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Abstract

In this paper, we describe the development of estimators for the contemporary migration
number and rate of adults between two populations in iteroparous species. The proposed es-
timators are based on known half-sibling (HS) and/or parent–offspring (PO) relationships ob-
served between the populations across breeding seasons. The rationale is that the HS and PO
pairs exhibit information about the occurrence frequency of parental movements during the
breeding interval. The proposed method allows for variance in the average number of off-
spring per parent both within and between populations. In addition, coupled with the PO pairs
found within the population, the estimators can be obtained from only genetic data. Generally,
a sample size representing the square root of the population size is required to obtain meaning-
ful information regarding migration. We describe a detailed evaluation of the performance of
the estimators by running an individual-based model, and the results provide guidance regard-
ing sample sizes to ensure the required accuracy and precision. Furthermore, given that there
are few effective methods to estimate adult movement (especially when populations cannot be
genetically distinct), we discuss the usefulness of this proposed kinship assignment method in
terms of conservation biology and wildlife management.
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1 INTRODUCTION

In conservation and wildlife management, estimating current ecological information is essen-

tial for monitoring population levels and proposing effective management strategies. The contem-

porary migration rate, i.e., the recent rate of movement of individuals or gametes between prede-

fined populations, is a critical component when determining the current degree of gene flow and

synchrony among the population (Lowe & Allendorf, 2010; Waples & Gaggiotti, 2006). There-

fore, estimating the contemporary migration rate provides information about the degree of genetic

differentiation and demographic dependency, which can delineate evolutionarily significant units

and identify appropriate management units (Moritz, 1994; Palsbøll, Bérubé, & Allendorf, 2007).

In addition, the availability of migration rate can link to underlying population dynamics, allow-

ing for more precise and flexible evaluations of management practices, e.g., stock assessment in

fisheries (Hampton & Fournier, 2001) and invasive species control (Sakai et al., 2001).

Essentially, there are two approaches to estimate the contemporary migration rate. The first ap-

proach involves using the mark-recapture (MR) method, which estimates the migration rate along

with other population parameters (Kéry & Schaub, 2011; Thorson et al., 2021). Here, the rational

is that, for example, conventional tags provide release and recovery location information for known

release and recovery dates, which generates a movement fraction matrix among strata per given

time interval. This direct method is relatively easy to interpret; however, it is generally hampered

by several uncertainties, e.g., tag loss, tagging-related mortality, and time-varying reporting rates

(Hilborn & Walters, 1992). In addition, the MR method is generally limited in practice to situa-

tions where collection of a sufficient number of adult samples at multiple sites is possible over a

short period.

The second approach involves using numerous genetic markers to assign individuals to source

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.483709doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483709
http://creativecommons.org/licenses/by-nc-nd/4.0/


populations, thereby allowing the inference of recent migration (since Paetkau, Calvert, Stirling,

& Strobeck, 1995). The previously developed model of Wilson and Rannala (2003), which is one

of the population assignment methods and implemented in a software ‘BayesAss’, can output the

point estimate as an element of the current migration matrix. However, according to several papers

(Faubet, Waples, & Gaggiotti, 2007; Wang, 2014), the accuracy of the migration rates estimated

by this model is valid only when populations are highly differentiated (e.g., FST ≥ 0.05), which

suggests that it may be difficult to infer the degree of demographic dependency among populations

because demographic independency is realized even if there are many migrants.

Parental assignments, which are based on genetic markers and are frequently used to com-

plement the population assignment method in ecological studies, also provide information about

the current level of migration. In contrast to the population assignment method, the parental as-

signment method does not require population differentiation (Wang, 2014); however, the current

methodology focuses on estimating dispersal kernels and, to estimate the migration rate, requires

the assumption that adults are not migrant, e.g., pollen/seed dispersal in plants (Ashley, 2010) or

larval drift in marine animals (Gagnaire et al., 2015). Thus, this method may not consider the adult

movement of iteroparous species, i.e., multiple reproductive cycles during the lifetime, which may

change the spawning ground for each breeding season.

Close-kin mark-recapture (CKMR) is a recently developed method to estimate adult popula-

tion size along with life-history parameters that utilizes the known kinship information in a sample

(Waples & Feutry, in press, and references therein). In the CKMR method, the presence of a kin-

ship pair in the sample is analogous to the recapture of a marked individual in the MR method.

Note that kinship pairs in the sample are less likely to be observed in larger populations; thus, the

number of kinship pairs may reflect the number of adults in the population (Bravington, Skaug, &

Anderson, 2016). While recent studies of CKMR argued that availability of kinship information to
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identify metapopulation structure (Conn, Bravington, Baylis, & Ver Hoef, 2020; Trenkel, Charrier,

Lorance, & Bravington, 2022), CKMR-based migration estimation has not been well developed or

examined extensively in a simulation study.

Thus, in this paper, we propose a method to estimate the contemporary migration number or

rate of adults between two predefined populations in iteroparous species, where the migration di-

rection is specified. Under the assumption that kinships are genetically detected without error, the

proposed method is based on the numbers of half-sibling (HS) and parent–offspring (PO) pairs in

a sample. Here, sampling can be either invasive or noninvasive and is completed at two breeding

seasons; sampling offspring (young-of-year individuals) and parents likely share a PO relationship

with the offspring sampled in one population at the first breeding season and in the other population

at the second breeding season. The rationale for estimating the migration number or rate is that the

number of HS and PO pairs found between populations contains information about the frequency

of parental movements during the breeding interval. Our model explicitly incorporates reproduc-

tive variation within and between populations, thereby making it possible to target a species whose

fertility is affected by environmental differences between populations. First, we explain the mod-

eling assumption and sampling scheme. Then, we analytically determine the estimators of the

contemporary migration number or rate of adults, which are based on the numbers of HS and/or

PO pairs. Finally, by running an individual-based model, we investigate the performance of the

estimator and provide a guide for a sample size. Note that the proposed modeling framework can

be applied to diverse animal species; however, the description of the model focuses on fish species,

which are presently the best target candidate for the proposed method.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.483709doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483709
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Theory

Here, we present the theoretical foundation of estimating a migrant number and migration rate

of iteroparous species using HS or PO pairs found between two populations with different sample

timing. Note that the estimators can hold under flexible assumptions for reproduction (Appendix

2); however, here, we assume a relatively simple case. The main symbols used in this paper are

summarized in Table 1.

Table 1 is here.

2.1 Hypothetical population

Assume that we have a set of populations 1 and 2, where random mating occurs within each

population and parents can move to the other population after the reproductive season ends. With-

out loss of generality, we consider the movement of parents from population 1 to population 2, and

we focus on estimating the migration number or rate. In this framework, we demonstrate that con-

sidering two reproductive seasons (hereafter referred to as ”the first year” and ”the second year”)

is sufficient to estimate the migration number or rate. Figure 1a shows a schematic representation

of the kinship relationships and parent movements.

Assume that there are N1 parents in population 1 at the beginning of the first year. Each parent

produces a number of offspring that is governed by the parent’s reproductive potential, which

is denoted by λi,1 (i = 1,2, . . . ,N1). After the reproductive season, some parents begin to move

toward population 2. Here M survived migrants arrive in population 2; thus, there are N2 parents in

population 2 at the beginning of the second year (M ≤ N1 and M ≤ N2). Similar to population 1, N2

parents produce a number of offspring governed by λ j,2 ( j = 1,2, . . . ,N2). Note that reproductive

potential is determined by several factors. Additional details about reproductive potential can be
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found in Appendix 1. Theoretically, the number of offspring for each parent is set as a random

variable with mean λi,1 or λ j,2.

Figure 1 is here.

2.2 Sampling

To estimate the migration number or rate, we utilize the number of HS and/or PO pairs ob-

served in a sample. In both populations, nO,1 and nO,2 offspring are sampled randomly in the first

and second year, respectively, which are identified as young-of-year individuals without error. In

addtion, nP,1 and nP,2 parents are sampled randomly immediately after the end of the reproductive

season in the first and second years, respectively. For mathematical tractability, the parents must

survive the reproductive season; therefore, both the mother and father of a give offspring have the

potential to be sampled in the same year. Note that all the four sample types, i.e., nP,1, nP,2, nO,1,

and nO,2, are not always required to estimate the migration number or rate. The types of required

samples depends on the given situation, which is explained later. Up to subsection 2.6, we focus on

only the HS and PO pairs found between populations 1 and 2. To apply the proposed method to the

fishery assessment, we assume an invasive sampling procedure, which prevents us from finding a

PO pair such that a parent and offspring is sampled in population 1 and 2, respectively. Figure 1b

shows the timeline of the sampling scheme for these hypothetical populations.

In the example shown in Figure 1a, five offspring and four parents are sampled in population

1, four offspring and six parents are sampled in population 2, and two HS pairs and a single PO

pair are observed between the two populations 1 and 2. In addition, there are several PO pairs

observed within the same population, which are available to estimate parent numbers, which is

explained in subsection 2.7. In our modeling framework, if a full-sibling relationship is found, we
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count it as two HS pairs. The numbers of HS and PO pairs found between the two populations are

determined via pairwise comparison of all the sample individuals, i.e., comparisons of nO,1 ×nO,2

and nO,1 ×nP,2, respectively.

2.3 HS pair-based model

Here, we consider the probability that two offspring sampled in populations 1 and 2 will share

a HS relationship with an arbitrary mother or father, denoted by πHS,bet. Note that we assume

equal reproductive potential among parents (up to subsection 2.7) although this assumption can

be relaxed for most of the case (see Appendix 2 for additional information). Here, πHS,bet can be

partitioned into three probabilities, i.e., (i) the probability that sampled offspring in population 1

born to a parent that safely arrives in population 2 (hereafter, referred to as a ”migrant”); (ii) the

probability that sampled offspring in population 2 are born to a migrant; and (iii) the probability

that the migrant of a sampled offspring in population 1 and the migrant of a sampled offspring in

population 2 are identical.

To assess these probabilities, recall that there must be two parents of arbitrary offspring. The

first probability is the sum of the father–offspring and mother–offspring relationship, which can be

expressed as rMM/(rS,1N1)+(1−rM)M/((1−rS,1)N1), where rM and rS,1 indicate the sex ratio of

the parents in the migrants and in all of the population 1, respectively. Under the assumption that

rM = rS,1, the probability is simplified to 2M/N1. Similarly, the second probability is simplified

to 2M/N2, which implies the assumption regarding an equal sex ratio in migrants and others. The

third probability corresponds to the probability that two randomly selected migrants are identical,
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i.e., 1/M. Taken together, we obtain the following:

πHS,bet =
2M
N1

2M
N2

1
M

=
4M

N1N2
. (1)

This form holds under a flexible setting for the reproductive potential, e.g., a situation with random

variable of λi,1 and λ j,2 (Appendix 2). If all N1 parents safely move to population 2 (i.e., M =

N1), πHS,bet equals 4/N2. In addition, if population 2 comprises only migrants (i.e., M = N2),

πHS,bet equals 4/N1. In extreme cases, these probabilities take similar forms as the HS probability,

which is sampled randomly from two different cohorts within a population (Bravington, Skaug, &

Anderson, 2016).

Let HHS,bet be the number of HS pairs found in the offspring samples of size nO,1 and nO,2.

Assuming the total number of HS pairs between the two populations much greater than HHS,bet, the

distribution is approximated by a binomial form (i.e., HHS,bet ∼ Binom[πHS,bet,nO,1nO,2]). Thus,

the theoretical expectation of HHS,bet is given as follows:

E[HHS,bet] = πHS,betnO,1nO,2

=
4nO,1nO,2M

N1N2
(2)

=
4nO,1nO,2m

N2
, (3)

where m is the migration rate satisfying M = mN1. The observed number of HS pairs in a sample

found between the populations 1 and 2 is defined by H̃HS,bet, and E[HHS,bet] in Equation 2 is

replaced by H̃HS,bet, thereby generating the linear estimator of M:
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M̂1 =
N1N2H̃HS,bet

4nO,1nO,2
. (4)

In this paper, a “tilde” and “hat” symbols indicate the observation and estimator of a variable,

respectively. Similarly, E[HHS,bet] in Equation 3 is replaced by H̃HS,bet, which generates the linear

estimator of m:

m̂1 =
N2H̃HS,bet

4nO,1nO,2
(5)

The subscripts associated with these estimators indicate the numbering of the proposed estimators,

which is summarized in Table 2.

Table 2 is here.

2.4 PO pair-based model

In the folowing, we consider the probability that offspring sampled in population 1 and a parent

sampled in population 2 share a PO relationship, denoted by πPO,bet. πPO,bet can be partitioned

into the above mentioned probabilities. Note that probabilities (i) and (iii) are the same as that

introduced in the previous subsection, i.e., 2M/N1 and 1/M. In addition, probability (ii) is M/N2

by definition. Taken together, we obtain the following:

πPO,bet =
2M
N1

M
N2

1
M

=
2M

N1N2
. (6)
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This form also holds under a flexible setting for the reproductive potential, as noted in the Ap-

pendix 2. Here, if all N1 parents safely move to population 2 (i.e., M = N1), πPO,bet equals 2/N2.

In addition, if population 2 comprises only migrants (i.e., M =N2), πPO,bet equals 2/N1. In extreme

cases, these probabilities take similar forms to the PO probability that is sampled randomly within

a population (Bravington, Skaug, & Anderson, 2016).

Let HPO,bet be the number of PO pairs found in offspring samples of size nO,1 and parent

samples of size nP,2. Under the assumption that the total number of PO pairs between the two

populations is much greater than HPO,bet, the distribution is approximated by a binomial form (i.e.,

HPO,bet ∼ Binom[πPO,bet,nO,1nP,2]). Thus, the theoretical expectation of HPO,bet is expressed as

follows:

E[HPO,bet] = πPO,betnO,1nP,2

=
2nO,1nP,2M

N1N2
(7)

=
2nO,1nP,2m

N2
. (8)

The observed number of PO pairs in a sample is defined by H̃PO,bet, and E[HPO,bet] in Equations 7

and 8 are replaced by H̃PO,bet, which generates the linear estimators of M and m as follows:

M̂2 =
N1N2H̃PO,bet

2nO,1nP,2
, (9)

and

m̂2 =
N2H̃PO,bet

2nO,1nP,2
. (10)
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2.5 Required sample size

The proposed estimators are based on the observed number of kinship pairs. Their expected

number is linearly determined by the number of pairwise comparison (Equations 2-3 and 7-8),

which provides sample size guidance to ensure the condition that at least one or more kinship pairs

can be found. The conditions are given as follows:

nO,1nO,2 >
N2

4m
, (11)

and

nO,1nP,2 >
N2

2m
. (12)

Generally, the required sample size to ensure the above conditions is n >
√

N2, where n = nO,1 =

nO,2 = nP,2. Note that a very small m value, which dramatically increases the required sample

size, produces significant genetic differences between the two populations. In such cases, there

are several methods to estimate migration rate using population genetics technique. Alternatively,

we focus on moderate/large migration rate, which yields little genetic differences between the two

populations.

Other guidance for the required sample size is obtained by an approximate lower bound on

the coefficient of variation (CV) of M1 or m1, which is defined as 1/
√

HHS,bet. This is applied

in the context of classic MR (Seber, 2002) or CKMR (Bravington, Skaug, & Anderson, 2016).

For example, to achieve a 30% CV, the target of HHS,bet is greater than 10, thereby providing the

required sample size when the population parameters are given (e.g., N1, N2, and M). Similarly,

the CV of M2 or m2, defined by 1/
√

HPO,bet, provides the sample size required to estimate M2 or
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m2.

2.6 Efficient use of kinship pairs found between populations

When both HS and PO pairs, which are found between populations, are available simultane-

ously, we can obtain efficient estimators by combined M̂1 and M̂2 for migration number:

M̂3 =
N1N2

(
H̃HS,bet + H̃PO,bet

)
2nO,1 (2nO,2 +nP,2)

, (13)

and by combining m̂1 and m̂2 for the migration rate:

m̂3 =
N2

(
H̃HS,bet + H̃PO,bet

)
2nO,1 (2nO,2 +nP,2)

. (14)

For those estimators, H̃HS,bet and H̃PO,bet are weighted by 2nO,2 and nP,2, respectively.

2.7 Estimation of parent number by PO pairs in a population

To this point, we have stated that the formulation of the estimators, presented in Equations

4-5 and 9-10, is a function with parent numbers for each population (N1 and/or N2). In other

words, such estimators are available only when the parent number or numbers are known. Here,

we describe how we estimate unknown parent numbers by additionally using PO pairs to produce

estimators for both migration number and rate that can be obtained from only the genetic data.

When PO pairs found in offspring samples and parent samples from population 2 in the second

year are available, the standard parental number estimator can be obtained (Bravington, Skaug, &
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Anderson, 2016) as follows:

N̂2 =
2nO,2nP,2

H̃PO,2 +1
, (15)

where H̃PO,2 is the observed number of PO pairs found in the offspring samples of size nO,2 and

parent samples of size nP,2. This term “+1” reduces bias, especially when H̃PO,2 is small (e.g.,

Prystupa, McCracken, Perry, & Ruzzante, 2021), where a similar derivation of this bias correction

is provided in the literature Akita (2020a). By replacing N2 by N̂2 in Eqs. 13 and 14, we obtain the

following estimators:

M̂4 =
nO,2nP,2N1

(
H̃HS,bet + H̃PO,bet

)
nO,1 (2nO,2 +nP,2)

(
H̃PO,2 +1

) , (16)

and

m̂4 =
nO,2nP,2

(
H̃HS,bet + H̃PO,bet

)
nO,1 (2nO,2 +nP,2)

(
H̃PO,2 +1

) . (17)

While the estimator of the migration number (Equation 16) requires the (unknown) parent number

in population 1 (N1), the estimator of the migration rate (Equation 17) can be obtained using only

the observed number of HS and PO pairs.

Similar to estimating N2, when PO pairs found in offspring samples and parent samples from

population 1 in the first year are available, we can obtain the estimator of N1 as follows:

N̂1 =
2nO,1nP,1

H̃PO,1 +1
, (18)

where H̃PO,1 is the observed number of PO pairs in the offspring samples of size nO,1 and parent
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samples of size nP,1. By replacing N1 with N̂1 in Eq. 16, we obtain a migration number estimator

that can be calculated from only genetic data, which is expressed as follows:

M̂5 =
2nO,1nP,1nO,2nP,2

(
H̃HS,bet + H̃PO,bet

)
nO,1 (2nO,2 +nP,2)

(
H̃PO,1 +1

)(
H̃PO,2 +1

) . (19)

Table 2 summarizes the conditions for estimators in terms of whether N1 and/or N2 are known

and which type of samples are required for estimation. In addition, Table 2 identifies the kinship

type required to calculate the estimator.

2.8 Variation in reproductive potential among individuals and populations

The proposed estimators are derived under the assumption that reproductive potential is equal

among individuals. As described in Appendix 2, this assumption can be relaxed, and the estima-

tors still hold, which is exemplified in iteroparous species that may show significant variation in

reproductive potential among individuals. In addition, the estimators hold for most cases where the

mean reproductive potential differes between populations 1 and 2, e.g., when the environmental

condition for reproductive success varies between populations. Here, the required condition is that

the migration event does not depend on the degree of reproductive potential (refer to Appendix 3

for additional details).

2.9 Individual-based model

We developed an individual-based model that tracks kinship relationships to evaluate the per-

formance of the estimators. Here, the population structure was assumed to be identical to that

in the development of the estimators. Population 1 and 2 comprised N1 and N2 parents with an

equal sex ratio, and their offspring number was assumed to follow the geometric distribution with
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mean λ̄1 and λ̄2 (i.e., Poisson reproduction with mean λi,1 and λ j,2, which follows the exponential

distribution with mean λ̄1 and λ̄2), respectively. Migrant parents were selected randomly from

population 1 at the end of the first year, and each offspring retained IDs of the parents, thereby

making it possible to trace a HS and PO relationship.

Here, the parameter set (N1, N2, M, λ̄1, λ̄2, nO,1, nO,2, nP,1, nP,2) is given. We simulated a

population history and a sampling process, which generates proposed estimators. Note that this

process was repeated 1000 times, which allows us to construct the distribution of the estimators

for each parameter set. All scripts (written by C++ and R languages) and documentation for these

analyses are available at https://github.com/teTUNAakita/CKMRmig.

3 Results

We evaluated the performance of M̂s or m̂s numerically for a case with variable reproduc-

tive potential among parents. Here, the scaled statistical properties of m̂1, m̂2, m̂3 and m̂4 were

completely the same as M̂1, M̂2, M̂3, and M̂4; thus, hereafter, we only demonstrate the results for

M̂1-M̂5. Figure 2 shows the distribution of the relative bias of M̂ for limiting cases where parent

and offspring sample numbers are identical (i.e., n= nP,1 = nP,2 = nO,1 = nO,2) and parent numbers

in the two populations are also identical (i.e., N = N1 = N2). The relative bias is calculated by ap-

plying the outputs of the individual-based model, which is defined as “(averaged estimator − true

value)/true value.” Refer to Table S1 in Supporting Information for a full list of the parameter

sets used to evaluate performance (relative bias and CV of M̂s).

Figure 2 is here.

First, we evaluated the accuracy of M̂s based on the relative bias. As expected, for most of

the investigated parameter sets, we observed that their relative bias was less than 5%, as shown in
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Table S1 in Supporting Information. Thus, when the assumptions that (i) offspring and parents

are randomly sampled, (ii) kinships are detected without any error, and (iii) the migration event

does not depend on the degree of reproductive potential, are satisfied, it is reasonable to consider

M̂s nearly unbiased estimators.

Next, we evaluated the precision of M̂s based on the CV value. Table S1 in Supporting

Information shows the CV value, and the violin plot in Figure 2 visualizes the degree of precision.

For each estimator M̂, we found that precision increases with increasing sample size. Note that the

total sample size depends on the estimator. For example, n = 50 in Fig. 2, the total sample sizes of

M̂1, M̂2, M̂3, M̂4, and M̂5 were 100 (= nO,1+nO,2), 100 (= nO,1+nP,2), 150 (= nO,1+nO,2+nP,2),

150 (= nO,1 +nO,2 +nP,2), and 200 (= nO,1 +nO,2 +nP,1 +nP,2), respectively.

As the sample size or number of migrants increase, precision increases, and the shape of

the distribution asymptotically becomes symmetric (Fig. 2) because an increasing sample size or

increasing number of migrants is likely to increase the observed number of kinship pairs found

between the two populations (H̃HS,bet or H̃PO,bet) and decreases the variance of those kinship pair

numbers. In addition, the number of PO pairs in a given population (H̃PO,1 or H̃PO,2) contributes to

the precision of estimating N1 or N2, respectively, thereby providing M̂4 and M̂5 with a relatively

high precision.

Note that our simulation can handle case with and without invasive sampling. Invasive sam-

pling potentially affects the level of m because the sampled parents from population 1 have no

chance to move to population 2; thus, such parents cannot be sampled. In this case, m might be

defined by M/(N1 − nP,1) rather than M/N1, although this does not affect the estimator M̂s, as

demonstrated in Table S1 (Supporting Information).

Finally, we investigated the case where the parental number in population 1 is much greater in

population 2 (i.e., N1 ≫ N2); thus, migrants represent a large proportion of N2. For such cases, e.g.,
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(N1,N2,M) = (104,103,500), we confirmed the similar property of M̂s to the N1 = N2 situation,

as shown in Table S1 (Supporting Information), which suggests the robustness of M̂s in the

presence of heterogeneous population sizes.

4 Discussion

In this study, we theoretically developed estimators for the contemporary migration number

(M̂1–M̂5) and migration rate (m̂1–m̂4) of parents between two predefined populations in iteroparous

species. The proposed estimators are based on the known PO relationship and HS relationships

observed between and within the two populations without any error in terms of kinship assignment.

Users can select the appropriate estimator for cases where the parental number of population 1 (N1)

and/or that of population 2 (N2) is known (Table 2). The performance of the estimator (accuracy

and precision) was evaluated quantitatively by performing an individual-based simulation (Fig. 2

and Table S1 in Supporting Information). The proposed modeling framework utilizes several

types of reproductive variations (i.e., the number of survived offspring per parent), including the

variance of reproductive potential within and between populations, in consideration of several

situations, including a body-size structure or environmental heterogeneity for reproductive success.

Our primary contributions are summarized as follows. First, we formulated the probabilities

of kinship pairs randomly selected between two populations (πHS,bet and πPO,bet), which provides

migration number or rate estimators. While similar derivations may be found in the (nongenetic)

MR method, these are limited to cases where sampling is non-invasive and adult individuals must

be sampled. The proposed method can avoid these limitations, where such an advantages is charac-

terized by the CKMR method for estimating population sizes. Second, we have demonstrated that

the probabilities of kinship pairs are approximately independent of the reproductive potential; thus,
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information about it is not required to realize the estimation provided that migration is assumed

to occur independently of the reproductive potential. This is a useful property of the estimators

because it is natural that heterogeneity of reproductive potential within and between populations

exits in iteroparous species but its observation is generally difficult. Third, we have demonstrated

that estimators can be obtained using only genetic data (i.e., M̂5 and m̂4). There are several advan-

tages in using the proposed estimator rather than estimating πHS,bet (and/or πPO,bet) separately (via

a genetic method) and N1 (and/or N2) (via a nongenetic method), including simplified sampling

processes and analyzing designs and the availability of a unified framework of genetic analyses for

detecting HS and PO pairs (similar discussion is found for estimating the ratio of effective breeding

size to the census size, Nb/N, in Akita (2020b)).

To estimate the contemporary migration number or migration rate, our simulation-based re-

sults provide sample size guidance to ensure the required accuracy and precision, especially if the

order of the number of migrant parents and parental sizes are approximately known (Table S1 in

Supporting Information). For example, when m = 0.1 and N1 = N2 = 103, sampling 10% and

20% of the parents and an equal number of offspring in both populations leads to 70% and 39% CV

of M̂5, respectively (in the invasive sampling case). Even no information is available about these

numbers, 1/
√

HHS,bet (or 1/
√

HPO,bet) provides an approximate lower bound on the CV, which

can be used as an indicator of the precision of M̂ or m̂. In addition, the condition that n >
√

N2

is also used as rule of thumb especially when planning a research project (n = nO,1 = nO,2 = nP,2;

refer to Equations 11 and 12). Note that the guidance is to estimate the information about one-way

migration between two populations; thus, estimating two-way migrations among two or three pop-

ulations would require twice and three times the number of samples, respectively, compared to our

sample size guidance.

We believe there are several scenarios where the proposed estimator may be beneficial. The
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first case is where there is a large number of migrants between populations, e.g., M > 100, which

eliminates population differentiation and thus hampers the detection of the M via population ge-

netics method if M is interpreted as an effective migration number. Information about movement

between populations is essential to assess population dynamics in the conservation and manage-

ment contexts, even if the migrant number is so large that it cannot be genetically assigned to

two populations. The second case involves genetic monitoring conducted for each reproductive

period (e.g., annually) because the proposed estimators consider information about contemporary

migration that is explicitly specified the timing (e.g., year); thus, the time-series data for migration

may reflect environmental changes, and this would provide insights into the underlying ecological

processes. In addition, HS pairs found within the same cohort in the genetic population provide Nb

(Wang, 2009; Waples & Waples, 2011), which is also used to assess genetic health. The third is the

case involves the development of integrated models that combine several data sources into a single

analysis (Maunder & Punt, 2013). An example of this direction is to provide additional informa-

tion about migration to ongoing CKMR projects for stock assessment in fisheries (e.g., Bravington,

Grewe, & Davies, 2016; Conn et al., 2020; Hillary et al., 2018; Prystupa et al., 2021; Trenkel et al.,

2022), which would utilize kinship pairs for simultaneous estimation of population parameters. If

the population structure is defined hypothetically, the data accumulated in such projects could be

readily connected to our theory via likelihood methods. The fourth case is where sampling adults is

difficult due to conservation practices or other reasons but instead sampling offspring is relatively

easy. In such cases, although N2 (and N1) must be given externally to employ m̂1 (and M̂1), there is

presently no existing method to estimate adult movement, especially when two populations cannot

be genetically distinct, which indicates that the proposed method has the potential to expand the

scope of current population monitoring techniques.

Finally, we discuss some caveats in terms of applying the proposed method. Our theory for
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developing the estimators assumes that kinships are detected without error. Many algorithms can

be used to detect kinship pairs from single nucleotide polymorphisms or short tandem repeats (e.g.,

Huisman, 2017; Wang & Santure, 2009), although a HS pair requires many more DNA markers

than a PO pair. In addition, iteroparous species may has several kinship types, e.g., half-uncle–

nephew or half-cousins, which are expected to appear frequently and should be accurately differ-

entiated from HS pairs. It is desirable to estimate in advance how many markers are required for

kinship detection in the target populations associated with simulation of pedigree reconstruction

(e.g., Anderson (in press)). The proposed estimators are limited to detecting parental movements

on a period between breeding seasons in the given populations. Thus, the estimation of fine-scale

spatiotemporal movements, which is available to integrate data sources (Thorson et al., 2021), is

beyond the scope of this paper. Although population dynamics models with coarser spatial resolu-

tion than the spatial scale of environmental layers are frequently used in assessment models, i.e.,

the target application of the proposed method, the proposed estimators require pre-specification

of the population structure. Kinship relationships with sample location information potentially

realize the ability to explore a plausible population structure by estimating the migration number

or rate between hypothetical populations, which is expected to contribute the determination of a

management unit. In addition, the current theory behind the estimators does not assume desyn-

chronized reproduction within a population (e.g., skip spawning), correlation between individual

mobility and fertility, and nonrandom sampling of parents (e.g., mothers with a large number of

offspring are likely to be sampled). These issues will be the focus of future work.
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Table 1: The list of mathematical symbols employed in the main text

nP,1,nP,2 Sampled number of parents from population 1 and 2

nO,1,nO,2 Sampled number of offspring from population 1 and 2

N1,N2 Number of parents in population 1 and 2 when sampled offspring are born

M Number of survived migrants of parents from population 1 to population 2

m Migration rate of parents from population 1 to population 2, defined by M/N1.

r Sex ratio

πPO,1,πPO,2 Probability that a randomly selected pair (parent and offspring)
shares a parent-offspring relationship within population 1 and 2

πPO,bet Probability that a randomly selected pair (parent and offspring)
shares a parent-offspring relationship between population 1 and 2

πHS,bet Probability that a randomly selected pair (two offspring)
shares a half-sibling relationship between population 1 and 2

λi,1,λ j,2 Expected number of surviving offspring of parent i and j at sampling in population 1 and 2

λM,l,1,λM,l,2 Expected number of surviving offspring of migrant l at sampling in population 1 and 2

ki,1,k j,2 Number of surviving offspring born to parent i and j in population 1 and 2

HPO,1,HPO,2 Number of parent-offspring pairs observed in samples within population 1 and 2

HPO,bet Number of parent-offspring pairs observed in samples between population 1 and 2

HHS,bet Number of half-sibling pairs observed in samples between population 1 and 2

Subscripts “1” and “2” indicate the quantity in population 1 during the first year and in population
2 during the second year, respectively.
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Table 2: Summary of proposed estimators for required parameters and kinship types

Estimator N1 N2 nO,1 nO,2 nP,1 nP,2 Required kinship type

M̂1 given given ✓ ✓ HSP

M̂2 given given ✓ ✓ POP

M̂3 given given ✓ ✓ ✓ HSP & POP

M̂4 given estimated ✓ ✓ ✓ HSP & POP

M̂5 estimated estimated ✓ ✓ ✓ ✓ HSP & POP

m̂1 — given ✓ ✓ HSP

m̂2 — given ✓ ✓ POP

m̂3 — given ✓ ✓ ✓ HSP & POP

m̂4 — estimated ✓ ✓ ✓ HSP & POP

HSP: half-sibling pair; POP: parent–offspring pair.
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FIGURE 1 (a) Hypothetical populations with N1 = 16, N2 = 14, and M = 6. Upper and lower
areas indicate individuals in population 1 before migration (at the sample timing in the first year)
and individuals in population 2 after reproduction (at the sample timing in the second year), re-
spectively. Open circles on the left, right, and center represent mothers, fathers, and their offspring,
respectively. The thin line denotes PO relationship. Bold arrows denote migration, and x denotes
failure to survive at the sampling in the second year. Sampled individuals are labeled with an index
number. Number of sampled individuals in this example: nP,1 = 4, nO,1 = 5, nP,2 = 6, nO,2 = 4;
numbers of kinship pairs: HPO,bet = 1 (i.e., “7-10” pair), HHS,bet = 2 (i.e., “8-16” and “9-16” pairs),
HPO,1 = 3 (i.e., “1-6”, “3-5” and “4-7” pairs), and HPO,2 = 2 (i.e., “11-17” and “15-16” pairs). (b)
Phases of events relevant to this study in the given timeline.
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FIGURE 2 Violin plots showing the distribution of relative bias in the estimator of M for various
sample sizes, parent numbers, and migration rates. Filled circles represent mean values. The sam-
ple sizes for parents and offspring are identical (i.e., n = nP,1 = nP,2 = nO,1 = nO,2), and the parent
sizes in the two populations are identical (i.e., N = N1 = N2), as indicated in the legend. Migration
rate m is specified by N1/M. For demonstration purposes, the upper side of the distribution is
truncated, although the mean values are calculated (including the truncated values).
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APPENDIX 1

Reproductive potential

Here, we introduce the concept of the reproductive potentials of parents i and j in the popula-

tion 1 and 2, respectively, which are defined as the expected number of surviving offspring at the

given sampling time, denoted by λi,1 and λ j,2 (i = 1, . . . ,N1 and j = 1, . . . ,N2). Reproductive po-

tential is determined by several factors, including the parent age, weight, and residence time in the

spawning ground. Note that the magnitude of this parameter includes information about offspring

survival rate, the number of days after egg hatching, and the number of eggs. This implies that the

parameter reflects the sample timing. Also note that the modeling framework does not depend on

whether the reproductive potential is heritable or not.

APPENDIX 2

Derivation of Equations 1 and 6 when reproductive potential is

variable among parents

In the main text, we ignore the variation of reproductive potential among parents (i.e., both

λi,1 and λ j,2 are constant) to derive πHS,bet and πPO,bet. Here, let ki,1 and k j,2 be the number of

surviving offspring of parents i and j at sampling time in populations 1 and 2, and assumed to

follow a kind of discrete distribution (e.g., Poisson or negative binomial distribution) with mean

λi,1 and λ j,2, respectively. Without loss of generality, we set the index such that parents with i = 1

to M in population 1 and j = 1 to M in population 2 are identical migrants. For example, the
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parent with i = 1 reproduces k1,1 offspring (in population 1) and then reproduce k1,2 offspring (in

population 2) after migration. Given ki,1 and k j,2, the conditional probability that two offspring

sampled in populations 1 and 2 share a HS relationship is expressed as follows:

πHS,bet|kkk111,,,kkk222 =
2∑M

i=1 ki,1

∑N1
i=1 ki,1

2∑M
j=1 k j,2

∑N2
j=1 k j,2

1
M
, (A1)

where kkk111 = (k1,1, . . . ,kM,1, . . . ,kN1,1) and kkk222 = (k1,2, . . . ,kM,2, . . . ,kN2,2). Note that ki,1 and k j,1

are a random variables with mean λi,1 and λ j,2, respectively. By taking the expectation over the

distribution of the offspring number, the conditional probability is given approximately as follows:

πHS,bet|λλλ 111,,,λλλ 222
= E[π|kkk111,,,kkk222]

=
4
M
E

[
∑M

i=1 ki,1

∑N1
i=1 ki,1

∑M
j=1 k j,2

∑N2
j=1 k j,2

]

≈ 4
M

E
[
∑M

i=1 ki,1 ∑M
j=1 k j,2

]
E
[
∑N1

i=1 ki,1 ∑N2
j=1 k j,2

]
=

4
M

∑M
i=1 λi,1 ∑M

j=1 λ j,2

∑N1
i=1 λi,1 ∑N2

j=1 λ j,2
, (A2)

where λλλ 111 = (λ1,1, . . . ,λM,1, . . . ,λN1,1) and λλλ 222 = (λ1,2, . . . ,λM,2, . . . ,λN2,2). From the second to

third lines, we use the approximation that E[g1(k)/g2(k)] ≈ E[g1(k)]/E[g2(k)]. From the third

to forth lines, we use the relationship that E[ki,1k j,2|λi,1,λ j,2] = E[ki,1|λi,1]E[k j,2|λ j,2], which implies

the statistical independence of the offspring number before and after parental movement. In other

words, the conditional probability is not affected by V[k|λ ]. Here, we assume that λi,1 and λ j,2

are also random variables that are followed by an arbitrary function with mean λ̄1 and λ̄2, respec-

tively. By taking the expectation over λ and applying a similar approximation, the unconditional
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probability is given as follows:

πHS,bet = E[π|λλλ 111,,,λλλ 222
]

=
4
M
E

[
∑M

i=1 λi,1

∑N1
i=1 λi,1

∑M
j=1 λ j,2

∑N2
j=1 λ j,2

]

≈ 4
M

E
[
∑M

i=1 λi,1 ∑M
j=1 λ j,2

]
E
[
∑N1

i=1 λi,1 ∑N2
j=1 λ j,2

]
=

4
M

M2λ̄1λ̄2

N1N2λ̄1λ̄2

=
4M

N1N2
, (A3)

which provides the same formulation described in Equation 1. Note that, from the third to forth

lines, we assume that λl,1 and λl,2 (l = 1, . . . ,M) are independent variables (i.e., E[λl,1λl,2] = λ̄1λ̄2),

which implies variable reproductive potential of an identical parent before and after migration.

Next, we derive the probability that offspring sampled in population 1 and a parent sampled in

population 2 share a PO relationship (πPO,bet) under the flexible settings of λ , which is similar to

the derivation of πHS,bet. The conditional probability is expressed as follows:

πPO,bet|kkk111,,,kkk222 =
2∑M

i=1 ki,1

∑N1
i=1 ki,1

∑M
j=1 k j,2

∑N2
j=1 k j,2

1
M
. (A4)

Here, by taking the expectation over k and λ , in the same manner as noted above, the unconditional

probability is approximately given as follows:

πPO,bet = E[E[π|kkk111,,,kkk222]]

≈ 2M
N1N2

, (A5)
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which provides the same formulation described in Eq.6.

APPENDIX 3

Difference in reproductive potential between migrants and non-

migrants

In the derivation of πHS,bet and πPO,bet in Appendix 2, we ignored covariation between migra-

tion and reproductive potential. Here, we consider the case where migrants have a distinguishable

distribution of reproductive potential from nonmigrant parents. Let λi,1, λ j,2, λM,l,1 and λM,l,2 be

the reproductive potential of nonmigrant parents in population 1 and 2 and migrants in the popu-

lations 1 and 2 with mean λ̄1, λ̄2, λ̄M,1, and λ̄M,2, respectively. Under this setting, πHS,bet can be

expressed as follows:

πHS,bet ≈
4
M

E
[
∑M

l=1 λM,l,1 ∑M
l=1 λM,l,2

]
E
[(

∑M
l=1 λM,l,1 +∑N1

i=M+1 λi,1

)(
∑M

l=1 λM,l,2 +∑N2
j=M+1 λ j,2

)]
=

4
M

M2λ̄M,1λ̄M,2(
Mλ̄M,1 +(N1 −M)λ̄1

)(
Mλ̄M,2 +(N2 −M)λ̄2

) . (A6)

If λ̄M,1 = λ̄1 and λ̄M,2 = λ̄2, Equation A6 can be reduced Equation A3. This formulation includes

reproductive potential terms such that the distinct reproductive potential between migrants and

nonmigrants eliminates the usefulness of the proposed HS-based estimators (this is also applied to

the proposed PO-based estimators).
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