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Abstract 
 
Abundance of proteins is extensively regulated both transcriptionally and post-
transcriptionally. To systematically characterize how regulation of protein abundance is 
encoded in the genome and identify protein regulators on a genome-wide scale, we 
developed a genetic screen that uses a CRISPR base editor. We examined the effects of 
16,452 genetic perturbations on the abundance of eleven yeast proteins representing a 
variety of cellular functions. Thereby, we uncovered hundreds of regulatory relationships, 
including a novel link between the GAPDH isoenzymes Tdh1/2/3 and the Ras/PKA 
pathway. Many of the identified regulators are specific to one of the eleven proteins, but 
we also found genes that, upon perturbation, affected the abundance of most of the tested 
proteins. While the more specific regulators usually act transcriptionally, broad regulators 
often have roles in protein translation. Our results provide unprecedented insights into the 
components, scale and connectedness of the protein regulatory network.  
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Introduction 
 
Proteins are gene products that play many key roles in cells, serving as essential 
structural components, enzymes, and constituents of signaling networks, from receptors 
to transcription factors. Their abundance is extensively regulated transcriptionally and 
post-transcriptionally. For practical reasons, mRNA abundance is often studied as a proxy 
for protein abundance, but the correspondence between the two can be less strong than 
is usually implicitly assumed1,2. Therefore, it is important to study regulation of protein 
abundance directly. 
 
CRISPR-based genetic screens using Cas9 or modified versions thereof, such as the 
CRISPR base editor or CRISPRi, provide an unprecedented opportunity to study the 
effects of thousands of genetic perturbations on gene expression in a pooled format3–10. 
The identity of genetic perturbations with phenotypic effects can be directly determined 
by sequencing guide RNAs, thereby eliminating the need for genome sequencing to 
identify causal mutations. To date, such studies have focused on the effects of genetic 
perturbations on mRNA expression, while the effects on protein expression remain 
unexplored. Here, we developed a CRISPR base editor screen to study how tens of 
thousands of individual mutations affect the abundance of selected proteins in yeast. 
Using this approach, we tested the effects of 16,452 coding mutations on the abundance 
of eleven yeast proteins selected to represent a variety of molecular and cellular 
functions. We identified hundreds of novel regulatory relationships, including both specific 
and broad regulators of protein abundance. The results provide general insights into how 
protein abundance is encoded in the genome and altered by changes in DNA sequence.  
 
 

Results 
 
A base editor screen in yeast to identify genetic effects on protein abundances 
 
To introduce genetic perturbations across the yeast genome in a targeted fashion, we 
used the CRISPR base editor version 3 (BE3)11. This system consists of an engineered 
fusion of Cas9 and a cytidine deaminase that does not introduce DNA double-strand 
breaks but instead converts cytosine to uracil, thereby effecting a C-to-T substitution at a 
target site defined by the guide RNA (gRNA)11. We first adapted the base editor system 
for use in yeast (Figure S1). We then characterized base editing efficiency and editing 
profile of eight individual gRNAs, finding similar editing in yeast to that reported in human 
cells: 95% of edits were C-to-T transitions, and 89% of these occurred in a five-nucleotide 
region 13 to 17 base pairs upstream of the PAM sequence (Note S1, Figure S2). We next 
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assessed base editor performance in a pooled screen format, first with a library of all 90 
gRNAs targeting the CAN1 gene and then with a library of all 5430 gRNAs predicted to 
introduce stop codons into essential genes in yeast, along with 1500 control gRNAs (Note 
S1, Table S1). We found that base editor screens using both positive and negative 
selection can identify functionally important mutations in yeast (Figure S3, Table S2 and 
S3). 
 
To identify regulators of protein abundance on a genome-wide scale using the base 
editor, we selected a library of 16,452 gRNAs predicted to introduce three classes of 
mutations: stop codons in nonessential genes, as well as missense mutations at highly 
conserved positions in essential genes and in nonessential genes (Methods and Table 
S1). We expect most genetic perturbations introduced by these gRNAs to have 
deleterious effects on the target genes. We introduced this gRNA library and the 
galactose-inducible base editor into yeast strains in which one protein of interest is 
endogenously tagged with green fluorescent protein (GFP)12,13. The GFP fluorescence 
level in these strains reports the abundance of the tagged protein14. We selected eleven 
strains with GFP-tagged proteins that cover a range of cellular functions. The target 
proteins include the Hsp70 chaperone Ssa1, which is involved in protein folding, nuclear 
transport and ubiquitin-dependent degradation of short-lived proteins and is a marker for 
heat shock; as well as the flavohemoglobin Yhb1, which is involved in oxidative and 
nitrosative stress responses and is a marker for oxidative stress15. Furthermore, we 
included the ribonucleotide reductase subunit Rnr2, which is involved in dNTP synthesis, 
the ribosomal protein Rpl9A, the histone Htb2, and several proteins involved in 
metabolism, including the fatty acid synthases Fas1 and Fas2, the enolase Eno2, which 
acts in glycolysis and gluconeogenesis, and the three glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) isoenzymes Tdh1, Tdh2 and Tdh3. Tdh3 is among the most 
highly expressed proteins in yeast and the main GAPDH enzyme, whereas the exact 
functional roles and regulation of Tdh1 and Tdh2 are less well understood. 
 
After performing base editing in each of the eleven GFP strains, we isolated cells with 
very high and very low GFP intensity by fluorescence-activated cell sorting (Figure 1A). 
We next sequenced gRNA plasmids extracted from the sorted cells; the gRNAs enriched 
or depleted in these populations correspond to genetic perturbations that increase or 
decrease abundance of the protein of interest (Figure 1A). We identified 1020 gRNAs 
with a significant effect on the abundance of at least one of the eleven proteins (FDR < 
0.05) (Table S4). To assess the reproducibility of the screen, we included gRNA pairs 
that were predicted to introduce the same mutation into the genome, and observed highly 
correlated effects on protein abundance, especially when both gRNAs had a significant 
effect (Pearson’s R = 0.9, p = 8.8e-13) (Figure S4). When multiple gRNAs that introduce 
different mutations into the same gene had a significant effect on a protein’s expression, 
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their direction of effect was concordant 98% of the time. We therefore combined gRNA 
effects into a gene-level effect for all subsequent analyses, unless noted otherwise. 
Genetic perturbation of 710 genes had a significant effect on the abundance of at least 
one of the eleven proteins (FDR < 0.05) (Table S4). 
 
 
Extensive genetic network underlies protein abundance regulation 
 
The effects of genetic perturbations in 710 genes on the abundance of one or more of the 
11 target proteins reveal an extensive network of regulatory relationships (Figure 1B). On 
average, the abundance of a protein was significantly affected by 156 gene perturbations 
(Figure 1C). Of these gene-protein relationships, an average of 53 (34%) are specific 
(defined here as gene perturbations that affect only one or two of the eleven target 
proteins) whereas 103 (66%) are nonspecific (the gene perturbation affects three or more 
of the eleven proteins). Furthermore, we found that, on average, protein abundance 
decreases more frequently than it increases in response to the gene perturbations tested 
(106 vs 50, binomial test, p = 8.6e-6) (Figure 1C). However, this trend is strongly 
dependent on the functional role of the protein. Abundance of proteins involved in core 
cellular functions mostly decreases, whereas abundance of stress-related proteins is just 
as likely to increase as it is to decrease (binomial test, p = 2.9e-12 and p = 0.8, 
respectively) (Figure 1C); this trend is independent of the absolute abundance of a protein 
(Figure S5).  
 
The predominance of decreases in protein abundance in response to gene perturbations 
is driven by perturbations in essential genes, which on average decrease protein 
abundance in 80% of cases, whereas perturbations in nonessential genes do so in only 
49% of cases (Figure 1D). Furthermore, perturbations in essential genes are generally 
more likely to significantly alter protein abundance than are perturbations in nonessential 
genes (chi-squared test, 𝜒2 = 384, df = 1, p < 2.2e-16) (Figure 1D and E). For nonessential 
genes, premature stop codons are more likely to alter protein abundance than are 
missense mutations (chi-squared test, 𝜒2 = 37, df = 1, p = 1.2e-9) (Figure 1E), and the 
average effect size of changes caused by stop codons is larger (two-sided t-test, t = -3.0, 
df = 496, p = 0.0028) (Figure 1F). We also find that mutations towards the end of a gene 
tend to have fewer and smaller effects, in line with previous observations (Figure S6)16.  
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Figure 1 | A CRISPR base editor screen for protein abundance. (A) Schematic overview of the screen. 
(B) Network representing all identified gene-protein relationships. In yellow are the eleven proteins and in 
blue/red are all the gene perturbations that affect at least one of the proteins significantly (FDR < 0.05). 
On the outer circle are gene perturbations that affect only a single protein, whereas on the inside are those 
that affect two or more proteins. Node sizes correlate with the number of proteins affected. Colors indicate 
whether a perturbation (predominantly) increases (red) or decreases (blue) the protein(s). Figure created 
in Cytoscape17. (C) For each protein, the number of gene perturbations that cause a significant increase 
(positive vertical axis) or decrease (negative vertical axis) (FDR < 0.05). The darker shade indicates gene 
perturbations that affect only one or two of the eleven proteins (“specific”), whereas the lighter shade 
indicates gene perturbations that affect three or more of the eleven proteins (“nonspecific”). (D) For each 
protein, the number of gene perturbations that cause a significant increase or decrease (FDR < 0.05). The 
darker shade indicates perturbations of essential genes, whereas the lighter shade indicates perturbations 
of nonessential genes. (E) For each protein, the number of gRNAs that cause a significant increase or 
decrease (FDR < 0.05). The different shades reflect different types of expected mutations introduced by 
the particular gRNA. (F) Effect sizes (log2 fold-changes) of gRNAs that cause a significant change in 
protein abundance grouped by the type of expected mutation introduced by each gRNA (FDR < 0.05). 

 
 
Base editor screen identifies known and novel regulatory relationships 
 
The hundreds of regulatory relationships revealed by the base editor screen include many 
previously known regulators of the proteins under study (Figure 2A). For example, 
proteins involved in glycolysis (Eno2 and Tdh1/2/3) are strongly induced upon 
perturbation of other genes involved in glycolysis. Perturbation of Gcr1, a key transcription 
factor for glycolytic genes, leads to reduced Eno2 abundance, consistent with its role as 
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a transcriptional activator18,19. Similarly, histone Htb2 abundance is strongly reduced upon 
perturbation of known regulators of histone gene transcription (Hir3, Spt10, Spt21)20. 
Ribosomal protein Rpl9A abundance is also strongly reduced upon perturbation of other 
ribosomal genes, as well as of genes involved in TOR signaling (Tor2, Asa1, Kog1, Rtc1, 
Sch9), including the TOR-regulated activators of ribosomal gene transcription, Fhl1 and 
Ifh1, which are known to act together with the broad transcription factor Rap1 to induce 
expression of ribosomal genes21. 
 
We also find numerous novel regulatory relationships. For example, the abundance of the 
stress-responsive flavohemoglobin/oxidoreductase Yhb1 is reduced by perturbation of 
one of its prime transcriptional activators, heme activator protein Hap1, as well as 
perturbations of a heme transporter and six genes involved in heme biosynthesis22. This 
is in accordance with Yhb1 being a heme protein itself23. A novel regulator of Yhb1 
identified in our screen is the three-subunit Ssy1-Ptr3-Ssy5 (SPS) amino acid sensor. We 
find that perturbation of each of the three subunits, as well as of one of its two downstream 
effectors, the transcription factor Stp1, results in reduced Yhb1 abundance (Figure 2B). 
We independently confirmed the new regulatory relationship between Yhb1 and SPS by 
liquid-chromatography-coupled tandem mass spectrometry (LC-MS) proteomics analysis 
of one of the SPS mutants identified in our screen, SSY5 G638Q (Figure 2C and Table 
S5). Furthermore, gene ontology (GO) enrichment analysis of differentially expressed 
proteins in this mutant revealed that SPS perturbation leads not only to reduced Yhb1 
abundance but also to reduced abundance of other mitochondrial proteins, including 
components of the mitochondrial ribosome, oxidative phosphorylation, and ATP 
metabolism (FDR = 4.5e-4, Figure 2C and Table S5). In contrast, amino acid metabolic 
processes are broadly induced in the mutant (FDR = 6.6e-9, Figure 2C), suggesting that 
SPS signaling not just activates expression of amino acid transporters but also represses 
amino acid biosynthesis24. Recently, the presence of extracellular amino acids has been 
found to induce Yhb1 expression in the distantly related yeast Candida albicans25,26. Our 
observations extend this link between amino acids and increased nitrosative and 
oxidative stress resistance to S. cerevisiae and suggest that it is mediated by the SPS 
amino acid sensor. We propose that SPS senses the presence of external amino acids 
and activates the transcription factor Stp1, which in turn induces Yhb1 expression, 
resulting in increased nitrosative and oxidative stress resistance (Figure 2B).  
 
In addition to the relatively specific regulators described above, we identified two key 
complexes that modulate the transcriptional machinery, mediator and SAGA, as 
regulators of protein abundance. We find particularly large effects upon perturbation of 
two subunits of the Cdk8 kinase module of mediator, Ssn3 and Srb8 (Figure 2D). 
Moreover, we see large effects for perturbations of the two subunits forming the hook 
structure on mediator, Nut2 and Rox3, which supports recent reports that this domain is 
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critical for the interaction between the core mediator complex and the Cdk8 kinase 
module (Figure 2D)27,28. The observation that perturbations of the Cdk8 module increase 
protein abundance is in accordance with the suggested repressor role of this transiently 
associating regulatory module of mediator29. We also find that classical post-
transcriptional regulators contribute strongly to protein abundance. For example, Ssa1 
and Yhb1 are significantly induced upon perturbation of a number of genes involved in 
proteasomal degradation (Figure 2A). 
 

 
Figure 2 | Regulators of protein abundance. (A) Each volcano plot contains the results for a single 
protein, with each dot representing the effect of a gene’s perturbation on that protein. The vertical axis 
represents the negative logarithm of the FDR-corrected p-value. Selected dots are colored to highlight 
functional classes. Dark gray dots indicate genes that significantly affect eight or more proteins 
(FDR < 0.05). (B) Heatmap showing effects of gene perturbations in the SPS amino acid sensor on the 
eleven proteins. In the scheme, all subunits with significant effect on Yhb1 are colored (FDR < 0.05). (C) 
Volcano plot showing abundance changes of proteins in the SSY5 G638Q mutant compared to wild type 
as measured by LC-MS proteomics. The vertical axis represents the negative logarithm of the FDR-
corrected p-value. Selected enriched functional categories (gene ontology (GO) terms) are colored. (D) 
Heatmap showing effects of gene perturbations in Mediator on the eleven proteins. In the scheme, all 
subunits with significant effects on Htb2 are colored (FDR < 0.05); arrows indicate suggested interaction 
points between the Cdk8 module and mediator27,28. The color scale for the heatmaps is capped at -1.5 
and 1.5. 
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Gene perturbations with broad effects on protein abundance often affect protein 
biosynthetic processes 
 
About half of the 710 gene perturbations with significant effects on protein abundance 
affect at least two proteins, and some of these alter the abundance of a large fraction of 
the eleven proteins (Figure 1B and 3A). For instance, there are 29 gene perturbations 
that significantly alter the abundance of eight or more proteins (Figure 3A and B, upper 
panel). Remarkably, 21 (72%) of these 29 genes have roles in protein translation—more 
specifically, in ribosome biogenesis and tRNA metabolism (FDR < 8.0e-4, Figure 3C). In 
contrast, perturbations that affect the abundance of only one or two of the eleven proteins 
mostly occur in genes with roles in transcription (e.g., GO:0006351, 98 genes, 47 
expected, FDR < 1.3e-5). 
 
One of the broadest regulators is POP1, an essential gene involved in ribosomal RNA 
(rRNA) and transfer RNA (tRNA) maturation (Figure 3C). We used LC-MS proteomics to 
independently confirm that missense mutation H642Y in POP1 leads to reduced 
abundance of most of the eleven proteins under study (Figure 3D). Furthermore, the 
proteomics data revealed that perturbation of POP1 reduces the abundance of many 
proteins in the nucleolus (FDR = 0.013, Figure S7A), consistent with the role of POP1 in 
rRNA and tRNA processing. We also see the induction of a large number of proteins 
involved in amino acid biosynthesis (FDR = 1.4e-13, Figure S7A). This observation could 
represent an indirect response to perturbed ribosome metabolism or a direct role of POP1 
in suppressing amino acid metabolism. 
 
All but three of the 29 gene perturbations with broad effects on protein abundance 
generally lowered protein abundance (Figure 3B and C). One of the three genes whose 
perturbation increased protein abundance is the PP2A-like phosphatase SIT4. 
Perturbation of SAP155, a gene strictly required for the function of SIT4, has very similar 
effects on protein abundance (Figure 3B, lower panel)30. LC-MS proteomics of a SIT4 
loss-of-function mutant (Q184*) revealed the induction of a large number of proteins 
involved in cellular respiration, carbohydrate metabolism, and oxidative stress 
(FDR < 0.01, Figure S7B and Table S5). 
 
To better understand how the genetic effects on protein abundance relate to cellular 
phenotypes, we performed a fitness screen with the same gRNA library used for the 
protein screen (Table S6). We observed that gene perturbations with broader effects on 
protein abundance were more likely to impair cellular fitness (Pearson’s R = -0.43, 
p < 2.2e-16) (Figure 3E, top panel). Consistent with this finding, these perturbations were 
also more likely to be in essential genes (Figure 3E, bottom panel). Because essential 
genes are often involved in maintaining general cellular physiology, their perturbation is 
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expected to have more widespread effects on protein abundance than perturbation of 
nonessential genes that may function in niche processes. This is also in line with earlier 
observations that essential genes are more interconnected in protein-protein interaction 
networks (network hubs), and that there is a negative correlation between the connectivity 
of a gene product and the change in cellular growth rate upon gene deletion31,32. 
 
 

 
 
Figure 3 | Gene perturbations with broad effects on protein abundance. (A) Number of proteins 
significantly affected by each gene perturbation (FDR < 0.05). (B) Heatmap of protein-level effects of the 
29 gene perturbations with broad effects (upper panel) and of SIT4 and SAP155 gene perturbations for 
direct comparison (lower panel). The color scale is capped at -1.5 and 1.5. (C) Network representation of 
the 29 genes with broad effects. Edges of the network reflect the overall confidence score for protein-
protein interactions reported in the STRING database and colors represent enriched functional categories 
(orange: ribosome biogenesis, purple: tRNA metabolism)35,36. Miniature networks are colored by gene 
essentiality (light green: nonessential, dark green: essential) or prevalent direction of effect on protein 
abundance (blue: decreased abundance, red: increased abundance). (D) Validation of observations from 
the base editor screen by LC-MS proteomics for a hypomorphic mutation in POP1 (H642Y). Red data 
points reflect proteins that change significantly in both datasets upon POP1 perturbation (FDR < 0.1). (E) 
Upper panel: Dropout of gRNAs targeting essential and nonessential genes in a yeast culture after 24 
hours in galactose media (for base editor induction) followed by 24 hours in glucose media. The horizontal 
axis reflects the number of proteins significantly affected (FDR < 0.05). Box plot overlays summarize the 
underlying data points (center line: median; box limits: first and third quartiles; whiskers: 1.5x interquartile 
range). Lower panel: The relative fraction of gRNAs targeting essential and nonessential genes as a 
function of how many proteins significantly affected (FDR < 0.05).  
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Several of the gene perturbations that affect multiple proteins overlap previously identified 
hotspots of gene expression and protein quantitative trait loci (eQTLs and pQTLs)33,34. 
Thus, the base editor screen identified candidate causal genes for eQTL and pQTL 
hotspots, which may provide functional insights into how natural genetic variation affects 
gene and protein expression (Note S2, Figure S8, Table S7). 
 
 
Distinct responses of GAPDH isoenzymes to gene perturbations suggest 
functional diversification 
 
We next compared the effects of gene perturbations on the three GAPDH isoenzymes, 
Tdh1, Tdh2 and Tdh3. GAPDH is a highly conserved enzyme best known for its central 
role in glycolysis and gluconeogenesis, but it has also been implicated in many non-
metabolic processes37–39. In S. cerevisiae, Tdh3 is thought to be the main GAPDH 
enzyme in glycolysis and is one of the most highly expressed proteins14. None of the three 
GAPDH genes are essential for cell viability, but a functional copy of either TDH2 or TDH3 
is required; in contrast, cells with a TDH1 deletion, either alone or in combination with a 
TDH2 or a TDH3 deletion, are viable40–42. The three isoenzymes were shown to 
selectively change abundance in response to available carbon sources and other 
environmental perturbations43–46. However, despite the key role of GAPDH in metabolism 
and other cellular processes, the specific functional roles and regulatory mechanisms of 
the three isoenzymes are still largely unknown. 
 
Our base editor screen revealed that abundance of Tdh1, Tdh2 and Tdh3 responds 
similarly to the perturbation of many genes, including those involved in central carbon 
metabolism and biosynthesis of aromatic amino acids (Aro1/2) (Figure 4A). However, 
some gene perturbations have distinct effects on the three isoenzymes. For example, 
perturbation of genes encoding two members of the Mediator Cdk8 module, Ssn3 and 
Srb8, affect abundance of Tdh1 and Tdh2 but not Tdh3 (Figure 4A and 2D). Ssn3 and 
Srb8 have been implicated in carbon catabolite repression, a mechanism to repress 
genes involved in the use of alternate carbon sources when a preferred carbon source 
such as glucose is available47. Because Tdh3 is thought to be the main enzyme 
responsible for glycolytic flux under high-glucose conditions, it is plausible that the 
alternative enzymes Tdh1 and Tdh2 are under carbon catabolite repression and play a 
role when glucose is unavailable. This hypothesis is consistent with strong induction of 
Tdh1 in the absence of glucose43,44. 
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Figure 4 | Regulators of the three GAPDH isoenzymes Tdh1, Thd2 and Tdh3. (A) Pairwise comparison 
of effects of gene perturbations on Tdh1, Tdh2, and Tdh3 protein abundances. Only genes that upon 
perturbation affect both Tdh proteins significantly are shown (FDR < 0.05). (B) Ras/cAMP/PKA pathway 
representation with components colored if they showed a significant signal for one or more of the GAPDH 
isoenzymes (red: activators, blue: inhibitors). Scheme adapted from Peeters and colleagues with added 
Mck156,57. (C) Heatmap representing all genes involved in the PKA pathway that upon perturbation affect 
at least one of the three GAPDH isoenzymes significantly (FDR < 0.1). (D) Effects of IRA2 W342* and 
RAS2 Q272* mutations on Tdh1 and Tdh2 protein abundance observed in the base editor screen (“GFP”) 
and by LC-MS-based proteomics on the individual mutants (“MS”). (E) Effects of IRA2 W342*, RAS2 
Q272* and RAS2 S46L mutations on Tdh1, Tdh2 and Tdh3 protein abundance observed in the base 
editor screen. The heatmap color scale is identical for C, D, and E, and is capped at -1 and 1. 

 
Tdh1 protein abundance shows the most distinct responses to gene perturbations (Figure 
4A). The most striking differences occur in response to perturbation of the 
Ras/cAMP/PKA pathway, a key driver of cell growth and proliferation in response to 
glucose availability and an integrator of stress responses48–50 (Figure 4A and B). 
Perturbations of activating components of this pathway (Gpr1, Ras2, Cyr1, Cdc25) 
increase abundance of Tdh1 but decrease abundance of Tdh2 (and, to a lesser extent, 
Tdh3). Perturbation of the farnesyl pyrophosphate synthetase Erg20 had the same 
effects. Erg20 is an essential enzyme involved in protein farnesylation. It has been shown 
that Ras2 farnesylation is critical for PKA activation, suggesting that the signal we see for 
Erg20 is also the result of a perturbed Ras/cAMP/PKA pathway51. Conversely, 
perturbations of inhibiting components of this pathway (Ira1/2, Bcy1, Mck1) decrease 
abundance of Tdh1 while increasing abundance of Tdh2 and Tdh3 (Figure 4C). We used 
LC-MS proteomics to confirm these findings in strains carrying engineered loss-of-
function mutations in an inhibitor (IRA2) and an activator (RAS2) of the pathway (Figure 
4D and Table S5). A functional connection between the Ras/cAMP/PKA pathway and 
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Tdh1/Tdh2 is further supported by the negative genetic interactions between TDH1/TDH2 
and RAS2 reported in large-scale studies52–55. The distinct regulatory mechanisms of the 
three GAPDH isoenzymes uncovered by the base editor screen suggest that they play 
separate roles in different metabolic states of the cell. 
 
 
Discordant gRNA effects point to a gain-of-function mutation in RAS2 
 
Among the gRNAs targeting RAS2, one is predicted to introduce the missense mutation 
S46L and another to introduce the loss-of-function mutation Q272*. We observed that 
these gRNAs had discordant effects on protein abundance. Ras2 Q272* increased 
abundance of Tdh1 and decreased abundance of Tdh2, while Ras2 S46L had the 
opposite effects (Figure 4E). The effect of the Ras2 S46L mutation on Tdh1 and Tdh2 
was similar to that of a loss-of-function mutation of Ira2, a direct antagonist of Ras2 
(Figure 4E). Our observation that the S46L mutation activates Ras2 is consistent with the 
results of saturation mutagenesis of the highly conserved human K-Ras gene, which 
showed increased activity upon mutation of the homologous serine residue (S39 in 
human K-Ras) to leucine or valine58. Human Ras genes are important oncogenes, with 
activating point mutations found in as many as 20% of all human tumors59. Mutations of 
this specific serine residue have been found in cervical cancers (COSMIC database)60. 
Thus, base editor screens in yeast can recover both loss-of-function and gain-of-function 
mutations in genes that are relevant to human diseases. 
 
 

Discussion 
 
Systems genetics is concerned with how genetic information is integrated, coordinated, 
and ultimately transmitted through molecular, cellular, and physiological networks to 
enable the higher-order functions of biological systems61. Proteins are the key molecular 
players functionally linking genotype and phenotype of a cell. Therefore, systematically 
studying regulators of protein abundance is crucial to reaching a more complete, system-
level understanding of molecular cell physiology. We developed a high-resolution 
CRISPR base editor screen and used it to investigate how the abundance of a variety of 
selected yeast proteins is affected by each of tens of thousands of genetic perturbations. 
Thereby, we gained insights into the extensive regulatory network underlying a cell’s 
proteome, in which the abundance of any given protein is affected by a large number of 
genetic loci. We found that proteins involved in core cellular functions respond differently 
to genetic perturbations than proteins involved in stress responses. Furthermore, proteins 
were generally more likely to be affected by perturbations of essential genes than of 
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nonessential genes. Genes affecting the abundance of many proteins simultaneously 
(i.e., hubs of the protein regulatory network) were often involved in post-transcriptional 
protein biosynthetic processes. In contrast, perturbations that affected only specific 
proteins were enriched in transcriptional regulation. In addition, we discovered numerous 
new regulatory relationships, including a new link between the Ras/PKA pathway and the 
GAPDH isoenzymes that suggests functional diversification of these homologs which 
enables cells to adapt to different metabolic states. 
 
Future studies will be able to build on this experimental framework to further refine and 
complete our understanding of the genetic factors influencing protein abundance. 
Potential extensions include screening for abundance of additional proteins, examining 
the effects of genetic perturbations on other molecular and physiological phenotypes, 
increasing the number of gRNAs and using alternative base editors to achieve denser 
sampling of mutations across coding and non-coding regions, introducing multiple gRNAs 
per cell to investigate interactions between genetic perturbations, and performing screens 
in different genetic backgrounds or under different growth or stress conditions. A dense 
genome-wide sampling of mutations, together with quantitative molecular and cellular 
phenotypic readouts across different environmental conditions and genetic backgrounds, 
will provide the data needed to build holistic models that bring us closer to predicting the 
functional consequences of altering any base pair in the genome through natural 
sequence variation or engineered perturbation62.  
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Online Methods 
 
Data availability 
 
The DNA sequencing read data is deposited in the NCBI Sequence Read Archive under 
BioProject ID PRJNA732764 and the mass spectrometry proteomics data is deposited in 
the ProteomeXchange Consortium partner repository PRIDE with the dataset identifier 
PXD029363 and 10.6019/PXD02936363. (Reviewer access: 
reviewer_pxd029363@ebi.ac.uk, crTJNJ9X) 
 
 
Code availability 
 
All custom code is available on GitHub without restrictions: 
https://github.com/OlgaTSchubert/ProteinGenetics 
 
 
Yeast strains, maintenance, and cultures 
 
Saccharomyces cerevisiae S288C strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0) was used for all experiments except the protein abundance screen64. For that, 
we used 11 strains from the Yeast GFP Library, which is also based on BY4147. In each 
of these strains, a GFP cassette (GFP(S65T)-HIS3MX6, where HIS3 is from Lachancea 
kluyveri) is fused in-frame to the C-terminus of a gene of interest12. As a reference 
genome, we used the S. cerevisiae S288C genome sequence version R64-2-1 from the 
Saccharomyces Genome Database (SGD). 
 
All yeast strains generated in this study are listed in Table S8. 
 
Yeast cultures were grown at 30ºC with 250 rpm orbital shaking for liquid cultures. Either 
of the following media was used: 
 

- Rich media (YPD):  
- 20 g/L Bacto Peptone (BD Biosciences #211820) 
- 10 g/L Bacto Yeast Extract (BD Biosciences #212720) 
- 2 g/L dextrose/glucose (MP Biomedicals #901521) 

 
- Synthetic (CSM) dropout media lacking leucine and uracil (CSM -Leu -Ura): 

- 6.7 g/L Difco's YNB without Amino Acids (BD Biosciences #291940) 
- 2 g/L dextrose/glucose (MP Biomedicals #901521) 
- 0.67 g/L CSM powder lacking leucine and uracil (Sunrise Science Products 

#1038-100) 
- For non-selective version of CSM, 100 mg/L L-leucine (Sigma #L8912) and 

20 mg/L uracil (Sigma #U0750) were added. 
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- Synthetic (SC) dropout media lacking leucine and uracil (SC -Leu -Ura): 
- 6.7 g/L Difco's YNB without Amino Acids (BD Biosciences #291940) 
- 2 g/L dextrose/glucose (MP Biomedicals #901521) 
- 1.74 g/L SC dropout powder lacking leucine and uracil (Sunrise Science 

Products #1318-030) 
- For non-selective version of SC, 100 mg/L L-leucine (Sigma #L8912) and 

20 mg/L uracil (Sigma #U0750) were added. 
 

- Canavanine media: 
- 6.7 g/L Difco's YNB without Amino Acids (BD Biosciences #291940) 
- 2 g/L dextrose/glucose (MP Biomedicals #901521) 
- 20 mg/L L-histidine hydrochloride monohydrate (Fisher Scientific 

#BP383100) 
- 20 mg/L L-methionine (Sigma #M9625) 
- 20 mg/L adenine sulfate salt (Sigma #A2545) 
- 60 mg/L canavanine sulfate salt (Sigma #C9758) 
- Note that canavanine media must not contain arginine for the canavanine 

resistance selection to work. 
 
Agar plates were prepared with the same media formulation but with agar added at 20 g/L 
(BD Biosciences #214030). For induction of the base editor, which is under a galactose-
inducible promoter, we used CSM/SC media with 2 g/L galactose (Sigma #G0625) 
instead of dextrose/glucose. Cryostocks were prepared by mixing yeast cultures or cell 
suspensions with sterile 40% glycerol-in-water solution to a final concentration of 13.3% 
glycerol (v/v) and were stored at -80ºC. 
 
For the construction of individual plasmids and small libraries, we used a DH5α-derived 
Escherichia coli strain (NEB #C2987). For large library transformations, we used E. cloni 
10G Supreme Electrocompetent Cells (Lucigen #60081). Liquid cultures were grown at 
37ºC with 250 rpm orbital shaking. If not mentioned otherwise, both solid and liquid 
cultures were grown in LB media (20 g/L, Fisher Scientific #BP1427), which for selections 
was supplemented with 100 µg/ml ampicillin (Sigma-Aldrich #A0166) and/or 50 µg/ml 
kanamycin (Fisher Scientific #BP906). Cryostocks were prepared by mixing bacterial 
cultures or cell suspensions with sterile 40% glycerol-in-water solution to a final 
concentration of 20% glycerol (v/v) and were stored at -80ºC. 
 
 
Plasmids 
 
All plasmids generated in this study are listed in Table S9 and all primers used are listed 
in Table S10. 
 
Base editor plasmid (pGal-BE3) (Figure S1A). Our yeast base editor plasmid was 
constructed based on the yeast Cas9 plasmid described by DiCarlo and colleagues 
(Addgene #43802)65. In addition to the Cas9 gene under a galactose-inducible GALL 
promoter66, a CEN/ARS origin, and other elements, this plasmid encodes LEU2 which 
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enables its selection in leucine-auxotroph yeast grown in media lacking leucine67. Using 
Gibson Assembly, we swapped the Cas9 gene encoded on the plasmid with the base 
editor v3 (BE3) described by Komor and colleagues (Addgene #73021)11. This plasmid is 
deposited in Addgene: #172409. 
 
gRNA plasmid with 2-kb placeholder (pgRNA-backbone) (Figure S1B). Our yeast 
gRNA plasmid was constructed based on the yeast gRNA plasmid described by DiCarlo 
and colleagues (Addgene #43803)65. In addition to the gRNA coding sequence under an 
SNR52 promoter (for RNA Polymerase III transcription), a 2µ origin, and other elements, 
this plasmid encodes URA3 which enables its selection in uracil-auxotroph yeast grown 
in media lacking uracil67. Using Gibson Assembly, we swapped the gRNA targeting 
sequence encoded on the plasmid with the guide placeholder cassette from the 
lentiCRISPR v2 plasmid described by Sanjana and colleagues (Addgene #52961)68. The 
2-kb guide placeholder present in this cassette and flanked by Esp3I/BsmBI restriction 
sites facilitates the construction of individual gRNA plasmids as well as gRNA plasmid 
libraries. All other Esp3I/BsmBI sites present in the plasmid backbone were removed by 
site directed mutagenesis (Agilent #210515). This plasmid is deposited in Addgene: 
#172517. 
 
gRNA plasmids for characterization and validations. Individual gRNA plasmids were 
generated based on the pgRNA-backbone plasmid described above according to the 
protocol by Joung and colleagues69. Briefly, two partially complementary 25-nucleotide 
oligonucleotides were annealed, forming the gRNA targeting sequence. The resulting 
double-stranded DNA fragment with 4-nucleotide overhangs was then inserted into the 
pgRNA-backbone plasmid by Golden Gate Assembly70 using the Esp3I/BsmBI restriction 
enzyme (NEB #E1602S). All gRNA targeting sequences for these individual base editing 
experiments are listed below. 
 
gRNA plasmid libraries. The barcoded gRNA plasmid libraries were generated based 
on the pgRNA-backbone plasmid described above. Details are described in a separate 
section below. Briefly, a kanamycin resistance cassette was barcoded with 20 random 
nucleotides and inserted into the pgRNA-backbone plasmid, resulting in a barcoded 
plasmid library (Figure S1C). Subsequently, the oligonucleotide libraries with all gRNA 
targeting sequences were inserted into this barcoded plasmid library, resulting in 
barcoded gRNA plasmid libraries. 
 
 
Base editor characterization with individual gRNAs 
 
To characterize the base editor efficiency and editing window, we selected seven gRNAs 
predicted to introduce premature stop codons into CAN1, ADE1 and ADE2 using the 
Benchling (https://benchling.com). The gRNAs were cloned into the pgRNA-backbone 
plasmid as described above in the “Plasmids” section. In addition, we tested a gRNA-
containing plasmid from DiCarlo and colleagues predicted to introduce a missense 
mutation into CAN165. We first transformed our BY4741 yeast strain with the base editor 
plasmid pGal-BE3 using a high-efficiency lithium acetate-based protocol described by 
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Gietz and Schiestl with minor modifications71. The resulting strain was transformed with 
the eight gRNA plasmids individually (one gRNA plasmid per strain) according to the 
same protocol. Successful transformants growing on selective plates (CSM -Leu -Ura) 
were then transferred into selective galactose media to induce base editor expression 
and grown at 30ºC until they reached stationary phase (44 hours). 
 
Approximately 108 cells per culture were harvested and genomic DNA was extracted 
using Qiagen’s DNeasy Blood & Tissue Kit (Qiagen #69506) according to their 
supplementary protocol “Purification of total DNA from yeast” (DY13 Aug-06) but using 
10 U/ml zymolase (amsbio #120491-1) instead of lyticase. The predicted genomic target 
region of each gRNA in the respective DNA sample was then amplified using PfuUltra II 
Fusion HS DNA Polymerase (Agilent #600670) with the following thermocycling protocol: 
2 min at 95ºC, 22x (30 s at 95ºC, 30 s at 55ºC, 30 s at 72ºC), 3 min at 72ºC. Primers were 
designed to include overhangs that mimic the product of the Illumina Nextera transposase 
in order to facilitate further processing by Illumina sequencing reagents (xxx indicates the 
20-nucleotide genomic binding regions of these primers): 
Forward Nextera primers: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGxxx 
Reverse Nextera primers: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGxxx 
The resulting fragments were pooled, then purified with the MinElute PCR Purification Kit 
(Qiagen #28004). A second round of PCR to extend the Nextera adapters was performed 
using reagents from the Nextera DNA Library Prep Kit (NPM, PPC and indexes; Illumina 
#FC-121-1031) according to the manufacturer’s instructions. This second PCR product 
was run on a 2% agarose gel and gel-extracted using a QIAquick Gel Extraction Kit 
(Qiagen #28704). The amplicon library was quantified by qPCR using the KAPA Library 
Quantification Kit (KAPA/Roche #KK4824). To increase diversity, 5% PhiX Sequencing 
Control v3 (Illumina #FC-110-3001) was added. The final library was brought to a 
concentration of 15 pM and sequenced on an Illumina MiSeq with paired-end 150-base 
pair reads. 
 
The sequencing data was processed using CRISPResso2 (v2.0.45) 72 using the default 
settings, except for the following: 
--min_average_read_quality 30 
--quantification_window_size 20 
--quantification_window_center -10 
--base_editor_output 
 
To determine the fraction of all possible base edits (Figure S2), the CRISPResso2 output 
file “Quantification_window_nucleotide_frequency_table.txt” was processed with a 
custom R script (R version 4.0.3, RStudio version 1.3). 
 
 
gRNA library design 
 
Using custom R scripts run in RStudio (R version 4.0.3, RStudio version 1.3), we first 
compiled a list of all possible gRNA targeting sequences (guides) suitable for base editing 
in yeast by searching for all possible guides in the yeast genome, defined as the 20 
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nucleotides upstream of an NGG PAM site. We also added 10,000 guides not targeting 
the yeast genome for use as controls. We predicted the expected base editing outcome 
assuming that all Cs will be converted to Ts within a window 13-17 base pairs upstream 
of the PAM site11. We then excluded (i) guides with a potential RNA Polymerase III 
terminator (TTTT), (ii) guides that target regions where two or more annotated genes 
overlap, and (iii) guides whose target region harbors homology to another genomic 
location and could therefore cause unexpected off-target effects (considering all perfect 
matches in the 12-nucleotide seed region directly upstream of the PAM)65,73. 
 
For all missense mutations expected to be introduced by the gRNAs, we determined the 
Provean score, which predicts the effect of amino acid substitutions based on 
conservation74. For gRNAs expected to introduce multiple missense mutations, we chose 
as representative value the maximal absolute Provean score. We then defined an 
absolute Provean score of >5 as highly conserved (18% of all gRNAs predicted to 
introduce missense mutations into the yeast genome and passing the above mentioned 
filters). 
 
From the filtered gRNA database we extracted five different sets of gRNAs: 
 
CA: All 170 gRNAs predicted to introduce missense or nonsense mutations in CAN1 and 
ADE2; only the 91 CAN1 targeting gRNAs were used for experiments reported here. 
 
ES: All 5442 gRNAs predicted to introduce premature stop codons in essential genes 
 
NS: 5500 gRNAs predicted to introduce premature stop codons in nonessential genes, 
randomly selected out of 19,772 gRNAs with that property 
 
EP: 5500 gRNAs predicted to introduce missense mutations at highly conserved residues 
in essential genes, randomly selected out of 8,955 gRNAs with that property 
 
NP: 5500 gRNAs predicted to introduce missense mutations at highly conserved residues 
in nonessential genes, randomly selected out of 33,357 gRNAs with that property 
 
We also designed three sets of control gRNAs predicted to not introduce any (coding) 
mutations in the yeast genome: 500 gRNAs introducing synonymous mutations in yeast 
genes, 500 gRNAs without a C in the targeting region, and 500 gRNAs with random 
sequences not targeting the yeast genome. 
 
For the synthesis of the gRNA libraries, each gRNA targeting sequence of 20 nucleotides 
was flanked by 30-nucleotide homology arms on either side for Gibson Assembly into the 
receiver plasmid (pgRNA-backbone) (Figure S1C). Additionally, at both ends of the 
oligonucleotides 15-nucleotide primer binding sites were added which differed for each of 
the five sets of gRNAs described above (control gRNAs were given the same primer 
binding sites as the ES gRNAs). These primer binding sites allow for specific amplification 
of individual sublibraries from the main library. The total length of the resulting 
oligonucleotides was 122 nucleotides. Note that we originally planned to remove the 
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primer binding sites with an MluI restriction digest and therefore excluded from synthesis 
a small number of gRNAs that contained MluI sites in the targeting sequence. However, 
we ended up using an alternative strategy not dependent on MluI (see below). 
 
All 23,541 gRNAs were synthesized as a single oligonucleotide library (Agilent #G4893A). 
 
 
Construction of barcoded gRNA plasmid libraries 
 
The barcoded gRNA plasmid library was cloned based on the pgRNA-backbone plasmid 
described above. First, a kanamycin resistance cassette (originally likely from the pCR-
Blunt II-TOPO plasmid, Thermo Fisher Scientific #451245) was amplified using a primer 
pair of which the forward primer (OS123) contained an overhang with 20 random 
nucleotides. After removal of the plasmid template by DpnI digest (NEB #R0176S) and 
DNA purification (Zymo Research #D4013), this barcoded resistance cassette was 
introduced into the PCR-amplified, DpnI-treated, and purified pgRNA-backbone plasmid 
backbone by Gibson Assembly (NEB #E5510S)75. After DNA purification (Zymo 
Research #D4013), plasmid libraries were eluted in 10 µl ultra pure water and 2 µl was 
electroporated into five high-efficiency electrocompetent Escherichia coli cell aliquots 
each (Lucigen #60081) using a MicroPulser Electroporator (Bio-Rad Laboratories 
#1652100). After 60 minutes of growth in liquid recovery media (SOC outgrowth media, 
NEB #B9020S), cells were plated onto five 150-mm LB agar plates supplemented with 
ampicillin/carbenicillin (100 µg/ml) and kanamycin (50 µg/ml) and incubated overnight at 
37ºC. Serial dilution platings and colony counts performed in parallel indicated a total of 
150,000 independent transformants, each assumed to contain a plasmid with a different 
barcode. All colonies were then washed off the plates, pooled and subjected to plasmid 
extraction (Qiagen #12963).  
 
The oligonucleotide library consisting of the five different sublibraries described above 
under “gRNA library design” arrived lyophilized and was first dissolved in Tris-EDTA 
buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8) to a concentration of 100 nM. An aliquot 
was then further diluted to 10 nM and the desired sublibraries were amplified by a 15-
cycle PCR with sublibrary-specific primers (Q5 High-Fidelity 2X Master Mix by NEB 
#M0492S). After DNA purification (Zymo Research #D4013), a second 5-cycle PCR was 
performed with primers binding more proximal to the gRNA targeting sequences than the 
previous primers, thereby excluding the library-specific primer binding sites from the final 
oligonucleotide libraries. This second PCR was done with the same polymerase and 
again followed by DNA purification. 
 
The amplified oligonucleotide sublibraries were then cloned into the barcoded pgRNA-
backbone plasmid library described above according to the protocol by Joung and 
colleagues69. First, the barcoded plasmid library was digested with Esp3I for 60 minutes 
at 37ºC (Thermo Fisher Scientific #FD0454) and gel-purified (Zymo Research #D4007). 
The resulting linearized plasmid backbone was then combined with one of the amplified 
oligonucleotide libraries and assembled into a final gRNA plasmid library by Gibson 
Assembly (NEB #E5510S)75. After DNA purification (Zymo Research #D4013), plasmid 
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gRNA libraries were eluted in 8 µl ultra pure water and 2 µl was electroporated into high-
efficiency electrocompetent Escherichia coli (Lucigen #60081) using a MicroPulser 
Electroporator (Bio-Rad Laboratories #1652100). After 60 minutes of growth in liquid 
recovery media (Lucigen), E. coli cells were plated onto a 150-mm LB agar plate 
supplemented with ampicillin/carbenicillin (100 µg/ml) and kanamycin (50 µg/ml) and 
incubated overnight at 37ºC. Serial dilution platings and colony counts performed in 
parallel indicated a total of 1-2 million independent transformants for each sublibrary. 
Colonies were then washed off the plates and subjected to plasmid extraction (Qiagen 
#12963). 
 
 
Canavanine screen 
 
For the canavanine screen, we started with the BY4741 strain previously transformed 
with pGal-BE3 as described in the section “Base editor characterization with individual 
gRNAs”. We transformed this strain with a gRNA plasmid library based on the CA gRNA 
set using a large-scale high-efficiency lithium acetate-based protocol described by Gietz 
and Schiestl with minor modifications76. We scaled up the transformation 10-fold 
compared to a single transformation reaction and used 10 µg of plasmid DNA for cells 
from a 50-ml culture at an OD600 of 0.7 (3.5x107 cells/ml). The heat shock at 42ºC lasted 
40 min. After the transformation, we plated the cells onto nine selective 100-mm plates 
(CSM -Leu -Ura). Across all plates, there were approximately 150,000 colonies, which 
were washed off, pooled and frozen in 20% glycerol at -80ºC. 
 
About 5x108 transformed cells were thawed and grown overnight in 100 ml selective 
glucose media (CSM -Leu -Ura). The next day, 2.5x108 cells were sampled and 
5x107 cells were transferred into 100 ml selective galactose media (CSM/gal -Leu -Ura). 
After 24 hours of growth in galactose, again 2.5x108 cells were sampled (“0 hours”) and 
108 cells were transferred into 200 ml canavanine media (60 mg/L L-canavanine sulfate). 
From the canavanine-treated culture, 2.5x108 cells were sampled after 24 and 48 hours. 
 
Plasmid DNA was extracted from the sampled cells using the Zymoprep Yeast Plasmid 
MiniPrep II kit (Zymo Research #D2004) but with a modified first step where cell pellets 
were spheroblasted with 10 U/ml zymolase (amsbio #120491-1) in sorbitol buffer (1 M 
Sorbitol, 100 mM EDTA pH 8, 14 mM beta-mercaptoethanol). The plasmid region 
containing the gRNA target sequence and the barcode was amplified using the KAPA 
HiFi HotStart ReadyMix (KAPA/Roche KK2602) with the following thermocycling protocol: 
45 s at 98ºC, 18x (15 s at 98ºC, 30 s at 55ºC, 30 s at 72ºC), 1 min at 72ºC. The forward 
(OS130-139) and reverse (OS125, PAGE-purified) primers included overhangs that 
mimic the product of the Illumina Nextera transposase as described above. The forward 
primer also included a stagger sequence of 9 to 18 nucleotides to introduce diversity in 
the sequencing library69. The resulting fragments were purified (Zymo Research #D4013) 
and a second round of PCR to extend the Nextera adapters was performed using 
reagents from the Nextera DNA Library Prep Kit (NPM, PPC and indexes; Illumina #FC-
121-1031) according to the manufacturer’s instructions. Concentrations of PCR products 
were determined (Qubit dsDNA HS Assay Kit, Thermo Fisher Scientific #Q32851) and 
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equal amounts of DNA from each sample were combined. The pooled sample was run 
on a 2% agarose gel and gel-extracted (Zymo research #D4007). The amplicon library 
was quantified by qPCR using the KAPA Library Quantification Kit (KAPA/Roche 
#KK4824). To increase diversity, 10% PhiX Sequencing Control v3 (Illumina #FC-110-
3001) was added. The final library was brought to a concentration of 15 pM and 
sequenced on an Illumina MiSeq with paired-end 171- and 131-base pair reads. Note that 
some guide sequences are cut-off (18 instead of 20 nucleotides) because sequencing 
reads were not long enough. 
 
 
Fitness screen 
 
Note that the fitness screen using the ES gRNA set (Figure S2B) was part of a larger 
fitness screen using the ES, NS, EP and NP gRNA sets, which was done in duplicate. 
The fitness screen described later (Figure 4D) included these two replicates as well as 
two additional replicates of the same screen performed in parallel using just the NS, EP 
and NP gRNA sets (without the ES set). 
 
The library transformations for the fitness screen were also started with the BY4741 yeast 
strain previously transformed with pGal-BE3 as described in the section “Base editor 
characterization with individual gRNAs”. We transformed this strain once with a combined 
gRNA plasmid library containing the ES, NS, EP and NP gRNA sets and once with a 
combined library containing only the NS, EP and NP gRNA sets, following a large-scale 
high-efficiency lithium acetate-based protocol with minor modifications76. We scaled up 
each transformation 10-fold compared to a single transformation reaction and used 10 µg 
of plasmid DNA for cells from a 100-ml culture at an OD600 of 0.6 (3x107 cells/ml). The 
heat shock at 42ºC lasted 90 min. After the transformation, cells were transferred into 100 
ml selective media (SC -Leu -Ura) and incubated on a shaker at 30ºC. After 24 hours, 
cultures were diluted 1:50 and grown until they reached stationary phase. Serial dilution 
platings and colony counts performed in parallel indicated a total of 2-3 million 
independent transformants for each of the two transformations. 
 
The fitness screen time-course was done in duplicates for each of the two library-
transformed yeast strains, resulting in four quasi-replicates. Four pre-cultures inoculated 
with 1.3x108 cells were grown overnight in 50 ml selective glucose media (SC -Leu -Ura). 
The next day, 1.3x108 cells were transferred into 50 ml selective galactose media (SC/gal 
-Leu -Ura). After 24 hours in galactose, 1.3x108 cells were transferred into 50 ml pre-
warmed glucose media (SC -Ura). From then on, every 12 hours 1.3x108 cells were 
transferred into 50 ml pre-warmed glucose media. Samples of 1.3x108 cells were 
harvested at the time of transfer into galactose media as well as 0, 8, and 24 hours after 
transfer to glucose media. For harvesting, cells were spun down, resuspended in 200 µl 
PBS (Gibco/Thermo Fisher Scientific #20012027) and stored at -20ºC. 
 
To facilitate plasmid extraction, harvested cells (in 200 µl PBS) were first spheroblasted 
by adding zymolase (amsbio #120491-1), DL-dithiotreitol (DTT, Sigma-Aldrich #D5545) 
and RNase A (PureLink, Thermo Fisher Scientific #12091021) to the following final 
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concentrations: 180 U/ml zymolase, 20 mM DTT and 0.2 mg/ml RNase A. The cells were 
incubated in this solution for 4 hours at 35ºC, followed by 10 min at 99ºC to inactivate 
zymolase. After cool-down to room temperature, Qiagen’s QIAprep Spin Miniprep Kit was 
used according to the manufacturer’s instructions but omitting the first step (Qiagen 
#27104). 
 
The plasmid region containing the gRNA target sequence and the barcode was amplified 
using the KAPA HiFi HotStart ReadyMix (KAPA/Roche KK2602) supplemented with 
EvaGreen (Biotium #31000) using the following thermocycling protocol: 45 s at 98ºC, 16x 
(15 s at 98ºC, 30 s at 55ºC, 30 s at 72ºC), 1 min at 72ºC. This was performed on an 
Agilent AriaMx Real-Time PCR System to be able to monitor and stop the amplification 
before it started to plateau, which was at 16 cycles. The forward (OS140-149) and reverse 
(OS125, PAGE-purified) primers included overhangs that mimic the product of the 
Illumina Nextera transposase as described above. The forward primer also included a 
stagger sequence of 9 to 18 nucleotides to introduce diversity in the sequencing library69. 
A second round of PCR (6 cycles) to extend the Nextera adapters was performed using 
the KAPA HiFi HotStart ReadyMix (KAPA/Roche KK2602) again, together with unique 
dual indexes (IDT for Illumina DNA/RNA UD Indexes, Integrated DNA Technologies). 
Concentrations of PCR products were determined by Qubit (dsDNA HS Assay Kit, 
Thermo Fisher Scientific Q32851) and equal amounts of DNA from each sample were 
combined. The pooled sample was run on a 2% agarose gel and gel-extracted (Zymo 
research D4007). The amplicon library was quantified by Qubit (dsDNA HS Assay Kit, 
Thermo Fisher Scientific Q32851). To increase diversity, PhiX Sequencing Control v3 
(Illumina #FC-110-3001) was added and the final library was sequenced on an Illumina 
NextSeq 500 in HighOutput mode with paired-end 80- and 70-base pair reads. 
 
 
Protein abundance screen 
 
For the protein abundance screens, we selected eleven proteins that are involved in 
various cellular functions but also highly abundant to ensure detectability by flow 
cytometry. For each selected protein of interest, we streaked out the corresponding GFP-
tagged strains from the GFP collection12 on YPD plates and from there continued with a 
single colony from each GFP strain. We first transformed each GFP strain with the base 
editor plasmid pGal-BE3 using a high-efficiency lithium acetate-based protocol with minor 
modifications71. We then transformed the resulting strains with a combined gRNA library 
containing the NS, EP and NP gRNA sets, following a large-scale high-efficiency lithium 
acetate-based protocol with minor modifications76. We scaled up each transformation 10-
fold compared to a single transformation reaction and used 10 µg of plasmid DNA for 
cells from a 100-ml culture at an OD600 of 0.4 (2x107 cells/ml). The heat shock at 42ºC 
lasted 90 min. After the transformation, cells were transferred into 100 ml selective media 
(SC -Leu -Ura) and incubated on a shaker at 30ºC for 24 hours. Subsequently, cultures 
were diluted ~1:25 and grown until they reached stationary phase. We prepared multiple 
cryostocks of 2.5x108 cells for each library-transformed GFP strain and stored them at -
80ºC until use. Serial dilution platings and colony counts performed in parallel indicated 
a total of 2-4 million independent transformants for each of the GFP strains. 
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The protein screen was performed as follows for each GFP strain separately (on 
consecutive days). First, a cryostock from a library-transformed GFP strain was 
inoculated in 100 ml selective glucose media (SC -Leu -Ura) and grown overnight. The 
next day, 7.5x107 cells were centrifuged (1 min at 5000 g), resuspended in 1 ml PBS 
(Gibco/Thermo Fisher Scientific #20012027) and transferred into 30 ml selective 
galactose media (SC/gal -Leu -Ura), starting at 2.5x106 cells/ml (OD600 of 0.05). After 24 
hours, eight replicate cultures were set up in 30 ml pre-warmed glucose media (SC -Ura), 
each starting at 2.5x106 cells/ml (OD600 = 0.05) from the galactose culture. After 8-9 
hours, when the cultures reached mid-exponential growth (~2x107 cells/ml or OD600 of 
0.4-0.5), they were processed for fluorescence-activated cell sorting (FACS). Briefly, 3 ml 
of each replicate culture was centrifuged (1 min at 3000 g) and resuspended in 3 ml cold 
PBS (Gibco/Thermo Fisher Scientific #20012027), transferred through a 35-µm cell 
strainer into a 5-ml polystyrene round-bottom test tube (Falcon #352235) and kept on ice 
from then on. The sorting was performed on a BioRad S3e cell sorter with a cooled 
sample block. For the sorting, only the 40-50% most similar cells in terms of size and 
granularity were used (oval gate at densest area on forward scatter (FSC) vs. side scatter 
(SSC) plot, linear axes). From that FSC-SSC gate, we first sorted 500,000 cells as a 
control population. Second, we sorted 200,000 cells from the 5% of cells with the highest 
and the 5% of cells with the lowest GFP signal each (rectangular gates on GFP histogram 
plot, log axis). Sort speed was set to 10,000 events per second and sorted cells were 
collected in 5-ml polystyrene round-bottom test tubes (Falcon #352058). The sorted cells 
(in sheath fluid (PBS), BioRad #12012932) were then transferred into 1.5-ml tubes and 
centrifuged at full speed for 30 seconds. Supernatant was carefully removed, leaving 
~200 µl behind to minimize disturbing the invisible cell pellet. The sorted and concentrated 
cell samples were then stored at -20ºC until all sorts for all GFP strains were completed. 
 
To facilitate plasmid extraction, harvested cells (in 200 µl PBS) were first spheroblasted 
by adding zymolase (amsbio #120491-1), DL-dithiotreitol (DTT, Sigma-Aldrich #D5545) 
and RNase A (PureLink, Thermo Fisher Scientific #12091021) to the following final 
concentrations: 180 U/ml zymolase, 20 mM dithiotreitol and 0.2 mg/ml RNase A. The cells 
were incubated in this solution for 2-3 hours at 35ºC, followed by 10 min at 99ºC to 
inactivate zymolase. After cool-down to room temperature, Qiagen’s QIAprep Spin 
Miniprep Kit was used according to the manufacturer’s instructions but omitting the first 
step (Qiagen #27104). 
 
The plasmid region containing the gRNA target sequence and the barcode was amplified 
using the KAPA HiFi HotStart ReadyMix (KAPA/Roche KK2602) supplemented with 
EvaGreen (Biotium #31000) using the following thermocycling protocol: 45 s at 98ºC, 22x 
(15 s at 98ºC, 30 s at 55ºC, 30 s at 72ºC), 1 min at 72ºC. This was performed on an 
Agilent AriaMx Real-time PCR system in order to be able to monitor and stop the 
amplification before it started to plateau, which was at 22 cycles. The forward (OS140-
149) and reverse (OS125, PAGE-purified) primers included overhangs that mimic the 
product of the Illumina Nextera transposase as described above. The forward primer also 
included a stagger sequence of 9 to 18 nucleotides to introduce diversity in the 
sequencing library69. A second round of PCR (6 cycles) to extend the Nextera adapters 
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was performed using the KAPA HiFi HotStart ReadyMix (KAPA/Roche KK2602) again, 
together with unique dual indexes (IDT for Illumina DNA/RNA UD Indexes, Integrated 
DNA Technologies). Concentrations of PCR products were determined using Qubit 
reagents (dsDNA HS Assay Kit, Thermo Fisher Scientific Q32851) but in 96-well format 
with fluorometric readings at 485/20 nm excitation and 528/20 nm emission performed on 
a BioTek Synergy2 plate reader using black opaque flat-bottom 96-well plates (Costar 
#3915). We then combined roughly equal amounts of DNA from samples of cells sorted 
for high or low GFP levels and double that amount for the control samples that were 
sorted without GFP gates. The pooled sample was run on a 2% agarose gel and gel-
extracted (Zymo research D4007). The amplicon library was quantified by Qubit (dsDNA 
HS Assay Kit, Thermo Fisher Scientific Q32851). To increase diversity, PhiX Sequencing 
Control v3 (Illumina #FC-110-3001) was added and the final library was sequenced on 
an Illumina NovaSeq 6000 using an S1 flow cell with paired-end 100-base pair reads. 
 
Due to underrepresentation of some of the sorted Tdh3-GFP sub-libraries in the final 
library mentioned above, we pooled these samples separately again, and gel-purified and 
quantified them as described above, followed by addition of PhiX Sequencing Control v3 
(Illumina #FC-110-3001) and sequencing on an Illumina NextSeq 500 in HighOutput 
mode with paired-end 80- and 70-base pair reads. Read counts were then downsampled 
using seqtk (https://github.com/lh3/seqtk) to get comparable read numbers to the other 
GFP strains. 
 
 
Fitness screen analysis 
 
Fitness screen analyses were performed with custom R scripts run in RStudio (R version 
4.0.3, RStudio version 1.3). For the fitness screen data shown in Figure S2B (ES gRNA 
set only, 2 replicates), we first extracted guide sequences from sequencing reads and 
tallied the read counts per guide. To determine which gRNAs change in abundance during 
prolonged culturing of base edited yeast, we used read counts per gRNA as a quantitative 
measure. We normalized the read counts across samples so that the total read counts of 
the control gRNAs remain constant. We then calculated for each gRNA the log2 fold 
change (log2FC) of the number of reads at each time point versus to the “pre” time point 
sampled before induction of the base editor with galactose. The reported log2FC values 
are averages across the two replicate experiments. To obtain gene-level effects, we used 
the largest absolute log2FC among all gRNAs targeting the same gene. The fitness 
screen data shown in Figure 4E (EP, NP and NS gRNA sets, four replicates) was 
processed as described above but with normalization for total read counts across 
samples because not all four replicates included the control gRNAs. 
 
 
Protein abundance screen analysis 
 
Protein abundance screen analyses were performed with custom R scripts run in RStudio 
(R version 4.0.3, RStudio version 1.3). First, for each sample, the 20-nucleotide guide 
and the 20-nucleotide barcode sequences were extracted from paired-end read pairs. 
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Next, for all barcodes paired with guides perfectly matching the library, we performed 
error correction to account for potential sequencing errors that would otherwise lead to 
inflated barcode counts. For this, read counts of barcodes with a difference of less than 
five nucleotides were assigned the same barcode sequence. We then removed barcodes 
that did not have at least two reads and gRNAs that did not have at least two barcodes in 
at least four of the control samples per GFP strain. We also excluded replicates with very 
low read counts (Eno2_A, Fas1_A , Fas1_F, Fas2_A, Fas2_D, Htb2_A). To determine 
which gRNAs are differentially abundant among cells with high vs low GFP levels, we 
used the number of unique barcodes per gRNA as a quantitative measure which we 
normalized across samples by total unique barcode count per sample. We then applied 
a generalized linear model (glm) with Poisson-distributed errors and log as a link function. 
The glm function outputs for each gRNA the ln(“high GFP”/”low GFP”) and a p-value. We 
converted the ln fold change to log2 fold change (log2FC). In cases where for a gRNA no 
barcodes were detected in any of the high or low GFP replicates, the glm function assigns 
an estimate of 20 or -20, respectively, which we replaced by 3 or -3, respectively. To 
adjust p-values for multiple testing and control the false discovery rate (FDR), we used 
the qvalue R package version 2.22.077. Unless otherwise noted, we consider “significant” 
a q-value (FDR) < 0.05. 
 
To obtain gene-level log2FC values, we used the largest absolute fold change estimate 
of all gRNAs targeting a gene. For gene-level q-values, we first combined the p-values of 
all gRNAs targeting the same gene using Fisher’s method (R package poolr, version 0.8-
2) and then corrected these gene-level p-values for multiple testing again with the qvalue 
R package. We compared this combined q-value to the q-value of the gRNA with the 
largest absolute fold change per gene and then took the lower of the two q-values as a 
final per-gene q-value. This approach raises the number of genes with significant effect 
(FDR < 0.05) on protein abundance from 622 to 710, compared to considering just genes 
targeted by significant gRNAs. 
 
 
Cytoscape 
 
For network visualizations we used Cytoscape (version 3.8.2)17. For the network 
representing the overall results from the screen (Figure 1B), the eleven proteins were 
defined as source nodes and the significant gene perturbations as target nodes. A 
diverging red-blue color gradient was chosen to reflect the log fold changes caused by 
the perturbation. Note that for perturbations that affect multiple proteins, the selected color 
depends on the order the interactions are listed in the input. The size of the target nodes 
correlates with the number of source nodes (proteins) it connects to. The arrangement of 
nodes was obtained by the yFiles Organic Layout or the Edge-weighted Spring 
Embedded Layout and further adjusted manually. 
 
For the small protein-protein-interaction network of the broad-effect gene perturbations 
(Figure 4C), the Cytoscape StringApp was used35,36. The settings for STRING were as 
follows: the species was set to Saccharomyces cerevisiae and the confidence cutoff was 
set to 0.4. All view defaults were unselected. The type of chart to draw was set to pie 
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chart, with two terms to chart and an overlap cutoff of 0.5. The arrangement of nodes was 
obtained by applying the yFiles Organic Layout and further adjusted manually. 
 
 
Gene Ontology (GO) enrichment analysis 
 
Enrichment analysis for functional annotations was performed in R using the STRINGdb 
package version 2.2.235. This package computes the enrichment using a hypergeometric 
test and adjusts p-values for multiple testing using the Benjamini-Hochberg method. For 
the GO enrichment analysis among broad and specific regulators, the background was 
defined as all genes represented by our gRNA library (NS, ES, EP subsets). For the GO 
enrichment analysis among sets of significantly changed proteins in the proteomics data, 
the background was defined as the union of proteins quantified across all samples used 
for the enrichment analysis. 
 
 
Validation experiments (RAS2, IRA2, SSY5, POP1, SIT4) 
 
For validation of the findings from the protein screen, we generated individual mutants 
based on the BY4741 strain. We first cloned individual gRNA plasmids for relevant gRNAs 
targeting RAS2, IRA2, SSY5, POP1 and SIT4 as described above in the “Plasmids” 
section. These plasmids were then individually transformed into the BY4741 yeast strain 
previously transformed with pGal-BE3 (described in the section “Base editor 
characterization with individual gRNAs”) using the same high-efficiency lithium acetate-
based protocol with minor modifications71. From the successful transformants growing on 
selective plates (SC -Leu -Ura) we then inoculated an overnight preculture in selective 
glucose media (SC -Leu -Ura) followed by a 24-hour growth period in selective galactose 
media (SC/Gal -Leu -Ura) to induce base editor expression. Subsequently, cells were 
grown in non-selective liquid YPD media for 8 hours to promote plasmid loss, followed by 
growth on YPD plates for up to 5 days. Note that colonies on some plates grew very 
slowly because several of the targeted base edits affect cell fitness. From each plate we 
analyzed 4-8 individual colonies to see whether they acquired the expected base edits. 
First, a small amount of each colony was transferred into a 96-well PCR plate containing 
50 µl ultra pure H2O (Invitrogen/Thermo Fisher Scientific #10977015). Of the resulting 
cell solution, 25 µl was transferred into a 96-deep-well plate containing 500 µl YPD. The 
remaining 25 µl were boiled at 99ºC for 5 min to lyse the cells. Then 2 µl of the heat-
treated cells were used to set up 50-µl PCR reactions with TaKaRa Ex Taq DNA 
Polymerase (TaKaRa #RR001A) and specific primer pairs designed to amplify the 
genomic region targeted by each gRNA. The following thermal cycling protocol was used: 
1 min at 94ºC, 35x (30 s at 94ºC, 30 s at 50ºC, 1 min at 72ºC), 3 min at 72ºC. PCR 
products were sent for Sanger sequencing. Three independent mutant strains harboring 
the expected base edits were then selected and the corresponding cultures in YPD that 
were kept at room temperature were converted into cryo stocks and stored at -80ºC until 
use. 
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LC-MS proteomics data acquisition 
 
For proteomics analyses, individual mutant strains described above were streaked out on 
YPD plates and incubated at 30ºC for several days. Overnight cultures were then 
inoculated from a single colony of each mutant strain in SC media. The next day, 3-ml 
cultures were set up at 2.5x106 cells/ml (OD600 = 0.05) and grown for several hours until 
they reached a density of 2.5x107 cells/ml (OD600 = 0.5). Of each culture, 2 ml were 
harvested by centrifugation for 1 min at 5000 g at 4ºC. Supernatant was removed and cell 
pellets stored at -80ºC. For cell lysis, 200 µl freshly prepared lysis buffer (8 M urea, 75 
mM NaCl, 50 mM Tris-HCl at pH 8) was added to each cell pellet. The resulting solution 
was transferred to 2-ml screw-cap tubes containing a 100-µl volume of glass beads (500 
µm, Sigma G8772). Cells were lysed by 3x 5 min bead beating at 2400 rpm (40 Hz) on a 
BioSpec Mini-BeadBeater-96, with 1-2 min cooling on ice between cycles. Samples were 
then centrifuged for 5 min at full speed (at room temperature to avoid precipitation of urea) 
and cleared lysates transferred to new tubes. Protein concentrations were determined 
with a colorimetric bicinchoninic acid (BCA) assay (Pierce / Thermo Scientific #23225). 
Absorbance at 562 nm was measured on a BioTek Synergy2 plate reader which indicated 
protein concentrations of 1-2 mg/ml. 
 
For each sample, 25-50 µg of protein was further processed as follows. Protein disulfide 
bonds were reduced by the addition of 5 mM Tris (2-carboxyethyl)phosphine (TCEP) and 
incubation at room temperature for 30 min. Next, the free cysteine residues were alkylated 
by the addition of 10 mM iodoacetamide and incubation at room temperature for 30 min 
in the dark. Subsequently, samples were diluted with 100 mM Tris-HCl at pH 8 to reach 
a urea concentration of less than 2 M. For the protein digest, 0.2 µg LysC (Wako #125-
05061) and 0.8 µg trypsin (Pierce / Thermo Scientific, #90057) were added and samples 
were incubated at 37°C overnight. The digest was quenched by adding formic acid to a 
final concentration of 5% (v/v). Finally, samples were desalted using C18 tips (Pierce / 
Thermo Scientific #87784), dried under vacuum and reconstituted in 5% formic acid (v/v). 
 
For liquid chromatography-coupled tandem mass spectrometric (LC-MS/MS) analysis, 
desalted peptides were fractionated online by nano-flow reversed phase liquid 
chromatography using a Dionex UltiMate 3000 UHPLC system (Thermo Fisher Scientific). 
The column consisted of a 25-cm fused silica capillary with 75 μm inner diameter that was 
packed in-house78 with ReproSil-Pur C18 particles (particle size 1.9 μm; pore size 120 Å; 
Dr. Maisch). The linear 140-min water–acetonitrile gradient from 5% to 35% acetonitrile 
was delivered at a flow rate of 300 nl/min. Mass spectrometric analysis was performed 
on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific) run in 
Data-Dependent Acquisition (DDA) mode and with an inclusion list containing a total of 
six peptides from Tdh1 and Tdh2 to ensure their consistent quantification 
(IDVAVDSTGVFK(2+), LISWYDNEYGYSAR(2+), VVDLIEYVAK(2+), HIIVDGHK(2+), 
DPANLPWASLNIDIAIDSTGVFK(2+), GVLGYTEDAVVSSDFLGDSNSSIFDAAAGIQLSPK(3+)). 
MS1 spectra were acquired at a resolution of 120,000 (FWHM at 400 m/z) over a range 
of 400 to 1600 m/z with a maximum injection time of 100 ms. MS1 acquisition was 
followed by the acquisition of MS2 spectra from precursors falling into the inclusion list 
windows (monoisotopic m/z +/- 25 ppm). Precursors were isolated with a window of 1.6 
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m/z and fragmentation was obtained by higher-energy C-trap dissociation (HCD) at a 
fixed collision energy of 35%. MS2 spectra were acquired at a resolution of 30,000, a 
maximum injection time of 54 ms and dynamic exclusion for 5 s. The remainder of the 3-
s cycle time was used to acquire MS2 spectra for other precursors at a resolution of 
15,000 and an exclusion window of 25 s but otherwise identical parameters as for the 
inclusion list precursors. 
 
 
LC-MS proteomics data analysis 
 
Peptide identification and quantification was performed with MaxQuant version 1.6.17.079. 
The search was performed against a S. cerevisiae S288C protein database containing 
5917 protein sequences (version R64-2-1, Saccharomyces Genome Database (SGD)). 
Only fully LysC- and trypsin-digested peptides with up to one missed cleavage were 
allowed. LysC was specified to cleave after lysine even if followed by proline and trypsin 
was specified to cleave after lysine and arginine if not followed by proline. 
Carbamidomethylation of cysteines was defined as a fixed modification and methionine 
oxidation and N-terminal acetylation as a variable modification. Peptide-spectrum-match 
(PSM) and protein-level false discovery rates (FDRs) were set to 0.01. Further analyses 
were performed with custom R scripts run in RStudio (R version 4.0.3, RStudio version 
1.3). From the MaxQuant output (evidence.txt), all non-unique peptides were removed 
before further processing. Relative quantification was then performed in R using the 
artMS package version 1.8.3 (http://artms.org), which itself is based on the MSstats 
package80. Briefly, log2-transformed data was quantile normalized and summarized by 
Tukey’s median polish. Missing values were imputed and p-values were adjusted for 
multiple testing by the Benjamini-Hochberg method. Enrichment analysis for functional 
annotations among sets of significantly changed proteins in different mutant strains was 
performed as described above with the union of proteins quantified across all samples 
used for the enrichment analysis as background. 
 
 
Testing effect of sequence context on editing efficiency 
 
To test whether the sequence context in the targeting region of the gRNA has an effect 
on editing efficiency, we made use of the data from the fitness screen, considering only 
gRNAs introducing stop codons into essential genes (ES subset) and the control gRNAs 
without a C in the target region. We considered the 20-nucleotide gRNA targeting 
sequence flanked on either side by an additional 5 nucleotides for a total of 30 nucleotides 
per gRNA. For each of the 5928 gRNAs, we then extracted all possible position-specific 
sequence features up to 4 nucleotides in length, resulting in a total of over 8000 sequence 
features across all gRNAs81. The gRNAs were split into a training set of 4928 gRNAs and 
a test set of 1000 gRNAs. An ordinary and a logistic lasso regression model was then 
obtained from the training set. For the logistic lasso model, we defined gRNAs with a 
log2FC < -0.5 as dropping out. Evaluated on the test set, the lasso-predicted and 
observed effects show a Pearson correlation coefficient (R2) of 0.37 and 0.35 for the 
ordinary and the logistic model, respectively. 
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Comparison to eQTL and pQTL hotspots in natural yeast isolates 
 
Our goal here was to identify candidate causal genes that could underlie observed eQTL 
and pQTL hotspots in segregants of the S. cerevisiae strains BY and RM11-1a33,34. 
Among the genes located in the eQTL and pQTL hotspot intervals, we identified those 
that affect at least three of our eleven proteins. The resulting list of gene candidates was 
narrowed down to those that contain at least one variant between BY and RM with a 
predicted medium or strong effect (i.e., missense mutation, indel, or premature stop 
codon) (Table S7). 
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