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Abstract: 

 

The volume of active muscle and duration of extensor muscle force well-explain the associated metabolic 

energy expenditure across body mass and speed during level-ground running and hopping. However, if 

these parameters fundamentally drive metabolic energy expenditure, then they should pertain to multiple 

modes of locomotion and provide a simple framework for relating biomechanics to metabolic energy 

expenditure in bouncing gaits. Therefore, we evaluated the ability of the ‘cost of generating force’ 

hypothesis to link biomechanics and metabolic energy expenditure during human running and hopping 

across step frequencies. We asked participants to run and hop at 0%, ±8% and ±15% of preferred step 

frequency. We calculated changes in active muscle volume, force duration, and metabolic energy 

expenditure. Overall, as step frequency increased, active muscle volume decreased due to postural changes 

via effective mechanical advantage (EMA) or duty factor. Accounting for changes in EMA and muscle 

volume better related to metabolic energy expenditure during running and hopping at different step 

frequencies than assuming a constant EMA and muscle volume. Thus, to ultimately develop muscle 

mechanics models that can explain metabolic energy expenditure across different modes of locomotion, we 

suggest more precise measures of muscle force production that include the effects of EMA. 
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Introduction 1 

For decades, biomechanists and physiologists have sought to link the mechanics of running and 2 

hopping with the corresponding metabolic energy expenditure. One prevailing approach is the ‘cost of 3 

generating force’ hypothesis, which was proposed by Taylor and colleagues (Kram and Taylor, 1990; 4 

Taylor, 1994; Taylor et al., 1980) and posits that the primary determinant of metabolic energy expenditure 5 

required for running and hopping is the cost of generating muscle force to support body weight. This 6 

hypothesis is predicated on the fact that animals produce stride-average vertical ground reaction forces 7 

equal to body weight when running or hopping on level ground. Previous studies have demonstrated that 8 

metabolic energy expenditure depends on animal size, and that metabolic energy expenditure increases in 9 

almost direct proportion to the total weight of a running animal (Taylor et al., 1980). Further, per unit of 10 

body mass, it is more metabolically costly for smaller animals (e.g., mouse) to generate a unit of force than 11 

larger animals (e.g., horse) (Taylor, 1985), because small animals take more frequent strides and use less 12 

economical muscle fibers to produce force quickly (Heglund and Taylor, 1988). Thus, the metabolic energy 13 

expenditure during running and hopping varies with size and may depend on the number of strides taken 14 

per second, or stride frequency.  15 

Kram and Taylor (Kram and Taylor, 1990) expanded the ‘cost of generating force’ hypothesis to 16 

explain why metabolic energy expenditure increases near linearly when running or hopping at faster 17 

velocities. They reasoned that the rate of force generation (i.e., the rate of cross bridge cycling) could be 18 

approximated by the inverse of ground contact time and formally proposed that the rate of metabolic energy 19 

expenditure (Ėmet in Watts) during running equals an animal’s body weight (FBW) multiplied by the inverse 20 

of ground contact time (𝑡𝑐
−1) and a metabolic cost coefficient (c) (Eqn. 1). 21 

  �̇�𝑚𝑒𝑡  =  𝐹𝐵𝑊 ⋅ 𝑡𝑐
−1 ⋅ 𝑐 [1] 

To produce the force needed to support body weight over each stride, animals need to activate a volume of 22 

muscle (i.e., the number of active actin-myosin crossbridges), which is primarily influenced by body weight 23 

and the leg’s effective mechanical advantage (EMA). EMA is the ratio of the ground reaction force moment 24 

arm to the muscle tendon moment arm. Kram and Taylor assumed that active muscle volume and EMA 25 

were independent of velocity (Biewener, 1989), which is why they simplified the equation to use force in 26 

units of body weight. Using this assumption, equation 1 well-described the increase in metabolic energy 27 

expenditure for a 10-fold increase in velocity and 4500-fold increase in body weight during forward 28 

hopping, trotting, and running animals (Kram and Taylor, 1990; Roberts et al., 1998a). 29 

Since Kram and Taylor (Kram and Taylor, 1990), multiple studies have shown that active muscle 30 

volume and EMA change across running velocity and limb morphology (Kipp et al., 2018b; Roberts et al., 31 

1998b; Wright and Weyand, 2001). Notably, Roberts et al. (Roberts et al., 1998b) demonstrated that running 32 

bipeds have a greater EMA than size-matched quadrupeds due to their upright posture, which influences 33 

active muscle volume and metabolic energy expenditure. Thus, the authors proposed a refined version of 34 

the ‘cost of generating force’ hypothesis to account for changes in active muscle volume where the rate of 35 

metabolic energy expenditure equals the product of active muscle volume (Vm), the inverse of ground 36 

contact time, and a new cost coefficient (k) (Eqn. 2) 37 

  �̇�𝑚𝑒𝑡  =  𝑉𝑚 ⋅ 𝑡𝑐
−1 ⋅ 𝑘 [2] 

Kipp et al. (Kipp et al., 2018b) applied this refined version of the ‘cost of generating force’ hypothesis (Eqn. 38 

2) to human running and found that humans decrease their EMA and increase active muscle volume by as 39 

much as 53% from 2.2 mᐧs-1 to 5.0 mᐧs-1. Thus, the authors concluded that the curvilinear increase in 40 
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metabolic energy expenditure with running velocity (Batliner et al., 2018) results from an increase in active 41 

muscle volume and an increase in the rate of force production due to shorter ground contact times. 42 

Though the rate of force generation and active muscle volume well-explain metabolic energy 43 

expenditure across different running and hopping velocities, it is unknown if these biomechanical variables 44 

explain changes in metabolic energy expenditure across different stride and step frequencies, where a step 45 

equals ground contact and the subsequent aerial time and two steps comprise a stride. Previous studies have 46 

shown that humans have a preferred step frequency for running and hopping that minimizes metabolic 47 

energy expenditure, and deviating from the preferred step frequency increases metabolic energy 48 

expenditure (Allen and Grabowski, 2019; Cavagna et al., 1988; Cavanagh and Williams, 1982; Farris and 49 

Sawicki, 2012; Grabowski and Herr, 2009; Hӧgberg, 1952; Raburn et al., 2011; Swinnen et al., 2021); thus 50 

there is a U-shaped relationship between metabolic energy expenditure and step frequency (Doke and Kuo, 51 

2007; Snyder and Farley, 2011; Swinnen et al., 2021). When considering the ‘cost of generating force’ 52 

hypothesis, Gutmann and Bertram (Gutmann and Bertram, 2017a; Gutmann and Bertram, 2017b) suggest 53 

that the rate of force production alone (Eqn. 1) cannot fully account for the U-shaped changes in metabolic 54 

energy expenditure with hopping frequency. Instead, accounting for changes in active muscle volume and 55 

the rate of force production (Eqn. 2) may better explain this U-shaped relationship. Previous studies have 56 

suggested that the U-shaped relationship is due to simultaneous increasing and decreasing metabolic costs 57 

(Doke and Kuo, 2007; Snyder and Farley, 2011; Swinnen et al., 2021) where ground contact time decreases 58 

with increased step frequency during human running and hopping, which implies that humans must produce 59 

forces at a faster rate and increase metabolic cost (Farley et al., 1991). Simultaneously, increased step 60 

frequencies are accompanied by shorter steps during running and less center of mass displacement during 61 

running and hopping, both of which may increase EMA and reduce active muscle volume and decrease 62 

metabolic cost (Monte et al., 2021). Thus, accounting for changes in the rate of force production and active 63 

muscle volume through EMA may better describe metabolic energy expenditure across step frequencies 64 

than the cost of generating force alone. We hypothesized that accounting for changes in active muscle 65 

volume and the rate of force production (Eqn. 2) better explains changes in metabolic energy expenditure 66 

across step frequencies compared to the original “cost of generating force” equation, which estimates active 67 

muscle volume from body weight (Eqn. 1) for both running and hopping. Further, we hypothesize that 68 

active muscle volume decreases as step frequency increases in running and hopping due to increased EMA. 69 

  70 

Materials and Methods 71 

1.       Participants 72 

Ten healthy runners (6F, 4M; average ± s.d., mass: 60.7 ± 8.9 kg, height: 1.72 ± 0.09 m, age: 24.5 73 

± 3.4 years) with no reported cardiovascular, neurological, or musculoskeletal impairments participated in 74 

the study. All participants reported running for exercise at least 30 minutes per day, three times per week, 75 

for at least 6 months. Each participant provided written informed consent to participate in the study 76 

according to the University of Colorado Boulder Institutional Review Board. 77 

  78 

2.      Experimental Protocol 79 

Over two separate days, participants performed a series of running trials on a force-measuring 80 

treadmill (Treadmetrix, Park City, UT; 1000 Hz) and stationary, two-legged hopping trials on force plates 81 

(Bertec, Columbus, OH; 1000 Hz) while we simultaneously measured ground reaction forces, lower limb 82 

kinematics, and metabolic energy expenditure throughout each trial. On the first day, participants performed 83 

six 5-min running trials at 3 m∙s-1. During the first trial, we determined each participant’s preferred step 84 
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frequency (PSF). We collected ground reaction forces (GRFs) for 15-sec during the third and fifth minute 85 

of the first trial and determined average PSF from ground contact events identified by a 20 N vertical GRF 86 

threshold. We then instructed participants to complete the remaining running trials while matching their 87 

step frequency to the timing of an audible metronome. The metronome was set to 85%, 92% 100%, 108% 88 

and 115% of their PSF, similar to previous studies (Snyder and Farley, 2011; Swinnen et al., 2021), and the 89 

order of the trials was randomized. 90 

On the second day, participants performed five, 5-min stationary hopping trials, on both feet. To 91 

account for the effects of frequency on metabolic energy expenditure and given the similarity of frequencies 92 

that minimize metabolic energy expenditure during hopping and running (Allen and Grabowski, 2019; 93 

Cavagna et al., 1997; Farris and Sawicki, 2012; Grabowski and Herr, 2009; Kaneko et al., 1987), we 94 

instructed participants to hop in place while matching their step frequency to the audible metronome set to 95 

85%, 92% 100%, 108% and 115% of their PSF from day 1. The order of the hopping trials was randomized, 96 

and we did not determine preferred hopping frequency. 97 

  98 

3.      Metabolic Energy Expenditure  99 

We measured participants’ rates of oxygen consumption and carbon dioxide production via indirect 100 

calorimetry (TrueOne 2400, ParvoMedics, Sandy, UT) throughout each running and hopping trial. We 101 

instructed participants to refrain from exercising before each experimental session or ingesting caffeine 102 

four hours before each experimental session to minimize day-to-day variability in metabolic rates. 103 

Additionally, participants were instructed to be at least two hours postprandial at the start of each 104 

experimental session to mitigate potential effects of diet on metabolic measurements. Further, each 105 

experimental session was performed at the same time each day and separated by at least 24 hours to 106 

eliminate any potential effects of day-to-day variability or fatigue. We calculated gross steady-state 107 

metabolic power from the average metabolic rates during the last two minutes of each 5-min trial using a 108 

standard equation (Kipp et al., 2018a; Péronnet and Massicotte, 1991). 109 

  110 

4.      Kinematic and Kinetics 111 

We positioned 40 reflective markers bilaterally on both legs and the pelvis. Markers on the ankles 112 

and knees were used to define joint centers and clusters of 3-4 markers were placed on each segment prior 113 

to experimental trials. We collected lower limb kinematic data for 15-sec during the last minute of each 114 

trial using 3-dimensional motion capture (Vicon Nexus 2.3, Oxford, UK; 200 Hz) simultaneously with 115 

GRFs. We analyzed 20 steps from each trial and used a 4th order low-pass Butterworth filter with a 20 Hz 116 

cut-off to process analog GRF signals and marker trajectories (Alcantara, 2019; Mai and Willwacher, 2019). 117 

We determined ground contact using a 20 N vertical GRF threshold for both running and hopping and 118 

calculated the rate of force production as the inverse of ground contact time (tc
-1).  119 

To calculate EMA and Vm, we estimated the average extensor muscle-tendon unit force (Fmtu) about 120 

each joint assuming a constant muscle-tendon moment arm (r) for each muscle group and using 121 

instantaneous ankle, knee, and hip sagittal joint moments from Visual 3D (Visual 3D, C-Motion Inc., 122 

Germantown, MD, USA) (Biewener et al., 2004; Kipp et al., 2018b). We only included joint moment values 123 

that exceeded 25% of the maximum extensor moment due to the inherently noisy center of pressure 124 

measurements caused by low force values at the beginning and end of the ground contact phase (Biewener 125 

et al., 2004; Griffin et al., 2003; Kipp et al., 2018b). Because the net joint moments of the knee and hip 126 

include flexion moments from bi-articular muscles, we accounted for forces in bi-articular muscles by 127 

assuming Fmtu was proportional to physiological cross-sectional area of active muscle fibers (Eq. 3-5). 128 
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  𝑀𝑎𝑛𝑘𝑙𝑒 = 𝑟𝑎𝑛𝑘𝑙𝑒 ⋅ 𝐹𝑚𝑡𝑢,𝑎𝑛𝑘𝑙𝑒 [3] 

  
𝑀𝑘𝑛𝑒𝑒 = 𝑟𝑘𝑛𝑒𝑒 ⋅ 𝐹𝑚𝑡𝑢,𝑘𝑛𝑒𝑒 − (𝑟𝐵𝐹 ⋅ 𝐹𝑚𝑡𝑢,ℎ𝑖𝑝

𝑃𝐶𝑆𝐴𝐵𝐹

∑ 𝑃𝐶𝑆𝐴ℎ𝑖𝑝
)

− (𝑟𝐺𝐴𝑆 ⋅ 𝐹𝑚𝑡𝑢,𝑎𝑛𝑘𝑙𝑒

𝑃𝐶𝑆𝐴𝐺𝐴𝑆

∑ 𝑃𝐶𝑆𝐴𝑎𝑛𝑘𝑙𝑒
) 

[4] 

  

𝑀ℎ𝑖𝑝 = 𝑟ℎ𝑖𝑝 ⋅ 𝐹𝑚𝑡𝑢,ℎ𝑖𝑝 − (𝑟𝑅𝐹 ⋅ 𝐹𝑚𝑡𝑢,𝑘𝑛𝑒𝑒

𝑃𝐶𝑆𝐴𝑅𝐹

∑ 𝑃𝐶𝑆𝐴𝑘𝑛𝑒𝑒
) [5] 

where M is the net joint moment, r is a weighted-average muscle-tendon moment arm, and PCSA is the 129 

physiological cross-sectional area. GAS, BF, and RF represent the properties of the gastrocnemius, biceps 130 

femoris, and rectus femoris muscles, respectively. We calculated Fmtu,ankle from Eqn. 3, and solved Eqn. 4 131 

and 5 simultaneously due to the two unknown quantities of Fmtu.knee and Fmtu,hip. We considered moments 132 

that extend joints to be positive. Values for r and PCSA were taken from the anthropometric data of four 133 

male human cadavers reported in Biewener et al. (Biewener et al., 2004) and previously used in Kipp et al. 134 

(Kipp et al., 2018b). We then used the quotient of the average sagittal plane resultant GRF magnitude and 135 

Fmtu at each joint during ground contact to calculate EMA, which equals the quotient of r and the GRF 136 

moment arm (R). 137 

  
𝐸𝑀𝐴 =

𝐺𝑅𝐹

𝐹𝑚𝑡𝑢
=

𝑟

𝑅
 [6] 

We calculated Vm separately for each joint (Eqn. 7) and then summed them to estimate the total 138 

average Vm per leg. To do this, we assumed the muscles produced force isometrically with a constant stress 139 

(σ = 20 N∙cm-2) (Perry et al., 1988) and combined this with our estimates of Fmtu and weighted-average 140 

fascicle length (L) from Biewener et al. (Biewener et al., 2004),  141 

  
𝑉𝑚 =

𝐹𝑚𝑡𝑢 ⋅ 𝐿

𝜎
 [7] 

 142 

5.      Estimating cost-coefficients and metabolic energy expenditure 143 

We calculated the metabolic cost-coefficients, c and k, for each trial during running and hopping 144 

using Eqns. 1 and 2. We averaged each cost-coefficient across the range of frequencies (separately for 145 

running and hopping). Then we implemented the respective cost-coefficient averages in addition to Vm, tc
-146 

1, and FBW to predict metabolic power for each step frequency during running and hopping using Eqns. 1 147 

and 2.  148 

  149 

6.   Statistics 150 

To evaluate the agreement between measured metabolic power and predicted metabolic power from 151 

Eqns. 1 & 2, we performed limits of agreement analyses (Bland-Altman) for each target step frequency and 152 

calculated the systematic bias (mean differences) and 95% limits of agreement. We also constructed linear 153 

mixed-effects models (α = 0.05) to determine the effect of measured step frequency relative to PSF on tc
-1, 154 

c, k, EMA, Vm, average joint extensor moment, and average sagittal plane resultant GRF magnitude. In each 155 

linear mixed-effects model, we considered measured step frequency relative to PSF as a fixed effect and 156 

participant as a random effect. Model coefficients are reported alongside their p-values and represent the 157 
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change in the dependent variable per a 1% change in measured step frequency relative to PSF. We 158 

performed all statistical analyses in R (version 3.6.3) (R Core Team, 2020) using custom scripts and 159 

packages (Datta, 2017; Pinheiro et al., 2020; Revelle, 2019; Wickham, 2016). 160 

  161 

Results 162 

We removed data for one participant at the 85% PSF and 92% PSF running trials because they were 163 

>3% off of the target step frequencies. 164 

  165 

1. Running 166 

On average, measured metabolic power was minimized when participants ran at their PSF (Fig. 167 

1A), which was a step frequency of (avg. ± s.d.) 2.90 ± 0.09 Hz (Table 1). As participants deviated from 168 

their PSF, average measured metabolic power increased by 17% and 9% when running at 85% of PSF and 169 

115% of PSF, respectively (Fig. 1A). Overall, metabolic power estimated with Eqn. 1 underestimated 170 

average metabolic power for step frequencies slower than PSF (up to 13% at 85% PSF) but overestimated 171 

average metabolic power for step frequencies equal to or greater than PSF (up to 9.5% greater at 108% 172 

PSF) (Fig. 2A & 3A). Limits of agreement analysis show metabolic power estimated with Eqn. 2 had a bias 173 

closer to zero and lower than Eqn. 1 at each step frequency, however, the magnitude of the upper and lower 174 

limits of agreement for Eqn. 2 were greater than those of Eqn. 1 due to increased variability (Fig. 2A & 3A) 175 

during running.  176 

The linear mixed-effects model showed that total Vm decreased by 20.54 cm3 for every 1% increase 177 

in step frequency relative to PSF (p<0.001; Fig. 4; Table 2). Specifically, participants decreased ankle, 178 

knee, and hip Vm by 3.68 cm3, 10.34 cm3, and 5.54 cm3, respectively, for every 1% increase in step frequency 179 

(p<0.001 for each; Fig. 4; Table. 2). Despite the reduction in joint-specific Vm, we did not detect significant 180 

changes in ankle, knee, or hip EMA across step frequency (p=0.66; p=0.05; p=0.59, respectively). Average 181 

(± s.d.) EMA across step frequencies for the ankle, knee, and hip was 0.314 ± 0.017, 0.393 ± 0.084, and 182 

0.714 ± 0.117, respectively (Fig. 5, Table 2). Rather, the changes in joint-specific Vm may have been due to 183 

the decrease in average ankle, knee, and hip extensor moments as step frequency increased. Average ankle, 184 

knee, and hip extensor moments decreased by 0.66 N∙m (p<0.001), 1.3 N∙m (p<0.001), and 0.31 N∙m 185 

(p<0.01), respectively, for every 1% increase in step frequency (Table 1). Finally, tc
-1 increased by 0.02 s-1 186 

for every 1% increase in step frequency relative to PSF during running (p<0.001; Fig. 6A). We used these 187 

variables to solve for the cost-coefficient and found that c decreased by 0.003 J∙N-1 for every 1% increase 188 

in step frequency (p<0.001; Fig. 7A), but k did not change across step frequency, and averaged (± s.d.) 189 

0.087 ± 0.003 J∙cm-3 (p=0.18; Fig. 7A). 190 

  191 

2.       Hopping 192 

On average, measured metabolic power numerically increased by 10% and 2% when hopping at 193 

85% of PSF and 115% of PSF, respectively, relative to 100% PSF (p>0.9; Fig. 1B). On average, metabolic 194 

power estimated with Eqn. 1 underestimated metabolic power for step frequencies slower than PSF (up to 195 

16% at 85% PSF) but overestimated metabolic power for step frequencies greater than PSF (up to 17% at 196 

115% PSF) (Fig. 2B & 3B). Metabolic power estimated with Eqn. 2 had a bias closer to zero and lower 197 

than Eqn. 1 at each step frequency (Fig. 2B & 3B). The magnitude of the upper and lower limits of 198 

agreement for Eqn. 2 were greater than those of Eqn. 1 due to increased variability during hopping (Fig. 2B 199 

& 3B).  200 
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The linear mixed-effects models showed that total Vm decreased by 21 cm3 for every 1% increase 201 

in step frequency relative to PSF (p<0.001; Fig. 4; Table 2). Participants decreased joint-specific Vm at the 202 

knee and hip by 18.0 cm3 and 3.7 cm3 for every 1% increase in step frequency (p<0.001 and p=0.008, 203 

respectively; Fig. 4), whereas ankle Vm did not change across step frequency and averaged (± s.d.) 729 ± 204 

176 cm3 (p=0.32; Fig. 4). We found that knee EMA increased by 0.008 for every 1% increase in step 205 

frequency (p<0.001; Fig. 5, Table 2). However, ankle and hip EMA did not change across step frequency 206 

and averaged (± s.d.) 0.35 ± 0.04 (p=0.06) and 0.90 ± 0.37 (p=0.35), respectively (Fig. 5; Table 2). 207 

Similarly, participants decreased average knee extensor moment by 2.6 N∙m for every 1% increase in step 208 

frequency (p<0.001; Table 1). However, average ankle and hip extensor moments did not change across 209 

step frequency and averaged (± s.d.) 129 ± 27 N∙m (p=0.32) and 56 ± 13.9 N∙m (p=0.77), respectively. 210 

Finally, tc
-1 increased by 0.04 s-1 for every 1% increase in step frequency relative to PSF during stationary 211 

hopping (p<0.001; Fig 6B). We used these variables to solve for the cost-coefficients and found that c 212 

decreased by 0.0022 J∙N-1 for every 1% increase in step frequency (p<0.001; Fig. 7B), but k did not change 213 

across step frequency and averaged (± s.d.) 0.054 ± 0.002 J∙cm-3 (p=0.20; Fig. 7B). 214 

  215 

Discussion 216 

Our data support our first hypothesis that accounting for changes in active muscle volume (Vm) and 217 

the rate of force production (tc
-1) (Eqn. 2) better explain changes in metabolic energy expenditure across 218 

step frequencies compared to the original “cost of generating force” equation, which estimates Vm through 219 

body weight (Eqn. 1). We also found that accounting for changes in Vm and tc
-1 (Eqn. 2) results in a constant 220 

cost-coefficient, k (Fig. 7), across step frequencies for running and hopping. The average values for k (0.087 221 

J·cm-3 and 0.056 J·cm-3 for running and hopping, respectively) are in line with previous values reported for 222 

human running (0.079 J·cm-3) at different velocities (Kipp et al., 2018b). Our data also support our second 223 

hypothesis, that Vm is reduced as step frequency increases in human running and stationary hopping. When 224 

step frequency increased from 85% PSF to 115% PSF, we found that Vm decreased by 18% and 26% during 225 

running and hopping, respectively. This reduction predominantly occurred due to changes at the knee in 226 

both running and hopping, with smaller or non-significant contributions from the ankle and hip during both 227 

tasks (Fig. 4; Table 2). We found that the knee accounted for ~55% and ~87% of the change in total Vm 228 

during running and hopping, respectively, whereas, when humans run at faster velocities from 2.2 – 5.0 229 

m·s-1, the ankle, knee, and hip account for ~39%, ~20%, and ~41% of the change in total active muscle 230 

volume, respectively (Kipp et al., 2018b). Our data, along with previous studies, support the general 231 

hypothesis that the metabolic cost of bouncing gaits is related to Vm recruited to generate force and the rate 232 

that the force is produced (Heglund and Taylor, 1988; Kipp et al., 2018b; Roberts et al., 1998b; Taylor et 233 

al., 1980; Wright and Weyand, 2001). 234 

The mechanism by which total Vm decreased with step frequency differed between running and 235 

hopping. We found that joint-specific effective mechanical advantage (EMA) was independent of step 236 

frequency during running (Fig. 4; Table 2). Therefore, the reductions in total Vm during running were likely 237 

due to greater duty factors, which resulted in reduced stance-average resultant ground reaction forces 238 

(GRFs) and the corresponding joint moments (Table 1). In comparison, during hopping, EMA at the knee 239 

increased by 82% when step frequency increased from 85% to 115% PSF, while the magnitude of stance-240 

average resultant GRF did not change (Fig. 5; Table 1 & 2). This might imply that participants decreased 241 

total Vm during hopping by altering their lower limb position to hop with a straighter leg and extended knee 242 

as step frequency increased. When taken together, these results suggest that humans may utilize two 243 

different mechanisms to alter total Vm during bouncing gaits, duty factor (Beck et al., 2020) and EMA. 244 
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Previously, Kipp et al. (Kipp et al., 2018b) demonstrated that humans utilize both mechanisms 245 

simultaneously to increase total Vm when running at different velocities. They found that runners increased 246 

total Vm by 53% with faster running velocities from 2.2 – 5.0 m·s-1 due to a concurrent decrease in duty 247 

factor and decrease in hip EMA, which is likely due to the increased step frequency that accompanies faster 248 

running velocity (Heglund and Taylor, 1988). 249 

Our measures of knee and ankle EMA during two-legged, stationary hopping conflict with those 250 

of Monte et al. (Monte et al., 2021), who suggest that knee EMA is independent of step frequency (2.0 – 251 

3.5 Hz). Our data may differ from those of Monte et al. due to a difference in methodology. We calculated 252 

joint-specific average EMA during the stance phase when joint moments exceeded 25% of their peak value, 253 

whereas Monte et al. separated stance into two phases and included EMA values obtained when GRF and 254 

center of pressure are small (near ground contact or toe off), which increases variability in EMA and may 255 

obscure changes that occur with step frequency (Griffin et al., 2003). There may have also been difference 256 

in inter-participant hopping strategies between studies, where participants may have kept their knees 257 

“locked” or “unlocked”. While our average knee EMA data suggest that participants straighten their legs 258 

to hop at faster step frequencies, three of our participants did not appreciably change their knee EMA across 259 

step frequency (Fig. 5). This may suggest that some of our participants choose a “locked” knee strategy and 260 

that the difference in participants and possibly strategies between the two studies could have been due to 261 

chance. Further research is warranted to determine if a difference in hopping strategy could explain the 262 

difference in knee EMA between studies.  263 

The “cost of generating force” hypothesis originally put forth by Kram & Taylor (Kram and Taylor, 264 

1990) provides a simple equation (Eqn. 1) that links biomechanics to metabolic energy expenditure across 265 

running velocities. The equation assumes that across running speeds, animals employ a constant EMA and 266 

muscles operate at similar shortening velocities. Each of these assumptions affects metabolic cost (Taylor, 267 

1994), but do not detract from the elegance of a simple equation to well predict the metabolic cost of running 268 

in different sized animals across velocities. By addressing these assumptions, the accuracy for predicting 269 

metabolic energy expenditure for running and hopping at different step frequencies could be improved 270 

(Kipp et al., 2018b; Roberts et al., 1998b; Wright and Weyand, 2001).  271 

The cost-coefficients, encompass factors that influence muscle metabolic energy expenditure per 272 

unit active muscle volume (J·cm3). As such, the values of these coefficients change when unaccounted 273 

factors that affect metabolic energy expenditure change. For example, changes in muscle force-length-274 

velocity affect metabolic energy expenditure per unit of force production but are not accounted for in 275 

equations 1 & 2. In the present study, we show that accounting for changes in Vm (through EMA) and tc
-1 276 

(Eqn. 2) yields a constant cost-coefficient, k, across step-frequency (Fig. 7). Thus, by incorporating EMA 277 

into Eqn. 2, the metabolic energy expenditure per unit active muscle volume is consistent across step 278 

frequencies, unlike in the simpler Eqn. 1 (Fig. 7). It may be possible for future studies, using ultrasound or 279 

modeling approaches to account for additional assumptions, such as muscle fiber shortening velocity and 280 

length to further refine the “cost of generating force” hypothesis.  281 

Changes in muscle contractile dynamics (i.e., muscle shortening velocity and average operating 282 

length) likely influence total active muscle volume. In a recent study, Beck et al (Beck et al., 2020) 283 

demonstrated that producing the same cycle-average forces with a decreasing duty factor (the product of 284 

contact time and frequency) during cyclic soleus contractions requires greater peak muscle force, a decrease 285 

in fascicle operating length, and a general increase in active muscle volume and metabolic energy 286 

expenditure. The authors proposed that accounting for duty factor may improve the calculation of active 287 
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muscle volume by providing a surrogate for muscle contractile dynamics; thereby addressing one of the 288 

assumptions of the “cost of generating force” hypothesis.  289 

A potential limitation of our study is the use of static internal muscle-tendon moment arms, fascicle 290 

lengths, and pennation angles to estimate active muscle volume. We intentionally did this to allow a direct 291 

comparison of our results to those of previous studies (Biewener et al., 2004; Kipp et al., 2018a) that account 292 

for active muscle volume changes during human locomotion. We found that accounting for active muscle 293 

volume increases inter-participant variability of predicted metabolic energy expenditure compared to 294 

assuming constant active muscle volume (Fig. 2 & 3). This increase in variability may be due to the 295 

assumption of fixed-length, muscle moment arms at each joint. Inter-participant variability in total active 296 

muscle volume and predicted metabolic energy expenditure using Eqn. 2 might be reduced by accounting 297 

for changes in muscle moment arms during the stance phase. Previous studies have shown that muscle-298 

tendon moment arms change with joint angle (Arnold et al., 2010; Hoy et al., 1990; Rasske et al., 2017). 299 

Thus, using variable muscle-tendon moment arms that change with joint angle could further improve the 300 

estimate of active muscle volume and metabolic energy expenditure. 301 

 302 

Conclusion 303 

In this study, we evaluated the “cost of generating force” hypothesis for predicting metabolic 304 

energy expenditure across different step frequencies during running and hopping. We found that accounting 305 

for changes in effective mechanical advantage to compute active muscle volume resulted in a near-constant 306 

cost-coefficient, k, and improved the estimation of participant metabolic energy expenditure across step 307 

frequencies. 308 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.483693doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483693


 

List of symbols and abbreviations 

c cost-coefficient 

EMA effective mechanical advantage 

Ėmet metabolic power 

FBW force in units of body weight 

Fmtu muscle-tendon force 

GRF ground reaction force 

k cost-coefficient 

L fascicle length 

M joint moment 

PCSA physiological cross-sectional area 

PSF preferred step frequency 

r muscle-tendon moment arm 

R GRF moment arm 

tc ground contact time 

tc
-1 rate of muscle force production 

Vm active muscle volume 

σ muscle stress 
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Figure 1: Gross metabolic power across percentage of preferred step frequency. Average ± s.e.m. metabolic 

power (large, blue symbols) and values from individual subjects (small, grey symbols) versus the percentage of 

running preferred step frequency (% PSF) in A) running and B) hopping. Vertical and horizontal error bars may 

not be visible behind data points. 
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Figure 2: Predicted gross metabolic power across percentage of preferred step frequency. Average ± 

s.e.m. (large, colored symbols) gross metabolic power for measured (dark blue) and predicted values using 

Eq.1 (blue) and Eqn. 2 (light blue) versus the percentage of running preferred step frequency (% PSF) in A) 

running and B) hopping. Vertical and horizontal error bars may not be visible behind the data points. C) 

Running and D) hopping percent difference between each equation and measured metabolic power for 

average ± s.e.m. and participants (small, grey symbols). 
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Figure 3: Limits of Agreement (Bland-Altman). Limits of agreement analysis comparing the percent 

difference between Eqn. 1 (blue symbols) or Eqn. 2 (light blue symbols) and gross metabolic power 

measured via indirect calorimetry. Mean differences (Bias) are indicated by the solid-colored lines, while 

the lower and upper limits of agreement (LLoA/ULoA) are denoted by dashed-colored lines. LLoA/ULoA 

were calculated using 1.96 SD. 
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Figure 4: Active muscle volume across percentage of preferred step frequency. Average ± 

s.e.m. active muscle volume (Vm) of the leg extensors during ground contact (large, blue symbols) 

and values from individual subjects (small, grey symbols) versus the percentage of preferred 

running step frequency (% PSF) for running and hopping. A) Vm of the muscles surrounding the 

ankle, knee, and hip joints during running and hopping, and B) is the summed total of the ankle, 

knee, and hip joint Vm. The dark lines represent the results of linear mixed-effects models, and the 

shaded regions represent the model’s 95% confidence intervals. Coefficients and intercepts for 

each of the linear mixed-effects models are presented in Table 2. Vertical and horizontal error bars 

may not be visible behind data points. 
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Figure 5: Effective mechanical advantage (EMA) across percentage of preferred step 

frequency. A) Illustration of EMA during running, which equals the ratio of the muscle-tendon 

moment arm (r) and the external resultant ground reaction force moment arm (R) or the ratio of 

resultant ground reaction force (FGRF) and muscle force (Fm). B) Average ± s.e.m. EMA for the 

ankle, knee, and hip joints (large, blue symbols) with values for individual subjects (small, grey 

symbols) versus the percentage of preferred running step frequency (% PSF). The dark lines 

represent the results of linear mixed-effects models and the shaded regions represent the model’s 

95% confidence intervals. Coefficients and intercepts for each of the linear mixed-effects models 

are presented in Table 2. * indicates if the model slope is significantly different from zero. Vertical 

and horizontal error bars may not be visible behind data points. 
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Figure 6: Rate of force production across percentage of preferred step frequency. Average ± 

s.e.m. rate of force production (tc
-1; large, blue symbols) and values from individual subjects 

(small, grey symbols) versus the percentage of running preferred step frequency (% PSF) for A) 

running and B) hopping. The dark lines represent the model prediction across percentage of 

preferred step frequency (running: tc
-1 = 0.021 ∙ PSF + 2.160, hopping: tc

-1 = 0.040 ∙ PSF + 0.216) 

and the shaded areas represent the 95% confidence interval. * indicates if the model slope is 

significantly different from zero. Vertical and horizontal error bars may not be visible behind data 

points. 
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Figure 7: Cost-coefficient across percentage of preferred step frequency. Average ± s.e.m. 

cost coefficients (c – large, dark blue symbols and k – large, light blue symbols) and values from 

individual subjects (small, grey symbols) versus the percentage of running preferred step 

frequency (% PSF) in A) running and B) hopping. The lines represent the results of the linear 

mixed-effects model where c = -0.003 ∙ PSF + 0.601 (p<0.001) and k = 1.16x10-4 ∙ PSF + 0.075 

(p=0.18) for running, and c = -0.0022 ∙ PSF + 0.407 (p<0.001) and k = 0.001 ∙ PSF + 0.045 (p=0.20) 

for hopping. The p-values indicate if the slope is significantly different than zero. The dark lines 

represent the results of linear mixed-effects models, and the shaded regions represent the model’s 

95% confidence intervals. Vertical and horizontal error bars may not be visible behind data points. 
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Table 1. Biomechanical variables for running (3 m·s-1) and hopping in place at different percentages of 

preferred running step frequency. 

 

  Target 

% PSF 

Achieved 

% PSF 

Achieved step 

frequency 

(Hz) 

Stance Avg. 

resultant GRF 

(N) 

Avg. extension moment (N∙m) 

Ankle Knee Hip 

Running 85   86.3 ± 1.5 2.50 ± 0.1 939 ± 165 142 ± 32 106 ± 30 64 ± 14 

92   92.0 ± 0.2 2.67 ± 0.1 890 ± 154 134 ± 33 103 ± 26 58 ± 12 

100 100.0 ± 0.1 2.90 ± 0.1 848 ± 137 127 ± 27   95 ± 23 52 ± 12 

108 108.1 ± 0.3 3.13 ± 0.1 831 ± 117 123 ± 25   81 ± 24 52 ± 14 

115 115.2 ± 0.5 3.34 ± 0.1 807 ± 102 122 ± 17   70 ± 20 54 ± 16 

Hopping 85   85.1 ± 0.4 2.46 ± 0.1 889 ± 134 128 ± 30 118 ± 28 37 ± 15 

92   91.8 ± 0.3 2.66 ± 0.1 877 ± 139 130 ± 39 102 ± 27 35 ± 12 

100 100.1 ± 0.2 2.90 ± 0.1 883 ± 121 137 ± 33   75 ± 24 34 ± 11 

108 108.1 ± 0.2 3.13 ± 0.1 870 ± 127 130 ± 33   57 ± 18 37 ± 12 

115 115.1 ± 0.3 3.33 ± 0.1 868 ± 131 132 ± 30   41 ± 16 37 ± 13 

Average ± s.d.; PSF, preferred running step frequency; GRF, ground reaction force; Avg. joint moment is 

defined when extension moments are greater than 25% of the peak joint moment. 
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Table 2. Linear mixed-effects model results for effective mechanical advantage (Fig. 5) and active 

muscle volume (Fig. 4) at the ankle, knee, hip, and summed total while running and hopping at 

different percentages of preferred running step frequency. 

      EMA   Vm 

      Intercept Slope p-value   Intercept Slope p-value 

Running Ankle   0.32 -0.24∙10-5 0.87   1095.6 -3.8 <0.001 

Knee   0.29 1.0∙10-3 0.07   1896.3 -10.2 <0.001 

Hip   0.76 -4.9∙10-4 0.67   1354.6 -5.8 <0.001 

Total   - - -   4345.2 -19.7 <0.001 

Hopping Ankle   0.39 -3.6∙10-4 0.06   655.1 0.7 0.32 

Knee   -0.40 8.4∙10-3 <0.001   2565.3 -18.0 <0.001 

Hip   0.63 2.7∙10-3 0.35   917.8 -3.8 <0.001 

Total   - - -   4138.8 -21.0 0.008 

EMA: effective mechanical advantage; Vm: active muscle volume; p-value < 0.05 indicates a slope 

significantly different from zero with respect to normalized stride frequency. Linear mixed-effects 

model is in the form of Y = Intercept + %PSF∙Slope. 
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