

rhabdochlamydiae especially in freshwater and soil ecosystems. We show that their genomic 87 

setup suggests a host spectrum beyond arthropods and identified transposable elements as 88 

drivers of genome size reduction during host adaptation.  89 

Results and Discussion 90 

Rhabdochlamydiae thrive in soil and freshwater environments 91 

Previous analyses of metagenomic and 16S ribosomal RNA gene-based surveys predicted the 92 

Rhabdochlamydiaceae as one of the most diverse families within the phylum Chlamydiae [6, 93 

10]. Since then, available sequencing data increased manifold, e.g., by one order of magnitude 94 

in the publicly available high throughput sequencing repository SRA, from ~1 000 TB in 2014 to 95 

~10 000 TB in 2020 (trace.ncbi.nlm.nih.gov/Traces/sra/). To get an up-to-date overview we 96 

screened the SRA for 16S rRNA gene sequences using the database IMNGS [32]. This analysis 97 

suggested that the family Rhabdochlamydiaceae consists of at least 388 genus-level lineages 98 

and 14 051 species-level operational taxonomic units (OTUs; clustered using a sequence 99 

similarity threshold of 95 % and 99 %, respectively). We calculated this lower bound estimate 100 

using only sequences covering the V3-V4 region of the 16S rRNA gene as this is the most well-101 

covered region in our dataset, comprising about 72 % of all sequences. Considering also other 102 

variable regions would likely result in an overestimation of OTUs as two sequences spanning 103 

different regions of the same 16S rRNA gene would appear as two separate genus-level OTUs 104 
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in this analysis (see Materials and Methods). Compared to the few Rhabdochlamydiaceae full-105 

length sequences reported to date, these estimates predict a staggering high natural diversity 106 

for members of this chlamydial family. A prime example lending support for this finding is a 107 

recent study investigating fecal microbiota from more than 400 insectivorous barn swallows 108 

during two breeding seasons [33]. The rhabdochlamydial 16S rRNA gene sequences detected 109 

in this longitudinal study alone contribute to 80 different genus-level lineages. The placement 110 

of representative sequences of all putative genus-level OTUs into a reference tree consisting of 111 

chlamydial full-length sequences illustrated the broad diversity of the Rhabdochlamydiaceae 112 

and showed that the predicted OTUs indeed span the entire family clade, including lineages 113 

both closely related and distant to previously recognized members (Figure 1).  114 

Although all known representatives of the family Rhabdochlamydiaceae are associated with 115 

arthropod hosts [25, 26, 28], our data show that most OTUs originate from soil (43 %) and 116 

freshwater (33 %) samples, suggesting the presence of additional, yet unknown hosts (Figure 117 

1). Protists are abundant and important members of microbial communities in those 118 

environments [34, 35] and might thus serve as hosts for many of these lineages. Consistent 119 

with this, only 5 % of all identified rhabdochlamydial OTUs were detected in animal 120 

microbiomes from molluscs, birds, fish, and diverse mammals, and categorized as host-121 

associated in our analysis (Figure 1). Most of these sequences, however, originate from feces 122 

or gut samples, and it is thus conceivable that rhabdochlamydiae are taken up with food and 123 

do not represent active infections. In fact, there is no general discernible pattern or pronounced 124 

correlation of phylogeny and relationship with environmental origins or putative host taxa in 125 

our dataset. We still noted a monophyletic group comprising all known arthropod associated 126 

Rhabdochlamydiaceae, i.e., the three described Rhabdochlamydia species. This clade contains 127 

in addition 107 genus-level lineages found in diverse environments, including many detected 128 

in feces from insectivorous birds (Figure 1). Taken together, our data suggests that while there 129 

is evidence for yet unknown environmental hosts, diverse animals may serve as either transient 130 

hosts or simply act as vectors for distributing rhabdochlamydiae through food uptake and 131 

excrements.  132 
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Genome features and gene content distinguish rhabdochlamydiae from 133 

other chlamydial families 134 

To learn more about members of the Rhabdochlamydiaceae, we next collected all available 135 

whole genome sequences and high quality MAGs (n=9; see Material and Methods; Table S1) 136 

and compared them to the most well-studied chlamydial families with known hosts, namely 137 

the Chlamydiaceae (human and other vertebrate hosts) [36] and the Parachlamydiaceae 138 

(amoeba hosts) [3]. We did not consider members of other described families due to the limited 139 

number of genome sequences and the lack of knowledge about their natural hosts, 140 

respectively. In addition, we determined the complete genome sequences of two 141 

rhabdochlamydiae from arthropod hosts: R. porcellionis infecting the woodlouse Porcellio 142 

scaber [25], and the new species R. oedothoracis, which is associated with the linyphiid dwarf 143 

spider Oedothorax gibbosus [27] (Table S2; for a formal candidatus species description see Text 144 

S1). In order to compare the different chlamydial families, we first clustered all genes into 145 

orthologous groups (OG) representing gene families [37, 38]. Next, we compared all genomes 146 

based on their gene content, i.e., abundance of gene families (Figure 2A, 2B). This analysis 147 

confirmed previous observations that the human and animal pathogens of the Chlamydiaceae 148 

clearly differ from the amoeba symbionts of the Parachlamydiaceae with respect to their 149 

genetic repertoire [2].Further, the number of genes shared within a chlamydial family is 150 

generally higher than the number of genes shared by the whole phylum [24]. These conserved 151 

family-specific genomic backbones have been interpreted to reflect adaptations to different 152 

niches or, as chlamydiae are obligate intracellular bacteria, to different hosts. Notably, our gene 153 

content analysis revealed that members of the Rhabdochlamydiaceae are clearly distinct from 154 

the Chlamydiaceae and the Parachlamydiaceae for both highly conserved (Figure 2A) and 155 

chlamydiae-specific gene families (Figure 2B). The different genome composition is also 156 

reflected in the degree of genome reduction, with rhabdochlamydiae showing intermediate 157 

genome sizes compared to the Chlamydiaceae and the Parachlamydiaceae (Figure 2C). 158 

Together, this suggests that the Rhabdochlamydiaceae have a different niche, for instance a 159 

different host range, in comparison to the other well-studied chlamydial families. 160 

In many host-associated bacteria there is a correlation between genome size and GC content 161 

[39, 40], with smaller genomes tending to have a lower GC content. However, this does not 162 

seem to apply to chlamydiae [18, 40], suggesting evolutionary forces other than relaxed 163 

selection and genetic drift shaping the genomic GC content of members of this phylum. Several 164 
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other factors are known to drive the base composition in bacteria including environmental 165 

conditions and niche-specialization [41, 42]. Within the family Rhabdochlamydiaceae we 166 

observe a clear divide with respect to the genomic GC content, with known arthropod-167 

associated rhabdochlamydiae (i.e., the members of the genus Rhabdochlamydia: R. helvetica, 168 

R. oedothoracis, R. porcellionis) differing pronouncedly from those of other rhabdochlamydiae 169 

(35.4 %-36.2 % vs. 42.3 %-45.2 % on average; Figure 2C; Figure S2). This might indicate that the 170 

latter thrive in a different niche, i.e., are associated with hosts other than arthropods. However, 171 

more Rhabdochlamydiaceae genome sequences from arthropod hosts are needed to 172 

corroborate these observations.  173 

The Rhabdochlamydiaceae pangenome 174 

To explore the genomic setup of the Rhabdochlamydiaceae in more detail we conducted a 175 

pangenome analysis. The pangenome describes all genes in a certain group of organisms and 176 

consists of genes present in all individuals in that group, the core genome, and genes that are 177 

specific for only some of them, referred to as accessory genome [43]. For this analysis we 178 

selected all nine Rhabdochlamydiaceae genomes from our dataset (Table S1; Figure S3). The 179 

family pangenome comprises 5 178 OGs of which 665 are present in > 90 % of all genomes, 180 

representing the core genome. This includes almost all of the genes constituting the chlamydial 181 

core genome [18, 24], such as the type III secretion system [44],  nucleotide transport proteins 182 

(Ntt1/Ntt2) [45], the master regulator of the chlamydial developmental cycle (Euo)[46] as well 183 

as major effector proteins (CopN, Pkn5)[47, 48] that interfere with host cellular pathways. 184 

Further, glycogen metabolism is conserved among all Rhabdochlamydiaceae, this is consistent 185 

with the importance of glycogen as storage compound for many known chlamydiae [49].  186 

The accessory genome contains lineage-specific genes representing adaptations to different 187 

niches [18, 24, 43, 50]. In general, the arthropod-associated Rhabdochlamydia species tend to 188 

have smaller accessory genomes (246-395 genes) than other members of the family 189 

Rhabdochlamydiaceae (366-588 genes) with unknown hosts (Wilcoxon rank sum test; p-190 

value=0.05) (Figure S4). When we grouped the accessory genes into functional categories 191 

inferred from annotations in the eggNOG database, we could not recognize clear differences 192 

between the individual genomes (Figure S5). However, among the gene families differentiating 193 

known arthropod-associated rhabdochlamydiae from other Rhabdochlamydiaceae, i.e., those 194 

gene families that are unique to or completely missing in the genus Rhabdochlamydia, we 195 
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found several genes associated with cell wall or membrane biosynthesis (Table S3). Whether 196 

any of these are related to the rod-shaped EBs and the characteristic five-layered cell envelope 197 

of arthropod-associated Rhabdochlamydia species remains to be determined [29, 30, 51].  198 

The genus Rhabdochlamydia  199 

Next, we further focused on the genus Rhabdochlamydia, which represents the best studied 200 

clade in the family, because: (i) it includes the only cultured representatives of the 201 

Rhabdochlamydiaceae, (ii) the hosts of all three described species are known, and (iii) its 202 

members are represented by two closed and one high-quality draft genome, including one 203 

plasmid each. Calculation of the genome-wide average amino acid identity (AAI) confirmed 204 

their classification into a single genus (AAI >80 %; Figure S6; [52]). The Rhabdochlamydia genus 205 

pangenome comprises 1 875 OGs, where most of them belong to the core genome (1 007, 206 

54%). The sizes of the accessory genomes vary between the species and correlate with genome 207 

size (Figure 3A). Between 21 % and 37 % of the accessory genomes mapped to known gene 208 

families in the eggNOG database; the larger proportion consists of orphan genes and genes 209 

with remote homology to genes of unknown function.  210 

We noted, however, that the genomes of R. helvetica and R. porcellionis include a complete 211 

pathway for the de novo synthesis of polyamines. Polyamines play an important role in 212 

virulence and response to various stressors [53–55]. The complete pathway is an unusual 213 

feature of chlamydial genomes [28], seems incomplete or absent in other rhabdochlamydial 214 

genomes, and is also absent in the closest cultured relative outside the Rhabdochlamydiaceae, 215 

Simkania negevensis.  216 

All members of the genus Rhabdochlamydia carry a large plasmid between 20 and 39 kB in size 217 

(Figure 3A). Plasmids are small DNA molecules replicating independently from the 218 

chromosome, known to mediate horizontal gene transfer, and are considered important for 219 

the adaptation to different environments [56]. Plasmids have been identified as important 220 

drivers of genome evolution in the phylum Chlamydiae [57, 58], and the highly conserved 221 

Chlamydiaceae plasmid is recognized for its role in virulence in human and animal hosts [57–222 

59]. In total, Rhabdochlamydia plasmids encode 83 proteins that belong to 39 different gene 223 

families. More than half of the gene families have representatives on at least one other 224 

Rhabdochlamydia chromosome or plasmid. This indicates a high degree of gene flow between 225 

chromosomes and plasmids, an observation also described for other chlamydial plasmids [57]. 226 
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All Rhabdochlamydia plasmids contain genes considered to be important for plasmid 227 

maintenance in the Chlamydiaceae, such as Pgp2, plasmid partitioning protein ParA, and the 228 

integrase Pgp8 [59]. Interestingly, the Rhabdochlamydia plasmids encode major outer 229 

membrane (MOMP)-like proteins, in addition to the respective chromosomal copies. MOMPs 230 

are highly conserved among chlamydiae. They function as porins and adhesins and are 231 

prominently recognized by the host immune system in members of the Chlamydiaceae [60]. 232 

The MOMP-like proteins of Rhabdochlamydia show little to no similarity with the canonical 233 

MOMPs of the Chlamydiaceae. However, they belong to a large number of orthologs also found 234 

in the only distantly related chlamydiae Waddlia chondrophila and S. negevensis, with yet 235 

unknown function [18, 61, 62]. 236 

To more systematically compare the Rhabdochlamydia accessory gene sets, we performed an 237 

enrichment analysis taking into account functional category annotations from eggNOG (Figure 238 

3B). The R. oedothoracis accessory genome is enriched in the category “replication, 239 

recombination and repair” (FDR adjusted p-value < 0.001), which includes transposases and 240 

genes for their maintenance. R. helvetica on the other hand is enriched in several categories 241 

and includes a large number of genes with unknown function (FDR adjusted p-value < 0.001) 242 

(Figure 3B). In addition, the accessory genomes of R. oedothoracis and R. helvetica include a 243 

range of functions that are linked to communication with the environment like defense 244 

mechanisms and cell wall/membrane/envelope biogenesis that are missing in R. porcellionis. 245 

Together with the smaller genome size of R. porcellionis, this indicates a prolonged association 246 

with the woodlouse host and may reflect an adaptation to the limited competition with other 247 

bacteria in the hepatopancreas - the target organ of infection [25, 63].  248 

Insertion sequences as key players in genome reduction  249 

Reduced genomes are a hallmark of all chlamydiae [6, 18]. Yet, the evolutionary trajectories 250 

leading to their streamlined and highly specialized genomes are poorly understood. Members 251 

of the genus Rhabdochlamydia with their differences in genome size might offer an interesting 252 

perspective to learn more about the process of genome size reduction and host adaptation in 253 

these bacteria. To this end, one of the most striking differences between the known 254 

Rhabdochlamydia genomes is the presence of a high number of transposases in R. oedothoracis 255 

and its mere absence in the smallest genome of R. porcellionis. 256 
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Transposases are indicative of transposable elements (TEs), which in their simplest version as 257 

insertion sequences (ISs) contain only a transposase gene flanked by inverted repeats [64]. 258 

There are several reports of ISs being associated with genome reduction in beneficial bacterial 259 

symbionts [65–71]. In most of these cases, the symbionts were recently acquired from a free-260 

living stage. During the adaptation to the host and the intracellular environment, the symbionts 261 

accumulate ISs in their genomes [72]. The ISs may interrupt genes that then accumulate 262 

mutations, especially deletions, as a consequence of relaxed selection, which ultimately leads 263 

to a reduction of genome size [72]. Here, we suggest that a similar process drove the evolution 264 

of Rhabdochlamydia genomes.  265 

As ISs are known to cause breaks in genome assemblies and are often not properly annotated 266 

by automated tools [73], we limited our in-depth analysis to the closed genomes of R. 267 

oedothoracis and R. porcellionis, and we manually curated transposase annotations (Figure 4B; 268 

see methods for details). In total, we could identify 415 transposase genes in R. oedothoracis 269 

and only 19 in R. porcellionis. Apart from 129 transposases in R. oedothoracis, most of those do 270 

not appear to be functional; they are either truncated, contain premature stop codons, or are 271 

interrupted by other transposases (Table S4). Notably, (functional) transposases are also 272 

encoded on the plasmid of R. oedothoracis yet absent on other rhabdochlamydial plasmids 273 

(Table S4). It was shown previously that plasmids need to exceed a certain minimum size (~20 274 

kB) to be able to carry TEs [64]. This threshold would explain the absence of transposases on 275 

the plasmids of R. porcellionis. The presence of representatives of the most abundant 276 

chromosomal transposase families on the plasmid of R. oedothoracis, however, may suggest a 277 

role of the plasmid in IS expansion. The higher copy number of plasmids and their replication 278 

independent of the chromosome [56] might support the proliferation of ISs. 279 

Apart from a high number of TEs, increased pseudogenization is indicative for genomes under 280 

degradation [72]. We therefore used pseudofinder [74] to identify genes under relaxed 281 

selection in the genome of R. oedothoracis by comparing it to R. porcellionis. This approach 282 

assumes that due to its small size and the low number of transposases, most genes are under 283 

purifying selection in the reference genome of R. porcellionis. In total, 276 R. oedothoracis 284 

genes were marked as cryptic pseudogenes i.e., genes that are structurally intact but likely 285 

experience relaxed selection (dN/dS ratios >= 0.3) [68]. A broad range of functions is affected 286 

by this ongoing pseudogenization, including diverse metabolic pathways, as well as genes 287 

involved in replication and regulation (Figure 4C).  288 
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Taken together, with its small size and the low number of transposases, the genome of R. 289 

porcellionis is the most streamlined genome in the genus, suggesting an ancient association 290 

with its P. scaber host. In contrast, there is still evidence for the process of genome reduction 291 

in the case of R. oedothoracis, given the high number of (functional) transposases and 292 

pseudogenes, possibly as a consequence of a relatively recent host switch. Notably, the 293 

distribution of transposases in the R. oedothoracis genome correlates with positions where the 294 

synteny of the two genomes is disrupted (Figure 4A, 4D). This further illustrates the putative 295 

role of ISs in genome rearrangements and genome size reduction in Rhabdochlamydia. 296 

Consistent with this, there is further evidence for a nascent stage of genome reduction in R. 297 

oedothoracis: Although the GC content of the rearrangement regions generally matches that 298 

of the surrounding regions, the characteristic asymmetrical pattern of circular chromosomes in 299 

cumulative GC skew analyses [75] is less pronounced (Figure 4A).  300 

To learn more about the origin of the transposases present in the genome of R. oedothoracis, 301 

we performed phylogenetic analyses for the three most abundant transposase families with 302 

functional representatives in R. oedothoracis. Surprisingly, all investigated transposases 303 

showed a phylogenetic relatedness to transposases found in other chlamydiae (Figure S7), 304 

suggesting the existence of an ancient pool of transposases in chlamydial ancestors and 305 

sequential loss in several lineages.  306 

A scenario for the evolution of the genus Rhabdochlamydia  307 

Our observations regarding diversity, environmental distribution, and genomics of members of 308 

the family Rhabdochlamydiaceae provide clues about genome evolution and the adaptation of 309 

chlamydiae from symbionts of unicellular eukaryotes to animal hosts. 310 

We show that members of the Rhabdochlamydiaceae are highly diverse, occur in different 311 

environments and mostly lack a clear association with animal hosts (Figure 1). This suggests 312 

that the majority of rhabdochlamydiae infect other, yet unknown and likely unicellular hosts. 313 

Surprisingly, however, members of the Rhabdochlamydiaceae differ pronouncedly in their 314 

genetic make-up and genome size from recognized chlamydial symbionts of heterotrophic 315 

amoeba (Figure 2A, 2B, 2C). Yet, there is a wide range of protists with very different lifestyles 316 

e.g., phototrophic, or saprotrophic protists feeding on decaying organic matter, that could 317 

serve as natural hosts for rhabdochlamydiae [34]. According to the “melting pot” hypothesis, 318 

symbionts in amoebae retain larger genomes than closely related bacteria infecting animals as 319 
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there is a high level of competition and possibilities for gene acquisition by lateral gene transfer 320 

in amoebae that feed on complex microbial communities [76, 77]. In phototrophic or 321 

saprotrophic protists, the competition and interaction with other bacteria would be much 322 

lower, leading to smaller genome sizes and differences in the genetic repertoire as seen for the 323 

Rhabdochlamydiaceae (Figure 2A, 2B, 2C). We thus suggest that members of the family include 324 

widespread symbionts of protist hosts different from the phagotrophic, free-living amoeba 325 

recognized so far as hosts for other chlamydiae. Of note, there is recent evidence for diverse 326 

chlamydial symbionts including rhabdochlamydiae in the cellular slime mold Dictyostelium 327 

discoideum [78]. 328 

Within the family Rhabdochlamydiaceae, the similar GC content, a large core genome and 329 

shared membrane features distinguish the genus Rhabdochlamydia from all other members 330 

(Figure 2A, 2C). This is consistent with them sharing a similar niche in arthropod hosts and 331 

putatively originating from rhabdochlamydiae thriving in environmental protists (Figure 1, 3). 332 

By infecting hosts equipped with an innate immune response, members of the genus 333 

Rhabdochlamydia might represent an intermediate step towards adaptation of chlamydiae to 334 

vertebrate animals with adaptive immunity. In this scenario, food or water would be a 335 

conceivable entry route for the uptake of protist-associated rhabdochlamydiae by arthropod 336 

hosts. We suggest that the subsequent transition and adaptation to arthropod hosts triggered 337 

genomic changes in the last common ancestor of Rhabdochlamydia species, resulting in 338 

reduced and specialized genomes of extant members of the genus. This process was putatively 339 

facilitated by IS expansion, inactivating genes under relaxed selection and eventually leading to 340 

genome size reduction (Figure 5). Genome reduction mediated by transposable elements is 341 

common in inherited, vertically transmitted beneficial symbionts [41, 67]. To our knowledge, 342 

such a scenario has not yet been described for horizontally transmitted intracellular bacteria 343 

representing commensals or pathogens as it is the case for members of the phylum 344 

Chlamydiae. The extent of genome streamlining might be dependent on the arthropod hosts, 345 

the site of infection and the extent of competition with other microbes. The digestive glands of 346 

P. scaber, the target organ of R. porcellionis, for example, harbors only a few other bacteria 347 

[63]. The same is true for the hindgut of the spider host of R. oedothoracis [27]. The tick Ixodes 348 

ricinus, on the other hand, contains a diverse microbiome, creating a more competitive 349 

environment for R. helvetica and opportunities for genetic exchange [79].  350 
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In conclusion, we have demonstrated that Rhabdochlamydiaceae are distributed globally and 351 

represent a major, yet heavily underexplored chlamydial group. We show that they provide 352 

opportunities to study adaptation and genome evolution of chlamydiae during the transition 353 

from protist to animal hosts. We have identified transposable elements as an important factor 354 

underlying genome size reduction in the phylum Chlamydiae, and we propose a scenario for 355 

the adaptation of Rhabdochlamydia species to their arthropod hosts. A limitation of our study 356 

is the low number of available high-quality Rhabdochlamydia genome sequences. Sequencing 357 

more arthropod-associated chlamydiae is needed to verify the evolutionary scenario proposed 358 

here. Further, the in-depth analysis of members of the family Rhabdochlamydiaceae is 359 

hampered by the dramatic lack of cultured representatives and information about host 360 

organisms. Future efforts targeting understudied protist taxa and recovering symbionts 361 

together with their hosts from complex environmental samples might help to overcome this. 362 

Taken together, the current study provides a comprehensive framework for investigating the 363 

ecology and evolution of one of the most widespread lineages within the phylum Chlamydiae. 364 

Materials and Methods 365 

16S rRNA gene phylogeny  366 

We downloaded all available unique near-full length 16S rRNA gene sequences of chlamydiae 367 

(n=233) and other Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) members (n=205) from 368 

SILVA v138 SSU Ref NR 99 [80] and added 78 16S rRNA genes from published chlamydial 369 

genomes from RefSeq [81] and GenBank [82]. In addition, we added 79 near-full length 370 

chlamydial sequences from Schulz et al. 2017. We dereplicated the sequences at 99 %-identity 371 

using USEARCH (v11) [84] with “-cluster_smallmem” and  aligned the clustered sequences with 372 

SINA [85]. Afterwards, we trimmed the alignment with trimAl (v1.4.15) [86] “-noallgaps” and 373 

removed the highly variable positions using noisy (v1.5.12) [87]. The phylogenetic tree was then 374 

calculated with IQ-TREE (v1.6.2) [88]. Model testing was performed with “-m TESTNEW” (Best 375 

model: SYM+R9), and initial support values were inferred from 1 000 non-parametric 376 

bootstraps using “-bb 1000”. The final tree was edited and visualized using iTOL (v4) [89]. 377 

16S rRNA gene-based diversity and environmental distribution  378 

We queried the IMNGS database, which is a collection of pre-clustered NCBI SRA sequencing 379 

data [32] on 09 June 2020 for 16S rRNA genes with at least 90 % identity to the reference 16S 380 
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rRNA sequence of R. porcellionis 15C. We removed singletons, only kept sequences >400 bp, 381 

and removed duplicates and sequences with ambiguous bases using mothur (v.1.42.3). 16S 382 

rRNA genes were aligned to SILVA Ref NR 99 SSU (v138) [80] using mothur (v.1.42.3)[90], and 383 

the alignment was trimmed with trimAl (v1.4.15) [86] using the “-noallgaps” parameter. 384 

Afterwards, we clustered the sequences in OTUs using USEARCH (v11.0.667) [84] “-385 

cluster_otus” to reduce redundancy, and finally on 95 % sequence identity level using “-386 

cluster_smallmem”. In order to belong to one cluster, sequences were required to overlap to 387 

90 % (“-query_cov 0.9”). Centroid sequences were aligned to the 16S rRNA full-length 388 

alignment using MAFFT (v7.427) (“--addfragments”) [91], and variable positions were removed 389 

using trimAl (“-selectcols”) (v1.4.15) [86]. We then placed the centroids to the 16S rRNA full-390 

length reference tree using EPA-ng (v0.2.1)[92] (model: SYM+R9), and manually selected all 391 

centroids that were placed in the family Rhabdochlamydiaceae. This step significantly reduced 392 

the number of centroids from 2 162 to 938. For the final tree, only rhabdochlamydiae centroids 393 

were placed into the 16S rRNA full-length tree. We selected only sequences covering the V3-394 

V4 region of the 16S rRNA gene as considering also other variable regions would likely result in 395 

an overestimation of OTUs as two sequences spanning different regions of the same 16S rRNA 396 

gene would appear as two separate genus-level OTUs in this analysis. When considering also 397 

those sequences covering other 16S rRNA gene regions, we retrieved an additional 550 genus-398 

level OTU candidates (262 OTUs for V4-V5; 87 for V5-V6; 201 for V6-V8). The final tree was 399 

edited and visualized using iTOL (v4) [89]. For the analysis of the relative abundance in the 400 

environment of rhabdochlamydiae centroids in total 14,051 sequences were analyzed. The 401 

metadata was provided by IMNGS and retrieved from the SRA. The broad categories provided 402 

by the SRA were manually curated and each rhabdochlamydiae sequence assigned to one of 403 

the following categories: freshwater, freshwater-sediment, marine, plant-associated, soil, and 404 

host-associated. The sequences assigned to host-associated were further categorized based on 405 

the organisms they originated from. Sequences that originated from gut or stool samples were 406 

also classified as host associated. In total, 670 sequences were assigned to the category host-407 

associated, 4 515 to freshwater, 141 to freshwater-sediment, 6 002 to soil, 1 714 to plant-408 

associated, 194 to marine and 815 to engineered. The bar charts were created by counting the 409 

total number of sequences represented by a centroid and calculating the relative abundances 410 

for each category. 411 

Genome sequencing and assembly - R. porcellionis 15C 412 
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R. porcellionis 15C was cultivated in Sf9 insect cells (Spodoptera frugiperda) as described in Sixt 413 

et al. 2013. For DNA isolation we harvested Sf9 cells infected with R. porcellionis 15C and lysed 414 

the host cells with lysis buffer (1M Tris-HCl, 0.5 M EDTA, 5 M NaCl, SDS, Proteinase K). 415 

Afterwards, the host DNA was digested using DNase I (1 U/μL, Thermo Scientific; Thermo Fisher 416 

Scientific; Waltham, MA, USA). Bacterial gDNA isolation was carried out using the DNeasy Blood 417 

and Tissue Kit (Qiagen; Hilden, Germany). To remove remaining RNA, we treated the isolated 418 

gDNA with RNAse A (10 mg/mL, Thermo Scientific; Thermo Fisher Scientific; Waltham, MA, 419 

USA). Finally, we checked the quality of the gDNA using Qubit4 (Invitrogen; Thermo Fisher 420 

Scientific; Waltham, MA, USA) and the dsDNA HS Assay Kit (Invitrogen; Thermo Fisher Scientific; 421 

Waltham, MA, USA) and Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific; 422 

Waltham, MA, USA).  423 

Before library preparation for the long read sequencing the gDNA was measured with 424 

Nanodrop and the length of the DNA fragments was measured with a Bioanalyzer. Library 425 

preparation was done using the Ligation Sequencing Kit (Oxford Nanopore, Oxford, UK; ONT). 426 

Sequencing was performed on an Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA), 427 

using the 100-bp-paired-end sequencing mode. Additional long-read sequencing was 428 

performed using a MinION sequencer (Oxford Nanopore, Oxford, UK).  429 

For the assembly we trimmed the Illumina reads using bbduk (v37.61) 430 

(sourceforge.net/projects/bbmap/) (“-qtrim=rl -trimq=18 -minlen=70”) and removed adapters 431 

and barcodes from the Nanopore reads using ONT’s qcat (“--trim”). We assembled the Illumina 432 

and Nanopore reads in a hybrid assembly using unicycler (v0.4.6) [94]. The quality of the 433 

assembly was checked by visually inspecting the assembly graph [95] and checkM (v1.0.18)[96]. 434 

Genome sequencing and assembly - R. oedothoracis W744 435 

DNA was isolated from a single field-captured O. gibbosus individual from the 436 

Walenbos population (W815). DNA isolation and Illumina sequencing were carried out as 437 

described in Hendrickx et al. 2021. The Illumina assembly was done using SPades (v3.9.1, “--438 

meta”) [97]. The contigs were then binned using mmgenome [98]. Finally, reads were mapped 439 

to the metagenome assembled genomes (MAGs) and reassembled with SPades (v3.9.1, “--440 

meta”) [97]. The quality of the MAGs was checked with checkM (v1.0.6) [96].  441 

PacBio sequencing data from O. gibbosus individual W744 (Walenbos population) were 442 

obtained from [99]. PacBio reads were classified using a custom Kraken (v2.0.8) database 443 
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including reference libraries for archaea, bacteria, viruses, protists, humans, fungi, and plants 444 

as well as MAG W815, and all reads classified as Rhabdochlamydiaceae were collected (MAG 445 

W744) [100].  446 

PacBio reads were mapped to MAG W815 and W744, respectively using minimap2 (v2.17) 447 

[101]. As the coverage of the PacBio data was too high, the mapped reads were subsampled to 448 

a coverage of 70x.  Finally, the reads mapped to MAG W815 and W744 were merged, and 449 

duplicates were removed. Illumina reads were mapped to MAG W815 and W744 using bbmap 450 

(v37.61) (sourceforge.net/projects/bbmap/) and merged and deduplicated afterwards. The 451 

final sets of Illumina and PacBio reads were then used for a hybrid assembly using unicycler 452 

(v0.4.6) [94]. The quality of the assembly was checked by visually inspecting the assembly graph 453 

[95] and checkM (v1.0.18) [96]. 454 

Dataset compilation, quality control, and annotation 455 

We downloaded 36 chlamydial reference genomes from GenBank/ENA/DDBJ [82] and RefSeq 456 

[81] on 25 June 2019 and added nine high-quality MAGs from the Genomes of the Earth’s 457 

Microbiome initiative [102]. Only genomes with a completeness >94 % and containing neither 458 

detectable strain heterogeneity nor contaminations were used, resulting in nine genome 459 

sequences and MAGs from the Rhabdochlamydiaceae, 17 Chlamydiaceae, and 19 460 

Parachlamydiaceae genomes (Table S1). The quality of the genomes was checked using checkM 461 

(v1.1.3, “‘taxonomy_wf domain Bacteria”) [96], and basic statistics were calculated using 462 

QUAST (v5.0.2)[103]. Initial gene calling and annotation was performed with prokka (v1.14.6,” 463 

--mincontiglen 200”, “--gram neg”)[104]. 464 

The assembled genomes from R. porcellionis 15C and R. oedothoracis were annotated using 465 

prokka (v1.14.6) [104]. In addition, RNAs were annotated using the Rfam database [105] and 466 

cmscan (v1.1.3, “--cut_tc”,  “--mid” ) [106] and tRNAscan-SE (v2.0.5) [107]. The origin of 467 

replication was determined using the OriginX (v1.0) software [108]. Transposases were 468 

manually annotated by searching transposase sequences predicted by prokka against the 469 

ISfinder database [109] and manually curating the annotations using UGENE [110]. The R. 470 

helvetica genome contained in total 41 transposases predicted by prokka. This genome could, 471 

however, not be manually curated as it is not complete and thus neither the absence nor the 472 

misassembly of transposases can be excluded.  473 
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Pangenome analysis 474 

We mapped all proteins against the eggNOG database (v4.5.1) [37] using emapper (v1.0.1, “ -d 475 

bact”) [111] to cluster them into orthologous groups. For all unmapped proteins we performed 476 

an all-against-all blastp search and clustered proteins with an e-value < 0.001 de novo with SiLiX 477 

(v1.2.11) with default parameters [38]. We used the following definitions for the pangenome 478 

components: core - present in more than 90% of genomes; accessory - present in only one of 479 

the genomes. Only for the pangenome of the genus Rhabdochlamydia we required a core 480 

protein to be present in all the genomes. For functional annotation we used eggNOG (v4.5.1) 481 

[37], and blastp [112] against the NCBI nr database for the de novo OGs. Further, we mapped 482 

all proteins to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [113] orthologs (KOs) 483 

using GhostKOALA (v2.2) [114].  484 

Comparison of R. oedothoracis and R. porcellionis genomes 485 

We used pseudofinder (v1.0) [74] and the “selection” function to identify genes under 486 

degradation in the genome of R. oedothoracis W744 in comparison to R. porcellionis 15C. 487 

Pseudofinder identifies homologous sequences in the two genomes and calculates the ratio of 488 

non-synonymous to synonymous substitution rates (dN/dS) for each set of genes. We used a 489 

threshold of 0.3 to distinguish between pseudogenes (> 0.3) and genes under purifying 490 

selection (<= 0.3).  491 

To show synteny between R. porcellionis and R. oedothoracis the two genomes were blasted 492 

against each other using blastn [112]. Further, GC skews were calculated for both genomes 493 

using a custom python script (window size= 1000). The genomes were visualized using Circos 494 

(v0.69.9) [115]. To show disruption of synteny by transposases in more detail a  short syntenic 495 

segment (R. oedothoracis: 360-500 kb, R. porcellionis: 150-260 kb) was picked and visualized 496 

using the “genoplotR” package (v0.8.11) [116] in R (v4.0.3) [117]. 497 

Statistical analysis 498 

All statistical tests and data analysis were performed in R (v4.0.3) [117] and visualized using 499 

ggplot2 (v3.3.3) [118]. NMDS was calculated using eggNOG (v 4.5.1) and de novo clustered OGs 500 

and the “metaMDS '' function (“vegan” package v2.5-7)[119] using “distance=bray'”. To test 501 

whether members of the genus Rhabdochlamydia are associated with smaller accessory 502 

genomes we calculated the size of accessory genomes for all nine Rhabdochlamydiaceae 503 
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genomes and used the “wilcox.test” function (“stats'' package v4.0.3) for statistical evaluation. 504 

The enrichment analysis of functional categories based on eggnog (v 4.5.1) was carried out 505 

using a hypergeometric test with the “phyper” function (“stats'' package v4.0.3). The p-value 506 

was corrected using the “p.adjust” function (“stats'' package v4.0.3) and “method = BH". We 507 

considered p-values < 0.001 as significant. 508 

Data availability 509 

16S rRNA gene data used in this study are available via the SILVA database (https://www.arb-510 

silva.de/) and IMNGS database (https://www.imngs.org/).  Metadata for sequences received 511 

from the IMNGS database can be accessed via the Sequence Read Archive (SRA, 512 

https://www.ncbi.nlm.nih.gov/sra). Genome sequences generated in this study have been 513 

deposited in GenBank under the accession numbers CP075585-CP075586 (R. porcellionis) and 514 

CP075587-CP075588 (R. oedothoracis).  Accession numbers for reference genomes and 515 

Metagenome-assembled genomes (MAG) are available in Supplementary Table S1. 516 

Metagenomic data are available through the IMG/M portal (https://img.jgi.doe.gov/).  MAG 517 

sequences from the Genomes from Earth’s Microbiomes initiative are available at 518 

https://genome.jgi.doe.gov/GEMs. The collection of genomes and proteomes and the data of 519 

the IMNGS search used in this study are available at zenodo 520 

(https://10.5281/zenodo.4723235).  521 
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Figure legends  821 

Figure 1: Rhabdochlamydiaceae are highly diverse and can be found in diverse environments 822 

and hosts. 16S rRNA gene tree of the family Rhabdochlamydiaceae, including full-length 823 

sequences (Supplementary figure S1) and partial sequences covering the V3-V4 region obtained 824 

from the IMNGS sequence database. For each of the 388 genus-level OTUs only one 825 

representative sequence (centroid) was included. The tree was rooted using other chlamydiae 826 

and members of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum [36, 37] 827 

as an outgroup. Tree annotations from the outside to the inside: (1) represents the different host 828 

organisms for the category “Host-associated”, (2) indicates the relative abundance of 829 

environments where rhabdochlamydial 16S rRNA sequences were detected (3) represent full-830 

length sequences (blue squares), full-length sequences associated with arthropod hosts (black 831 

squares), and 16S rRNA sequences of the genomes described in this study (black arrowheads). 832 

A monophyletic group including known arthropod-associated rhabdochlamydiae is highlighted 833 

in light green. Branches representing centroids including sequences from a longitudinal study of 834 

barn swallow feces are indicated in orange (Kreisinger et al. 2017). Scale bar indicates 0.1 835 

substitutions per position in the alignment. 836 

 837 

Figure 2: Rhabdochlamydiaceae genomes are distinct from those of vertebrate and amoeba-838 

associated chlamydiae. Non-metric multidimensional scaling based on (A) highly conserved 839 

eggNOG OGs, and (B) chlamydiae-specific de novo clustered OGs of members of the families 840 

Rhabdochlamydiaceae, Parachlamydiaceae, and Chlamydiaceae. Each dot represents a 841 

genome, and the color represents the family. The genomes of known arthropod-associated 842 

rhabdochlamydiae are depicted in dark violet. The stress values indicate a good fit (A=0.06, 843 

B=0.07). (C) Correlation of genome size and GC-content for Parachlamydiaceae, Chlamydiaceae 844 

and Rhabdochlamydiaceae, respectively. 845 

 846 

Figure 3: The pangenome of the genus Rhabdochlamydia. (A) Venn diagram representing the 847 

pangenome of the genus Rhabdochlamydia. The numbers represent the orthologous groups, 848 

i.e. gene families, shared between the respective genomes. The numbers in brackets represent 849 
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the estimated genome sizes in Mb. The circles represent the plasmids, with plasmid sizes 850 

indicated in Kb. The large core genome reflects major metabolic pathways and other well-known 851 

conserved chlamydial features. (B) Stacked-bar chart showing functional categories of the 852 

subset of accessory genes mapped to eggNOG (only unambiguous annotations were used). Only 853 

selected categories are shown, the rest are combined into “Other categories''. Significantly 854 

enriched categories (false discovery rate adjusted p-value < 0.001) are marked with an asterisk. 855 

Differences in the accessory genomes reflect differences in host interaction and the degree of 856 

host adaptation. 857 

 858 

Figure 4: Transposable elements and pseudogenization in the genus Rhabdochlamydia. (A) 859 

Comparison of the R. oedothoracis (black) and R. porcellionis (grey) genomes. The outermost 860 

ring represents the GC skew. The second ring shows the positions of predicted pseudogenes 861 

indicated by black lines. Transposases are shown in blue (functional) or orange (degraded) in 862 

the third ring. The center of the plot shows syntenic regions between the two genomes based 863 

on blastn (eval < 0.001). Transposases are spread throughout the genome of R. oedothoracis 864 

causing breaks in the synteny to R. porcellionis. (B) Number of manually and automatically 865 

annotated transposases in the closed genomes of R. oedothoracis and R. porcellionis. Manual 866 

annotation and curation are essential to comprehensively identify functional and degraded 867 

transposase genes. The fraction of functional transposases is depicted in light blue. (C) 868 

Functional categories of predicted pseudogenes with an eggNOG annotation in R. oedothoracis 869 

(only unambiguous annotations were used). Only the most abundant categories (n < 5) are 870 

shown, the rest are combined to “Other categories''. (D) Alignment of a selected syntenic 871 

genome region of R. oedothoracis (black) and R. porcellionis (grey) illustrating the role of ISs in 872 

genome size reduction. Transposases are shown in blue, genes are represented by black and 873 

grey boxes, respectively. 874 

 875 

Figure 5: Genome evolution and adaptation of Rhabdochlamydia species to arthropod hosts. 876 

A scenario for the evolution of arthropod-associated rhabdochlamydiae: While most 877 

rhabdochlamydiae are putatively associated with protist hosts, a small monophyletic group 878 

established that is able to infect arthropods. The adaptation to arthropod hosts was possibly 879 
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facilitated by expansion of ISs and subsequent genome streamlining, impacted by competition 880 

with other bacteria and conditions in the new host. 881 
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