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ABSTRACT2

Drug-Induced Liver Injury (DILI), despite its low occurrence rate, can cause severe side effects3
or even lead to death. Thus, it is one of the leading causes for terminating the development4
of new, and restricting the use of already-circulating, drugs. Moreover, its multifactorial nature,5
combined with a clinical presentation that often mimics other liver diseases, complicate the6
identification of DILI-related literature, which remains the main medium for sourcing results from7
the clinical practice and experimental studies. In this work– contributing to the ‘Literature AI for8
DILI Challenge’ of the Critical Assessment of Massive Data Analysis (CAMDA) 2021– we present9
an automated pipeline for distinguishing between DILI-positive and negative papers. We used10
Natural Language Processing (NLP) to filter out the uninformative parts of a text, and identify11
and extract mentions of chemicals and diseases. We combined that information with small-12
molecule and disease embeddings, which are capable of capturing chemical and disease13
similarities, to improve classification performance. The former are directly sourced from the14
Chemical Checker (CC). For the latter, we collected data that encode different aspects of disease15
similarity from the National Library of Medicine’s (NLM) Medical Subject Headings (MeSH)16
thesaurus and the Comparative Toxicogenomics Database (CTD). Following a similar procedure17
as the one used in the CC, vector representations for diseases were learnt and evaluated. Two18
Neural Network (NN) classifiers were developed: one that only accepts texts as input (baseline19
model) and an augmented classifier that also utilises chemical and disease embeddings20
(extended model). We trained, validated, and tested the models through a Nested Cross-21
Validation (NCV) scheme with 10 outer and 5 inner folds. During this, the baseline and extended22
models performed virtually identically, with macro F1-scores of 95.04± 0.61% and 94.80± 0.41%,23
respectively. Upon validation on an external, withheld, dataset, representing imbalanced24
data, the extended model achieved an F1-score of 91.14 ± 1.62%, outperforming its baseline25
counterpart, which got a lower score of 88.30± 2.44%. We make further comparisons between26
the classifiers and discuss future improvements and directions, including utilising chemical and27
disease embeddings for visualisation and exploratory analysis of the DILI-positive literature.28
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1 INTRODUCTION

Drug-Induced Liver Injury (DILI) is a rare adverse drug reaction that can cause severe complications and,30
in some cases, may even prove fatal. The term is primarily used to signify the unexpected harm that a31
drug can cause to the liver. Virtually every class of medication can lead to hepatotoxicity, but the relative32
risk varies greatly between different drugs (David and Hamilton, 2010). For example, studies suggest33
that oral medications with doses higher than 50 mg/day and greater lipophilicity– thus those exhibiting34
higher hepatic metabolism– are more likely to cause DILI (Fontana, 2014; David and Hamilton, 2010).35

Liver toxicity can be brought about in a predictable, dose-dependent, manner, when an individual is36
exposed to concentrations exceeding a drug’s toxicity threshold. This is known as intrinsic (or direct) DILI,37
has a relatively short latency period (hours to days), and is reproducible in animal models. The most often38
studied example of intrinsic DILI is acetaminophen (paracetamol), which accounts for about, or more39
than, half of acute liver failure (ALF) cases in the UK and USA (Katarey and Verma, 2016; Andrade40
et al., 2019). The majority of DILI cases, however, belong in the idiosyncratic (or indirect) variety,41
which, as the name suggests, cannot be solely explained by the drug in question. This type of DILI is42
instead driven by a mixture of characteristics that are unique to the individual and their environment,43
and tends to have a longer latency period following exposure (days to months) (Andrade et al., 2019).44
Idiosyncratic DILI is most prominently associated with antibiotics, and amoxicillin-clavulanate is the most45
commonly implicated drug in studies of European and American populations (Katarey and Verma, 2016).46

Idiosyncratic DILI is, indeed, a rare occurrence, with two prospective population-based studies in France47
(Sgro et al., 2002) and Iceland (Björnsson et al., 2013) placing its crude annual incidence rate at 13.9 and48
19.1 cases per 100, 000 people, respectively. A retrospective study of the UK-based General Practice49
Research Database (GPRD) (de Abajo et al., 2004) reports a lower rate of 2.4 cases per 100, 00050
people, which is also in line with other studies from Sweden and the USA (Andrade et al., 2019).51
Out of those cases, an analysis of data coming from the Spanish DILI registry showed that about 4.2%52
progress to ALF (Robles-Diaz et al., 2014). This is in agreement with an incident rate of 1.02 cases per53
1, 000, 000 people, reported by another US-based study (Goldberg et al., 2015). Yet, despite its rarity, DILI54
remains one of the commonest reasons for the premature termination of drug development, while also55
affecting already-circulating drugs, often leading to withdrawal from the market, or issuing warnings and56
modifications of use (Katarey and Verma, 2016; Andrade et al., 2019). Therefore, the ability to reliably57
identify cases of DILI in the literature becomes critical, as such resources can aid both physicians in58
diagnosing the disease and researchers in, among other things, unravelling its mechanisms of action.59

The identification of DILI-related literature is complicated by the heterogeneous and multifactorial60
nature of it. Typically, a drug causes hepatotoxicity directly, through its metabolites, and/or due to61
possible subsequent inflammatory reaction. However, factors including pre-existing liver pathology, such62
as Hepatitis B or C, or non-alcoholic fatty liver disease (NAFLD), and chronic alcohol consumption can63
increase an individual’s susceptibility to DILI. Similarly, genetic factors are at play; different cytochrome64
p450 enzyme phenotypes can lead to either decreased metabolism of toxic drugs or accelerated65
production of toxic intermediates, and human leukocyte antigen (HLA) polymorphisms may cause66
enhanced immune-mediated mechanisms. Furthermore, the clinical presentation of the disease is67
broad, with symptoms that often mimic other acute and chronic liver diseases, and, in the absence68
of diagnostic tests and biomarkers, diagnosis is primarily based on establishing a temporal association69
between drug exposure and symptom development, which is assessed alongside clinical history, liver70
biochemistry, imaging, and, in some cases, biopsy. (David and Hamilton, 2010; Katarey and Verma, 2016)71
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This complex landscape makes DILI identification a challenging task, with the application of text-mining72
techniques on DILI-related literature (Cañada et al., 2017; Wu et al., 2021) remaining relatively sparse.73

This work presents a contribution to the ‘Literature AI for DILI Challenge’, which was part of the Critical74
Assessment of Massive Data Analysis (CAMDA) 2021 (http://camda2021.bioinf.jku.at).75
The aim of the challenge was to develop a classifier capable of identifying DILI-relevant papers. For that,76
we were given access to about 7, 000 DILI-positive PubMed papers, referenced in the National Institutes77
of Health’s (NIH) LiverTox database (Hoofnagle et al., 2013), and a non-trivial reference dataset of78
around 7, 000 DILI-negative papers. These originated from a larger collection of positive and negative79
corpora that was split in half to create a second dataset, similar in size with the one released (about80
14, 000 texts in total), that was withheld and used for final performance testing. We refer to this as81
‘external validation’ to distinguish it from the (internal) Nested Cross-Validation (NCV) that we perform.82
A second, smaller, but more challenging, external validation dataset of 2, 000 papers was also provided.83

We built an analysis pipeline that combines Natural Language Processing (NLP) with small-molecule84
and disease similarities. We pre-processed and normalised the texts to exclude uninformative words85
and allow for comparisons to be drawn across them. Within each text, chemical and disease terms86
were annotated and extracted. We treated those as external features and applied a framework that is87
capable of capturing their similarity. For chemicals, we acquired vectors (embeddings) directly from the88
Chemical Checker (CC) (Duran-Frigola et al., 2020). For diseases, we first collected data that encode89
the relations that exist between them. These were sourced from the National Library of Medicine’s90
(NLM) Medical Subject Headings (MeSH) thesaurus (https://meshb.nlm.nih.gov/) and the91
Comparative Toxicogenomics Database (CTD) (Davis et al., 2021). We then followed a similar procedure92
as the one used in the CC to learn vector representations for diseases. Since, typically, a text is associated93
with multiple terms, an average chemical- and disease-vector (external feature vector) was calculated94
and attached to it. These, together with the normalised texts, were fed into a Neural Network (NN)95
classifier. To prevent over-fitting during training, and to get an unbiased estimate of classification96
performance, we did hyperparameter tuning in a NCV scheme with 10 outer and 5 inner folds.97
During model evaluation, the extent to which external features alone are capable of distinguishing98
between the DILI-positive and negative texts was examined. Classifiers with and without the inclusion99
of external feature vectors were built and compared. During discussion, we explore drawbacks, point out100
future improvements, and focus on the potential impact of this work on facilitating DILI research.101

2 METHODS

This analysis is split in three consecutive stages, with each being dependant on the output of the previous102
ones. First, title and abstract pairs (texts) were collected and processed. This stage constitutes the NLP103
pipeline, which can be further split in two steps: text pre-processing, and chemical and disease term104
(concepts) annotation. At the second stage, drug and disease embeddings were learnt, and an average105
drug- and disease-representation (external feature vector) was calculated for each text. Lastly, the NN106
classifiers were built, and then trained, validated, and tested in a NCV scheme. The project has been107
developed in Python 3.9.10 and bundled as a package, to provide ease of use and aid future development.108
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2.1 NLP pipeline109

2.1.1 Text pre-processing110

Titles and abstracts were first concatenated to form ‘full’ texts. These were then provided as input to111
the Stanza NLP package (Qi et al., 2020), which was initialised with its tokenisation, lemmatisation,112
and Part-of-Speech (POS) processors. Stanza provides two biomedical Universal Dependencies (UD)113
models that are pre-trained on human-annotated treebanks. For this analysis, we used the option that114
is based on the GENIA corpus (Kim et al., 2003), as it is built on top of 2, 000 PubMed abstracts, and115
was therefore thought to be a better fit for the (also PubMed-sourced) texts that we had at our disposal.116

Each text was split to sentences and then words, and each word was mapped to its base form (lemma).117
We filtered out lemmas that were not nouns, verbs, adjectives, or adverbs. A list of stopwords was compiled118
by merging those included in the spaCy package in Python, with the ones provided by PubMed (https:119
//pubmed.ncbi.nlm.nih.gov/help/#help-stopwords). Subsequently, both stopwords and120
any lemmas that were less than 3 characters long were purged. As a result of those pre-processing steps,121
implicitly, the texts were also lowercase-normalised, and any numerals and punctuation marks were dropped.122

2.1.2 Concept annotation123

We queried PubTator Central’s (Wei et al., 2019) RESTful API to acquire annotations for chemicals and124
diseases. The tool performs concept disambiguation, which resolves conflicts when overlapping annotations125
are found, and returns concepts normalised to their respective MeSH identifiers. We then counted the times126
each annotated term shows up within a text, and calculated and assigned (text-specific) relative frequencies127
to them. In the code, the ‘PubTator’ class is responsible for handling POST and GET requests to the server,128
processing the raw response data, and associating texts with annotated terms and their relative frequencies.129
At this step, raw, unchanged, texts were used as input. As a result, the annotations we got back were130
incompatible, and thus could not be utilised together, with the pre-processed texts of the previous section.131

To resolve this issue, while also retaining clarity, the ‘UnivTextBlock’ class was implemented in the code.132
The class provides a method for exporting processed text, in the sense that pre-processing has been133
applied and concept terms have been normalised, either by replacement with their MeSH identifiers,134
or the broader concept category (that is, ‘disease’ or ‘chemical’). To handle cases where a concept135
term spans across multiple words, or is misaligned compared to the target word(s)– often the result136
of incorrect sentence segmentation or peculiarities in tokenisation– the code checks for degree of overlap.137
We observed good performance when demanding that the latter exceed a minimum threshold value of 90%.138

2.2 External feature vector generation139

2.2.1 Data collection140

We aimed to quantify disease and, separately, chemical similarity. First, we collected data from the141
MeSH thesaurus. Descriptors and supplementary concept records were downloaded in XML format. At the142
uppermost level, there are 16 categories, which are further split in subcategories. Within each subcategory,143
descriptors are arranged in a hierarchical manner, from most general to most specific. This results in144
a branching, tree-like, structure. In the XML file, each descriptor is associated with one or multiple tree145
numbers, which represent paths taken from the root subcategory, until the descriptor in question is reached.146

These data were parsed into a dictionary that associates descriptors with their respective tree numbers.147
We selected for disease-descriptors by pruning those, whose trees did not start with ‘C’, as category C is148
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for diseases. Similarly, for chemicals, we filtered out descriptors that did not fall under category D, which149
contains drugs and chemicals. Supplementary concept records are not associated with tree numbers. Instead,150
they are mapped onto one or multiple descriptors. We parsed these relationships in a separate dictionary,151
which we used to indirectly link supplementary concepts with the hierarchical structure described earlier.152

We also collected data from the CTD, which associates diseases with chemicals, genes, pathways, and153
phenotypes. In this context, phenotypes refer to non-disease biological events and are expressed using154
the Gene Ontology (GO) as controlled vocabulary (Davis et al., 2021). As a result, disease-phenotype155
associations are further split into three datasets, one for each GO category: Biological Process (GO-BP),156
Cellular Component (GO-CC), and Molecular Function (GO-MF). In total, 6 datasets were downloaded157
from the CTD. Disease terms are expressed using MeSH identifiers and, thus, required no further processing.158

2.2.2 Concept embedding learning159

After data collection, a procedure matching the one followed in the CC was used. This was applied160
separately to each dataset and consists of three consecutive steps: (a) turning the dataset into a corpus,161
(b) learning a (sparse) vector representation on it, and (c) embedding the latter into a lower dimensional162
space. For the MeSH, concept terms are associated with tree numbers, which represent paths. We traversed163
these paths, starting from the root subcategory, and saved each location on the tree as a word. A corpus was,164
then, built by repeating this process for all terms. For the CTD, concept terms are linked together through165
interactions with chemicals, genes, etc. We created a corpus by treating these interacting partners as words.166

Corpora were mapped to a sparse vector space by applying a term frequency–inverse document167
frequency (TF-IDF) transformation. Prior to that, frequent and infrequent words were dropped, that is,168
words associated with less than 5 or more than 80% of the terms. Following the transformation, any169
null (zero) vectors were purged, alongside with their corresponding terms. An initial dimensionality170
reduction step was performed by means of truncated Singular Value Decomposition (SVD). Here,171
we kept the number of components that explained around 90% of the variance seen in the original data.172

For learning the final embeddings, we ran the node2vec algorithm (Grover and Leskovec, 2016), with its173
default parameters, on a term similarity network. This produced 128-dimensional vectors. To create the174
similarity network, we first used cosine similarities to identify each term’s neighbourhood, which consisted175
of its 100 closest neighbours. We approximated the null distribution empirically, by randomly sampling176
with replacement 100, 000 pairs of terms and calculating their cosine similarities. This was used to map177
neighbour similarities to p-values. We built the network by merging the neighbourhoods together and178
assigning −log10(p-values) as edge weights. We pruned any insignificant edges– that is, edges with179
weights less than, or equal to, 2– but demanded that each term be connected to at least 3 closest neighbours.180

2.2.3 Chemical Checker embeddings181

While chemical similarities from the CC need no further processing themselves, vectors are indexed182
by their InChIKeys. Since we normalise chemicals using MeSH identifiers, a mapping had to be183
created that would link the two. We queried ChemIDplus’s (https://chem.nlm.nih.gov/184
chemidplus/) API to retrieve MeSH terms and their respective InChIKeys and SMILES. We,185
then, used the MeSH thesaurus to associate MeSH identifiers with concepts and terms. However,186
a MeSH identifier usually points to multiple concepts– which typically consist of one or more187
synonymous terms– and sometimes more than one of those concepts or terms are associated with188
an InChIKey and/or SMILES. Therefore, to reliably translate from MeSH to InChIKeys, we also189
took into account the hierarchy of preferred concepts and terms that exists in the MeSH thesaurus.190
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In an attempt to further expand the number of MeSH terms that are associated with an InChIKey,191
we extracted relevant associations from the DrugBank database (Wishart et al., 2018) and merged192
them with those associations sourced from ChemIDplus. Furthermore, in order to enrich any sparse193
CC spaces, we utilised the CC signaturisers (Bertoni et al., 2021) to predict embeddings for chemical194
compounds that are not included in the original database. Here, the SMILES structural information–195
which had been acquired from ChemIDplus in the previous step– were given as input to the signaturisers.196

2.2.4 External feature vectors197

2.2.4.1 Generation198

At this stage, disease embeddings have been generated– seven vector spaces in total; six from the199
CTD and another one from the MeSH– and chemical signatures have been retrieved from the Chemical200
Checker (25 spaces, augmented with an additional one, generated from MeSH data). We first aimed201
to concatenate individual, concept-specific, spaces into one, so that diseases (and chemicals) were202
represented by a single vector space (and chemicals by a separate one). However, concatenation alone203
would not only lead to a considerable dimensionality difference between the resulting disease- and204
chemical-specific spaces (896 and 3,328 dimensions, respectively), but also potentially combine a great205
number of correlated features together, adding redundant dimensions to the produced space. Therefore,206
after concatenation, followed a dimensionality reduction step using truncated SVD. We have carefully207
tuned this process to retain as much information as possible, without introducing additional noise.208

The vectors were not normalised or centred prior to concatenation and dimensionality reduction,209
as doing so, in this particular case, did not lead to significant differences. For diseases, we chose to210
concatenate the top two most dense CTD spaces (GO-BP and GO-MF, for rationale, see Results) and then211
performed truncated SVD to reduce them down to 103 dimensions, which explained about 90% of the212
original variance. Separately, we reduced the dimension of the MeSH space for diseases from 128 to 47213
dimensions, which also retained about 90% of the variance of the original data. We concatenated the two214
reduced spaces to form the final 150−dimensional disease space. In a similar manner, for chemicals,215
we concatenated all the CC spaces and reduced them down to 265 dimensions. The MeSH space216
for chemicals was also reduced to 35 dimensions. In both cases, about 80% of the original variance217
was explained. By concatenation, the final chemical space was produced, which is 300−dimensional.218

At this point, a single disease-specific, and a second chemical-specific, space exists. These are by no219
means related to the texts, but instead encode similarities between the concepts that were extracted out of220
them earlier. In contrast, external feature vectors are meant to be text-specific and to capture the similarities221
between the texts, as these are encoded by the combinations of chemicals and diseases that show up in222
them. For each text, concept relative frequencies– already calculated during concept annotation– were223
used to calculate the weighted average for the disease embeddings and, separately, chemical embeddings.224
Concept embeddings that belong to terms mentioned infrequently within the text are, as a result, down-225
weighted, compared to those associated with more frequent terms. The two (now text- and concept-specific)226
vectors were first normalised to unity and then concatenated to form the final external feature vector.227

2.2.4.2 Comparisons228

For between-space comparisons, two measures were used: the Rank-Biased Overlap (RBO) (Webber et al.,229
2010), and Pearson correlation. The RBO is a top-weighted similarity measure, that can be applied to non-230
conjoint ranked lists of indefinite length. The measure models the behaviour of a user comparing between231
two lists incrementally, at increasing depths, where, at each depth, a fixed probability of stopping exists.232
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Figure 1. Overview of the baseline and extended classifiers. The former accepts texts as its single input,
while the latter augments its baseline counterpart by also utilising external feature vectors. When training
the baseline model, weights downstream the ‘base input’– on the left side of the figure– are learnt. As the
extended model is built on top of the baseline, those weights can be transferred and frozen, thus remaining
unchanged during training. As a result, for the extended model, only one dense layer’s weights have to be
trained. (Created with BioRender.com)

To compare the similarity between two spaces, a procedure similar to the one described in the Chemical233
Checker was followed (Duran-Frigola et al., 2020). First, the common concepts between the two spaces234
were identified. Then, for each concept, we computed a list of its 100 closest neighbours. We used235
cosine similarities and returned lists that were ordered by decreasing similarity. The similarity search236
was performed efficiently using the Faiss library in Python (Johnson et al., 2017). The two ranked237
lists were used to calculate a RBO similarity score (we set p = 0.7, making the search more top-238
weighted). The process was repeated for all common concepts, the similarity scores were aggregated,239
and their average value was calculated. This was used as the RBO similarity score for the space-pair.240
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To calculate Pearson correlations, we applied Canonical Correlation Analysis (CCA) on space-pairs to241
find orthogonal linear combinations (canonical variables) of their features, that maximally correlate with242
each other. We kept the first three canonical variable pairs and, for each of them, calculated the Pearson243
correlation. By averaging those values together, the final space-pair correlation value was calculated.244

2.3 NN classifiers and validation245

We developed two NN classifiers. The baseline classifier accepts processed texts as its single input.246
The extended classifier augments the baseline model by additionally taking into account each text’s247
external feature vector (Fig. 1). First, the texts are fed into an embedding layer, which has been initialised248
with GloVe vectors (Pennington et al., 2014). Then, these embeddings pass through a Bidirectional249
Long Short-Term Memory (BiLSTM) layer, which is followed by a dense layer with ReLU activation.250
An output dense layer with sigmoid activation is used to compute the classification probability value.251

For the extended classifier, the external feature vectors first pass through a separate ReLU dense layer252
that is chosen to have the same number of units as the one mentioned earlier. Thus, the outputs of those two253
dense layers can be added together, before going through the same sigmoid output dense layer, as the one254
used in the baseline model. This design choice is intentional, it introduces no additional hyper-parameters255
to optimise, and allows for both the baseline and extended models to be trained and tested within the256
same NCV scheme. We trained the 10 outer-fold baseline models (which were inner-fold winners), froze257
their weights, augmented and transformed them to extended models, and then repeated the training one258
more time. As a result, for the extended model, just a single dense layer’s weights needed to be trained.259

During initial testing and tuning, it became apparent that using a Bi- instead of a Uni-LSTM layer,260
and allowing for the text embeddings to be trainable, consistently led to better performing models. Therefore,261
we did not optimise for those parameters. Nonetheless, hyper-parameter tuning was applied within a262
NCV scheme with 10 outer and 5 inner folds. We varied the embedding dimension ([50, 100, 200, 300]),263
UniLSTM units (32 − 96, with a step size of 16), dense layer units (192 − 320, with a step size of 32),264
and the learning rate ([10−3, 5 × 10−3, 7 × 10−3, 10−2]). During model training, we used a batch size265
of 32, and the Adam optimiser with binary cross-entropy as the loss function. For hyper-parameter tuning,266
we monitored validation loss. When training the extended model, a fixed learning rate of 10−2 was used.267

Additionally, we observed that the models learn rapidly, and usually start to overfit within the first 10268
epochs, even with dropout and L1/L2 regularisation applied appropriately to the LSTM and dense layers.269
In fact, training for just one epoch tended to produce models performing similarly, or better, than those270
trained for longer. Thus, we chose to train for no more than one epoch. In this case, regularisation does271
not improve performance, and is thus omitted (Komatsuzaki, 2019). We use Keras and the Bayesian272
optimisation algorithm in KerasTuner to build, train, and validate the NN classifiers, and to perform273
hyper-parameter optimisation. To support NCV, the original KerasTuner code was subclassed and extended.274
We generate stratified k-folds through Scikit-learn’s (Pedregosa et al., 2012) ‘StratifiedKFold’ function.275

3 RESULTS

3.1 Concept embeddings276

We first examined the degree of term coverage for the different concept spaces (Fig. 2A). Chemical and277
disease terms found in the texts have already been extracted and collected. However, there are terms missing278
in some of the spaces. This is either due to the term not being present in the data that was used to construct279
the spaces in the first place, or a result of the TF-IDF word filtering steps that were applied afterwards.280

bioRxiv 8

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483929
http://creativecommons.org/licenses/by-nc/4.0/


Katritsis et al. dialogi: Text mining for DILI

Missing terms are represented as null vectors. For diseases, MeSH is the most enriched space (96%281
coverage), followed by the CTD’s GO-BP and GO-MF (coverage of 78% and 73%, respectively). Since282
we normalise terms to the MeSH vocabulary, the MeSH space is expected to be the most enriched.283

Figure 2. CTD1-6: Genes, Chemicals, Pathways, GO-BP (Biological Process), GO-CC (Cellular
Component), and GO-MF (Molecular Function). (A) Disease term coverage for the 6 CTD (Comparative
Toxicogenomics Database) spaces, and MeSH. The latter, together with GO-BP and GO-MF, are the
most enriched spaces, encoding about 96%, 78%, and 73%, respectively, of all the disease terms found in
text. (B) RBO (Rank-Biased Overlap) similarities and Pearson correlations between the different disease
spaces. Although the two are not directly comparable, they seem to be in good agreement with each other,
with MeSH being the least, and CTD1 (Genes) the highest correlated space, in general.

For chemicals, the CC spaces appear to be equally enriched, with a coverage of about 60%. The MeSH284
space for diseases has a higher coverage of 84%. The uniformity that is observed across the different285
CC spaces can be attributed to, and also supports, the usage of the CC signaturisers. These fill in286
the gaps of missing molecular signatures; typically, CC spaces tend to differ considerably in terms287
of their sizes (Duran-Frigola et al., 2020). Notably, a concept space with lower term coverage does288
not necessarily translate to external feature vectors with reduced text coverage. The latter are (text-289
specific) linear combinations of concept vectors, and the coverage of that space is, thus, also affected290
by the combination of terms that show up in each particular text, as well as their relative frequencies.291

We then calculated the RBO similarity measures and Pearson correlations across the different pairs292
of disease spaces (Fig. 2B). The two measures are in good agreement with each other. As expected,293
given that the rest of the spaces are based on the CTD-sourced datasets, the MeSH space tends294
to be the most dissimilar one, followed by the CTD’s Chemicals space. On the other end, CTD295
Genes is highly correlated with most other CTD spaces. We created similar plots to compare296
between the chemical spaces and, for the CC spaces, observed a similarity and correlation profile297
that matched the one provided and discussed in the original publication (Duran-Frigola et al., 2020).298

We utilised both coverages and correlations when selecting for the disease spaces and, separately,299
chemical spaces, to concatenate. For diseases, we chose the top three enriched spaces (MeSH, and CTD300
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GO-BP and GO-MF). When seen as a group, these are strongly correlated with the rest of the CTD spaces.301
We chose to concatenate all chemical spaces together. The premise here is that concatenation between302
spaces with largely different term coverages might introduce unwanted noise later, during the dimensionality303
reduction step (see Methods). This is of concern for diseases, where coverage ranges from as low as 44% to304
a highest score of 96%, but not for chemicals, where it remains virtually unchanged across the CC spaces.305

3.2 External feature vectors306

We were also interested in assessing the extent to which the external feature vectors are capable of307
capturing the differences between DILI positive and negative texts. Ability to do so, at this stage, would308
provide strong evidence of their suitability to be used as additional inputs to the (extended) classifier.309
First, we normalised the vectors, performed Principal Component Analysis (PCA), and kept the first 15310
components. We, then, produced a 3D t-SNE plot (Fig. 3). Throughout this work, as is usual in NLP, we are311
working with cosine similarities. However, cosine distances are not invariant to mean-centring– which312
PCA explicitly performs– and will be affected and distorted. In contrast, euclidean distances are mean-313
centring invariant. By normalising the data first, we enforce a monotonic relationship between cosine and314
euclidean distances, which we exploit by using euclidean distances in the t-SNE plot (Korenius et al., 2007).315

In the plot (Fig. 3), a good degree of separation can be observed between the DILI positive and negative316
samples. Positive texts tend to cluster in the upper-right, and also form a tight cluster in the lower-left, corner.317
Between those, both positive and negative texts reside, forming largely overlapping clusters. It should be318
pointed out that concept vectors were learnt completely separately from, and are in no way connected with,319
the classification of texts in the two classes. As such, the acceptable clustering performance seen here should320
be attributed in: (a) similar chemicals and/or diseases appearing within each class, (b) dissimilar chemicals321
and/or diseases appearing between classes, (c) unique chemical, disease, and chemical-disease combinations322
dominating in each class. This might be worth further investigation, but, for now, makes an appealing323
case for the usefulness of the external feature vectors as a means for improving classification performance.324

3.3 Classification performance325

We compared between the baseline classifier, which uses texts as its sole input, and the extended326
one, that also accepts external feature vectors. As we are interested in the balance between precision327
and recall, we used the F1-score as performance measure. During internal validation, macro F1-score328
(average of per-class scores) was calculated. For external validation, micro scores (calculated over the329
entirety of the predictions, irrespective of classes) are reported. During initial tuning and testing, we330
observed that the baseline model performs optimally with the usual classification threshold of 0.5, but,331
for the extended model, a higher threshold of about 0.7 leads to unchanged, or improved, performance,332
depending on the validation dataset used. We set these, seemingly arbitrary, thresholds at the beginning333
of the NCV procedure and evaluated their suitability afterwards. Alternatively, a more elegant approach334
would treat the classification threshold as a hyper-parameter to be optimised in the inner NCV folds.335

We plotted the average performance across the 10 outer folds (Fig. 4). During internal validation,336
the baseline and extended models performed virtually identically, with F1-scores of 95.04± 0.61% and337
94.80± 0.41%, respectively. Evaluating the models on the first external dataset, which represents balanced338
data, painted a similar picture; this also provides proof that the training procedure we utilise does not339
lead to overfitting. In this case, baseline and extended models achieved scores of 95.11 ± 0.34% and340
94.93±0.48%, respectively. We observed a drop in performance, which affected both models, when testing341
on the second external dataset, that represents imbalanced data. However, the extended model managed342
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Figure 3. 3D t-SNE plot of all the non-zero external feature vectors (which combine both chemical and
disease embeddings). A good degree of separation can be observed between the DILI positive and negative
texts, with the former clustering cleanly on the top-right corner of the plot. A second dense cluster is formed
at the bottom-left corner. Between them, in the middle part of the plot, reside both positive and negative
texts, that did not form distinct clusters. While feature vectors can improve classification performance, they
tend to be sparse, and should, therefore, not used as the single input to the classifier.

to outperform the baseline model by a considerable margin; the former achieved an F1-score of 91.14±343
1.62%, compared to the baseline’s 88.30 ± 2.44%. The extended classifier also seems to produce lower344
dispersed scores, which becomes especially pronounced during the second phase of external validation.345

Lastly, we evaluated the choice of threshold for the two classifiers. Within each outer fold, we varied346
the threshold between 0.5 and 0.95 and calculated the (macro) F1-scores (Fig. 5). When compared at347
the same classification threshold, the extended model consistently outperforms its baseline counterpart348
by a small margin, at thresholds closer to 0.5, which incrementally grows larger at higher thresholds.349
This implies a difference between the slopes of the two curves which is, indeed, there to be seen:350
the baseline curve is steeper at each threshold value, compared to the extended one. The inclusion351
of the external feature vectors has resulted in the extended classifier being more confident in its352
predictions, which is reflected in the probability scores being pushed closer to the limit points353
of the [0, 1] interval (and a lower binary cross-entropy validation loss, too). It is desirable to set the354
threshold to a higher value, as doing so can improve– sometimes considerably– the classification355
performance on the imbalanced external dataset. Higher thresholds, however, might hurt the performance356
on the balanced validation datasets. For the extended model, choosing a threshold in the range357
of 0.5 − 0.7 leads to a virtually unchanged F1-scores, a behaviour not followed by the baseline358
model. With this in mind, the choice of thresholds for the two classifiers seems to be near-optimal.359
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Figure 4. Classification performance comparison between the two models, for different validation datasets.
The performance across 10 folds is being reported. Mean values are annotated with white diamonds.
Both models perform virtually identically during internal validation (macro F1-scores of 95.04± 0.61%
and 94.80± 0.41%, respectively), and equally well when tested on the first external dataset (micro F1-score
of 95.11± 0.34% and 94.93± 0.48%, respectively). The models are not overfitting. There is a significant
drop in performance when testing on the second external dataset (which simulates imbalanced data).
However, the extended model performs considerably better, with a (micro) F1-score of 91.14 ± 1.62%,
compared to the baseline’s 88.30± 2.44%.

4 DISCUSSION

Word embeddings learnt directly on DILI-related (or other biomedical) literature cannot capture the360
similarities between diseases and chemicals. GloVe embeddings, for example, encode linguistic and/or361
semantic similarities of words by taking into account co-occurrences. However, there are no semantics to362
be encoded when it comes to chemical names or diseases in regular text. Of course, chemical (and disease)363
terms can still be similar, and this similarity could still be expressed in terms of co-occurrences, but instead364
of words in regular text, one would use common protein targets, gene pathways, indications, etc., to365
acquire meaningful relations. This is the rationale behind the usage of concept embeddings in this work.366

Concept embeddings, turned into text-specific external feature vectors, however, present a challenge367
when utilised alone for classification. For the DILI-positive class, 93% and 86% of the texts have been368
annotated with at least one disease and chemical term, respectively. In the negative class, these percentages369
shrink down to 78%, for diseases, and 56%, for chemicals. The lack of annotated concept terms can370
be attributed to: (a) failure to annotate terms that exist in the text (false negatives), or (b) genuine lack371
of terms (true negatives), or (c) lack of terms in the title and/or abstract, but presence in the full text372
(true negatives in the context of the challenge, but false negatives in the broader sense). Because of the373
first and last points, filtering out texts with no annotated concepts as DILI-negative would be problematic.374
Instead, combining concept with word embeddings enables the classifier to make informed decisions, even375
when no chemicals or disease terms have been identified. Then, acquiring full texts when no concept376
terms are included in the title and abstract, could have the potential to improve classification performance.377
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Figure 5. Macro F1-score as a function of classification threshold, varied in the domain of [0.5, 0.95].
Mean values and standard deviations are plotted. The extended model outperforms the baseline at every
threshold value. There is a clear difference in slope, with the baseline curve being steeper throughout the
domain. Learning from the external feature vectors has pushed the extended model to be more confident
in its predictions. In turn, using the same threshold for both models will lead to (at least) one of them
under-performing. A higher threshold tends to improve the performance of the models on imbalanced data.

The additional information that we either generate, or collect, about disease, chemical, and text similarity378
can also prove valuable for the purposes of visualisation and exploratory analysis. Similar to the t-SNE plot379
that we provide in this study (Fig. 3), texts could be further clustered together based on the combination of380
chemicals or, alternatively, diseases that occur therein– a process that inherently takes into account concept381
similarities, too. Alternatively, average chemical similarities could be calculated against drugs that are382
already known to cause DILI, for example with the help of the DILIrank dataset (Chen et al., 2016). These383
could then be used to rank DILI-positive texts from most (high similarity to known DILI-related drugs)384
to less promising, as well as annotate them separately on the t-SNE plot, so that their neighbourhoods385
can be identified and further explored. This is one of the most exciting future prospects of this work.386

Overall, in this study, we have demonstrated that utilising disease and chemical embeddings,387
alongside a typical NLP pipeline, has the potential to considerably improve classification performance.388
On external validation, the best performing classifier achieved an average F1-score of 94.93± 0.48%, on389
balanced data, and of 91.14 ± 1.62%, on the dataset representing the imbalanced case. The classifiers’390
performance on the latter was tuned with threshold moving and evaluated to showcase that the391
inclusion of the external features leads to improved and more consistent performance. We also392
demonstrated the capability of the concept embeddings alone to distinguish between the positive and393
negative literature and discussed their potential usefulness for visualisation and exploratory purposes.394

CONFLICT OF INTEREST STATEMENT

A.L. is funded by GlaxoSmithKline (GSK). S.R. is funded by JW Pharmaceutical. M.M. is an employee395
of LifeArc. W.H. and N.H. are funded by LifeArc. N.H. is a co-founder of KURE.ai and CardiaTec396
Biosciences, and an advisor at Biorelate, Promatix, Standigm, and VeraVerse.397

bioRxiv 13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483929
http://creativecommons.org/licenses/by-nc/4.0/


Katritsis et al. dialogi: Text mining for DILI

AUTHOR CONTRIBUTIONS

N.M.K. conceived and designed the study, performed the analysis, collected data, and wrote the manuscript.398
A.L., G.Y., S.R., M.M., W.H., and L.W. contributed expertise and analysis tools. N.H. supervised the project.399

FUNDING

N.M.K. is funded by the George and Marie Vergottis Foundation and the Cambridge European Trust.400
A.L. is funded by GlaxoSmithKline (GSK). S.R. is funded by JW Pharmaceutical. W.H. and N.H. are401
funded by LifeArc.402

DATA AVAILABILITY STATEMENT

The code and datasets (directly uploaded or with links to the original sources) used in this study can be found403
on the GitHub repository: https://github.com/pokedthefrog/camda2021-dialogi404

REFERENCES

Andrade, R. J., Chalasani, N., Björnsson, E. S., Suzuki, A., Kullak-Ublick, G. A., Watkins, P. B., et al.405
(2019). Drug-induced liver injury. Nat Rev Dis Primers 5, 58. doi:10.1038/s41572-019-0105-0406

Bertoni, M., Duran-Frigola, M., Badia-I-Mompel, P., Pauls, E., Orozco-Ruiz, M., Guitart-Pla, O., et al.407
(2021). Bioactivity descriptors for uncharacterized chemical compounds. Nat. Commun. 12, 3932.408
doi:10.1038/s41467-021-24150-4409

Björnsson, E. S., Bergmann, O. M., Björnsson, H. K., Kvaran, R. B., and Olafsson, S. (2013). Incidence,410
presentation, and outcomes in patients with drug-induced liver injury in the general population of iceland.411
Gastroenterology 144, 1419–25, 1425.e1–3; quiz e19–20. doi:10.1053/j.gastro.2013.02.006412
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