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Abstract 

There is significant interest in pooling magnetic resonance image (MRI) data from multiple 

datasets to enable mega-analysis. Harmonization is typically performed to reduce 

heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms 

do not explicitly consider downstream application performance during harmonization. 

However, the choice of downstream application might influence what might be considered as 

study-specific confounds. Therefore, ignoring downstream applications during harmonization 

might potentially limit downstream performance. Here we propose a goal-specific 

harmonization framework that utilizes downstream application performance to regularize the 

harmonization procedure.  Our framework can be integrated with a wide variety of 

harmonization models based on deep neural networks, such as the recently proposed 

conditional variational autoencoder (cVAE) harmonization model. Three datasets from three 

different continents with a total of 2787 participants and 10085 anatomical T1 scans were 

used for evaluation. We found that cVAE removed more dataset differences than the widely 

used ComBat model, but at the expense of removing desirable biological information as 

measured by downstream prediction of mini mental state examination (MMSE) scores and 

clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove 

as much dataset differences as cVAE, while improving downstream cross-sectional 

prediction of MMSE scores and clinical diagnoses. 
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1 Introduction 

            Large scale MRI datasets from multiple sites have boosted the study of human brain 

structure and function (Yeo et al., 2011; Van Essen et al., 2013; Miller et al., 2016; Volkow 

et al., 2018). Combining datasets from multiple sites can potentially boost statistical power, 

so there is significant interest in pooling data across multiple sites (Thompson et al., 2017; 

Whelan et al., 2018; Tang et al., 2020; Lu et al., 2020). However, MRI data is sensitive to 

variation of scanners across different sites (Jovicich et al., 2006; Magnotta et al., 2012;  Chen 

et al., 2014; Hawco et al., 2018), so post-acquisition harmonization is necessary for removing 

unwanted variabilities in pooling data across multiple studies.  

A popular harmonization approach is the ComBat framework (Fortin et al., 2017, 

2018; Yu et al., 2018) that utilizes a mixed effects regression model to remove additive and 

multiplicative site effects. Other ComBat variants have since been proposed (Garcia-Dias et 

al., 2020; Pomponio et al., 2020; Wachinger et al., 2021). However, most ComBat variants 

consider each brain region separately (but see Chen et al., 2019), so might not be able to 

remove nonlinear site differences that are distributed across brain regions.   

These nonlinear distributed site differences might be more readily removed by 

harmonization approaches based on deep neural networks (DNNs; (Tanno et al., 2017; 

Blumberg et al., 2018; Ning et al., 2019). One popular approach is the use of the variational 

autoencoder (VAE) framework (Moyer et al., 2020; Russkikh et al., 2020; Zuo et al., 2021), 

which typically uses an encoder to generate site-invariant latent representations. Site 

information can then be added to the latent representations to “reconstruct” the MRI data. 

Another popular approach is the use of generative adversarial networks and cycle consistency 

constraints (Zhu et al., 2017; Zhao et al., 2019; Dewey et al., 2019; Modanwal et al., 2020; 

Bashyam et al., 2021).  

However, most previously proposed harmonization approaches do not consider 

downstream applications in the harmonization procedure. It is important to note that the goal 

of MRI harmonization is to remove ‘unwanted’ dataset differences, while preserving relevant 

biological information. However, unwanted dataset differences depend on the application. 

For example, if our goal is to develop an Alzheimer’s disease (AD) dementia prediction 

model that is generalizable across different racial groups, then ‘race’ might be considered an 

undesirable study difference. On the other hand, if we are interested in studying AD 

progression across different racial groups, then racial information needs to be preserved in the 
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harmonization process. Therefore, ignoring downstream applications in the harmonization 

procedure might potentially limit downstream performance. 

In this study, we propose a goal-specific harmonization framework that utilizes 

downstream applications to regularize the harmonization model. Our approach can be 

integrated with most DNN-based harmonization approaches, such as the conditional VAE 

(cVAE) harmonization model (Moyer et al., 2020), which was previously applied to diffusion 

MRI data. We then compared the resulting goal-specific cVAE (gcVAE) model with cVAE 

and ComBat using three datasets comprising 2787 participants and 10085 anatomical MRI 

scans. The evaluation procedure tested the ability of different harmonization models to 

remove dataset differences while retaining biological information as measured by 

downstream cross-sectional prediction of mini mental state examination (MMSE) scores and 

clinical diagnoses.  
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2 Methods 

2.1 Datasets 

In this study, we considered T1 structural MRI data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Jack et al., 2008, 2010), the Australian Imaging, 

Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009, 2010) and the Singapore Memory 

Ageing and Cognition Centre (MACC) Harmonization cohort (Hilal et al., 2015; Chong et 

al., 2017; Hilal et al., 2020). Across all three datasets, MRI data was collected at multiple 

timepoints. 

In the case of ADNI (Jack et al., 2008, 2010), we considered data from ADNI1 and 

ADNI2/Go. For ADNI1, the MRI scans were collected from 1.5 and 3T scanners from 

different vendors. For ADNI2/Go, the MRI scans were collected from 3T scanners. There 

were 1735 participants with at least one T1 MRI scan. There was a total of 7955 MRI scans 

across the different timepoints of the 1735 participants. 

 In the case of AIBL (Ellis et al., 2009, 2010), the MRI scans were collected from 1.5T 

and 3T Siemens (Avanto, Tim Trio and Verio) scanners. There were 495 participants with at 

least one T1 MRI scan. There was a total of 933 MRI scans across the different timepoints of 

the 495 participants. 

In the case of MACC (Hilal et al., 2015; Chong et al., 2017; Hilal et al., 2020), the MRI 

scans were collected from a Siemens 3T Tim Trio scanner. There were 557 participants with 

at least one T1 MRI scan. There was a total of 1197 MRI scans across the different 

timepoints of the 557 participants. 

 

2.2 Data Preprocessing 

Our goal is to harmonize volumes of regions of interest (ROIs) across datasets. Here, 

108 cortical and subcortical ROIs were defined based on the FreeSurfer software (Fischl et 

al., 2002; Desikan et al., 2006). In the case of ADNI, we utilized the ROI volumes provided 

by ADNI. These ROIs were generated by ADNI after several preprocessing steps 

(http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/) followed by the FreeSurfer 

version 4.3 (ADNI1) and 5.1 (ADNI2/GO) recon-all pipeline. In the case of AIBL and 

MACC, FreeSurfer version 6.0 recon-all pipeline was utilized. Therefore, differences 

between the datasets arose from both scanner and preprocessing differences.  
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2.3 Workflow overview 

In this study, we sought to harmonize brain ROI volumes between ADNI and AIBL, 

as well as ADNI and MACC. Figure 1 illustrates the workflow in this study using AIBL as an 

illustration. The procedure is exactly the same for MACC. In the case of AIBL, we used the 

Hungarian matching algorithm (Kuhn, 1955) to first select pairs of ADNI and AIBI 

participants with matched number of timepoints, age, sex, MMSE and clinical diagnosis 

(Figure 1A). The distributions of age, sex, MMSE and clinical diagnosis of all participants 

and matched participants are shown in Figure 2.  

There were 247 pairs of matched AIBI and ADNI participants with an average of 1.1 

scans per participant. The same approach was applied to ADNI and MACC, yielding 277 

pairs of matched MACC and ADNI participants with an average of 1.5 scans per participant. 

We note that not all timepoints have corresponding MMSE and clinical diagnosis 

information. Therefore, care was taken to ensure that all timepoints in the matched 

participants had both MMSE and clinical diagnosis. P values showing the quality of the 

matching procedure are found in Tables S1 to S7. The matched participants served as a test 

set to evaluate the harmonization procedures. 

The unmatched ADNI data was used to train goal-specific deep neural networks 

(DNN) for predicting MMSE and clinical diagnosis (Figure 1B; details in Section 2.6). The 

unmatched ADNI and AIBL participants were also used to fit the various harmonization 

models (Figure 1B; details in Section 2.7 and Section 2.8). We note that the goal-specific 

DNN was also utilized for training the gcVAE model. The same procedure was applied to 

ADNI and MACC. The trained harmonization models were then applied to the unharmonized 

brain volumes (Figure 1C).  

The harmonized data was then evaluated with two criteria (Figure 1D). The first 

criterion was dataset prediction performance when using a machine learning algorithm to 

predict which dataset the harmonized data came from. Lower dataset prediction performance 

indicates better harmonization. More specifically, we trained a XGBoost classifier (Chen & 

Guestrin, 2016) using the harmonized unmatched ADNI and AIBL brain volumes and then 

applied the classifier to the matched ADNI and AIBL brain volumes (details in Section 2.5). 

The same procedure was applied to ADNI and MACC. 

However, a simple way to achieve perfect dataset prediction results was to map all 

brain volumes to zero, thus losing all biological information. Therefore, the second criterion 

was downstream application performance. Here, we applied the goal-specific DNN (Figure 

1B) to the harmonized AIBL brain volumes from the matched participants. To demonstrate 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.483077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

the effects of no harmonization, the goal-specific DNN was also applied to the unharmonized 

ADNI brain volumes from the matched participants. The same procedure was applied to 

ADNI and MACC. 

 

 
Figure 1. Workflow of current study. We illustrate the workflow using ADNI and AIBL. 

The same procedure was applied to ADNI and MACC. (A) Matching participants to derive test 

set for harmonization evaluation (B left) Train goal-specific deep neural network (DNN) using 

unmatched unharmonized ADNI data to predict clinical diagnosis and MMSE. (B right) Train 

harmonization models (ComBat, cVAE & gcVAE) using unmatched unharmonized ADNI and 

AIBL data (C) Harmonize ADNI and AIBL brain volumes using trained harmonized models 

from step B (D) Evaluate harmonization performance using XGBoost site prediction model 

and goal-specific DNN using harmonized ADNI and AIBL brain volumes from matched 

participants. 
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Figure 2. Age, MMSE, sex and clinical diagnosis distributions before and after matching. 

(A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and AIBL (red). 

Differences in the attributes between ADNI and AIBL were not significant after matching. (B) 

Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and MACC (yellow). 

Differences in the attributes between ADNI and MACC were not significant after matching. P 

values showing the quality of the matching procedure are found in Tables S1 to S7.  
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2.4 Training, validation and test procedure 

As mentioned in the previous section, the matched participants were used as the test set 

for evaluation. The unmatched participants were used for training the goal-specific DNN, 

harmonization and dataset prediction models. More specifically, we divided the unmatched 

participants into 10 groups. Care was taken to ensure that the timepoints of any participant 

were not split across multiple groups. To train the goal-specific DNN, harmonization and 

dataset prediction models, 9 groups were used for training, while the remaining group was 

used as a validation set to tune the hyperparameters. This procedure was repeated 10 times 

with a different group being the validation set. Therefore, we ended up with 10 sets of trained 

models. The 10 sets of harmonization models were applied to the unharmonized data (Figure 

1C), yielding 10 sets of harmonized data. The 10 sets of XGBoost classifiers and goal-

specific DNNs were applied to the 10 corresponding sets of harmonized data (Figures 1D). 

The performance was evaluated across the 10 sets of models. 

 

2.5 Dataset prediction model 

To evaluate the harmonization approaches, we utilized XGBoost to predict which 

dataset the brain volumes came from. The inputs to the XGBoost model were the brain 

volumes divided by the total intracranial volume (ICV) of each participant. We used logistic 

regression as the objective function and ensemble of trees as the model structure. 10 

XGBoost classifiers were trained using the unmatched harmonized MRI volumes (see 

Section 2.4). For each XGBoost classifier, we used a grid search using the validation group to 

find the optimal set of hyperparameters. The prediction accuracy was averaged across all time 

points of each participant and the 10 classifiers before averaging across participants. 

 

2.6 Goal-specific DNNs 

Here we utilized DNNs to predict MMSE and clinical diagnosis (normal controls, mild 

cognitive impairment or Alzheimer’s disease dementia) jointly. The goal-specific DNNs were 

used to evaluate the harmonization approaches and also helped to finetune gcVAE. The 

inputs to the goal-specific DNNs were the brain ROI volumes. 10 DNNs were trained using 

the unmatched unharmonized ADNI MRI volumes (see Section 2.4). Previous studies have 

suggested that training with large number of participants from multiple sites can improve 

generalization to new sites (Liem et al., 2017; Orban et al., 2018; Mårtensson et al., 2020). 

Indeed, with sufficient training data, there was no difference in performance between intra-

site and inter-site prediction even without any harmonization (Abraham et al., 2017). 
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Therefore, in the current study, the training procedure utilized unharmonized ADNI data 

without differentiation among ADNI sites.  

Recall that not all unmatched timepoints had MMSE and clinical diagnosis 

information. Therefore, we used the previous timepoint with available information to fill in 

the missing data (Lipton et al., 2016; Che et al., 2018; Nguyen et al., 2020). Note that this 

filling in procedure was only performed during training procedure for the unmatched 

participants.  

 The architecture of the goal-specific DNN was a generic feedforward neural network, 

where every layer was fully connected with the next layer. The nonlinear activation function 

ReLU (Maas et al., 2013) was utilized. The DNN loss function corresponded to the weighted 

sum of the mean absolute error (MAE) for MMSE prediction and cross entropy loss for 

clinical diagnosis prediction: LgoalDNN =  λMMSE MAE + λDX CrossEntropy. λMMSE and λDX 

were two hyperparameters that were tuned on the validation set.  

The metric for tuning hyperparameters in the validation set was the weighted sum of 

MMSE MAE and clinical diagnosis accuracy:  ½ MAE  – Diagnosis Accuracy. The MAE 

term was divided by two so the two terms had similar ranges of values. We utilized the 

HORD algorithm (Regis & Shoemaker, 2013; Ilievski et al., 2017; Eriksson et al., 2020) to 

find the best set of hyperparameters using the validation set (Table 1). The trained DNN after 

100 epochs was utilized for subsequent analyses.   

 

Hyperparameter Search range 

Initial learning rate 1e-4 – 1e-3 

Learning rate step 10 – 99 

Dropout rate 0 – 0.5 

𝜆𝑀𝑀𝑆𝐸  0 – 1 

𝜆𝐷𝑋 0 – 1 

Nodes for each layer 32 – 512 

Number of layers 2 – 5 

Table 1. Hyperparameters estimated from the validation set. We note that a learning rate 

decay strategy was utilized. After K training epochs (where K = learning rate step), the 

learning rate was reduced by a factor of 10.  
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 At the evaluation phase (Figure 1D), the 10 goal-specific DNNs were applied to the 

harmonized brain volumes from the matched participants. The prediction performance was 

averaged across all time points of each participant and the 10 goal-specific DNNs before 

averaging across participants. 

 

2.7 Baseline harmonization models 

Here, we considered ComBat (Johnson et al., 2007) and cVAE (Moyer et al., 2020) as 

baseline models. 

 

2.7.1 ComBat 

ComBat is a linear mixed effects model that controls for additive and multiplicative 

site effects (Johnson et al., 2007). Here we utilized the R implementation of the algorithm 

(https://github.com/Jfortin1/ComBatHarmonization). The ComBat model is as follows: 

𝑥𝑖𝑗𝑣 = 𝛼𝑣 + 𝑌𝑖𝑗
𝑇𝛽𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣𝜖𝑖𝑗𝑣 ,  

where 𝑖 is the site index, 𝑗 is the participant index and 𝑣 is the brain ROI index.  𝑥𝑖𝑗𝑣 is the 

volume of the 𝑣-th brain ROI of subject 𝑗 from site 𝑖. 𝛾𝑖𝑣 is the addictive site effect. 𝛿𝑖𝑣 is the 

multiplicative site effect. 𝜖𝑖𝑗𝑣 is the residual error term following a normal distribution with 

zero mean and variance δv
2. 𝑌𝑖𝑗 are the covariates of subject 𝑗 from site 𝑖.  

 The ComBat parameters 𝛼𝑣, 𝛽𝑣, 𝛾𝑖𝑣 and 𝛿𝑖𝑣 were estimated for each brain ROI using 

the unmatched unharmonized ROI volumes (Figure 1B). The estimated parameters can then 

be applied to a new participant 𝑖 from site 𝑗 with brain volume 𝑥𝑖𝑗𝑣 and covariates 𝑌𝑖𝑗  

𝑥𝑖𝑗𝑣
𝐶𝑜𝑚𝐵𝐴𝑇 =

𝑥𝑖𝑗𝑣 −  �̂�𝑣 − 𝑌𝑖𝑗
𝑇�̂�𝑣 − 𝛾𝑖𝑣 

𝛿𝑖𝑣

 +  �̂�𝑣 +  𝑌𝑖𝑗
𝑇�̂�𝑣, 

where  ̂ indicates that the parameter was estimated from the unmatched unharmonized ROI 

volumes from ADNI and AIBL. A separate ComBat model was fitted for ADNI and MACC 

brain volumes. Observe that the equation required the covariates of the new participant. 

Given that we would like to predict MMSE and clinical diagnosis in the matched participants, 

we did not utilize MMSE and clinical diagnosis as covariates in the ComBat model. 

Therefore, in this study, we only utilized age and sex as covariates. 

 Furthermore, since the goal-specific DNNs were trained with unmatched 

unharmonized ADNI data without distinguishing among the sites (Section 2.6), for 

consistency, the ComBat procedure also treated ADNI as a single site despite the data coming 

from multiple sites and scanners. This was also the case for AIBL. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.483077doi: bioRxiv preprint 

https://github.com/Jfortin1/ComBatHarmonization
https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 

2.7.2 cVAE 

The conditional variational autoencoder (cVAE) model was proposed by Moyer and 

colleagues to harmonize diffusion MRI data (Moyer et al., 2020). Here, we applied cVAE to 

harmonize brain ROI volumes. The cVAE model is illustrated in Figure 3A. Input brain 

volumes were passed through an encoder DNN yielding representation 𝑧. Site index 𝑠 was 

concatenated with the latent representation 𝑧 before feeding into the decoder DNN, resulting 

in the reconstructed brain volumes �̂�. By incorporating the mutual information 𝐼(𝑧, 𝑠) in the 

cost function, this encouraged the learned representation 𝑧 to be independent of the site 𝑠. 

The resulting lost function is as follows:  

𝐿𝑐𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐𝑜𝑛 +  𝛼𝐿𝑝𝑟𝑖𝑜𝑟 −  𝛾𝐿𝑎𝑑𝑣 +  𝜆𝐼(𝑧, 𝑠),  

where 𝐿𝑟𝑒𝑐𝑜𝑛 is the mean square error (MSE) between 𝑥 and �̂�, so this encouraged the 

harmonized volumes to be similar to the unharmonized volumes. To further encourage 𝑥 and 

�̂� to be similar, Moyer and colleagues added an additional term 𝐿𝑎𝑑𝑣, which is the soft-max 

cross-entropy loss of an adversarial discriminator seeking to distinguish between 𝑥 and �̂�. 

Finally, 𝐿𝑝𝑟𝑖𝑜𝑟 is the standard KL divergence between representation 𝑧 and the multivariate 

Gaussian distribution with zero mean and identity covariance matrix (Sohn et al., 2015). 
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Figure 3. cVAE and gcVAE model structures. (A) Model structure for the cVAE model. 

Encoder, decoder, and discriminator were all fully connected feedforward DNNs. 𝑠 was the 

site we wanted to map the brain volumes to. (B) Model structure for the gcVAE model. The 

goal-specific DNN (goalDNN) from Section 2.6 was used to guide the cVAE harmonization 

process. During training of gcVAE, the weights of the goal-specific DNN were fixed.  

 

Both the decoder and encoder were instantiated as generic feedforward neural 

networks, where every layer was fully connected with the next layer. Following Moyer and 

colleagues, the nonlinear activation function tanh (Maas et al., 2013) was utilized. During the 

training process, 𝑠 is the true site information for input brain volumes 𝑥. After training, we 

could map input 𝑥 to any site by changing 𝑠. The metric for tuning hyperparameters in the 

validation set was the weighted sum of the reconstruction loss (MSE between 𝑥 and �̂�) and 

the subject-level dataset prediction accuracy: ½ MAE + Dataset Accuracy. The MAE 

reconstruction loss was divided by two so the two terms had similar ranges of values. Dataset 

prediction accuracy was obtained by training a XGBoost classifier on the training set and 
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applying to the validation set. We utilized the HORD algorithm (Regis & Shoemaker, 2013; 

Ilievski et al., 2017; Eriksson et al., 2020) to find the best set of hyperparameters using the 

validation set (Table 2). The trained DNN after 1000 epochs was utilized for subsequent 

analyses (Figure 1C). 

Similar to ComBat, the cVAE model was trained using unmatched unharmonized brain 

volumes from ADNI and AIBL. A separate model was trained using ADNI and MACC. For 

consistency, the cVAE model also treated ADNI and AIBL as single sites.  

 

Hyperparameter Search range 

Initial learning rate 1e-2 – 1e-1 

Learning rate step 10 - 999 

Dropout rate 0 – 0.5 

𝛼 0.01 - 1 

𝛾 0.01 - 10 

𝜆 0.01 - 1 

Nodes for each layer 32 - 512 

Number of layers 2 - 4 

Node for z 32 - 512 

Table 2. Hyperparameters estimated from the validation set. We note that a learning rate 

decay strategy was utilized. After K training epochs (where K = learning rate step), the 

learning rate was reduced by a factor of 10.  

 

2.8 Goal-specific cVAE (gcVAE) 

To incorporate downstream application performance in the harmonization procedure, 

the outputs of the cVAE (Figure 3A) were fed into the goal-specific DNN (Section 2.6). The 

resulting goal-specific cVAE (gcVAE) is illustrated in Figure 3B. The loss function of the 

gcVAE was given by corresponded to the weighted sum of the mean absolute error (MAE) 

for MMSE prediction and cross entropy loss for clinical diagnosis prediction: 

LgcVAE = 𝛼𝑀𝑀𝑆𝐸MAE + 𝛼𝐷𝑋CrossEntropy,  

where 𝛼𝑀𝑀𝑆𝐸  and 𝛼𝐷𝑋 were two hyperparameters to be tuned with the validation set. The loss 

function was used to finetune the trained cVAE model (Section 2.7.2) using the training set 

with a relatively small learning rate. We note that the weights of the goal-specific DNN 

model were frozen during this finetuning procedure.  
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The metric for tuning hyperparameters in the validation set was the weighted sum of 

MMSE MAE and clinical diagnosis accuracy:  ½ MAE  – Diagnosis Accuracy (same as 

Section 2.6). Since there were only three hyperparameters (learning rate, 𝛼𝑀𝑀𝑆𝐸  and 𝛼𝐷𝑋), a 

grid search was performed using the validation set to find the best set of hyperparameters. 

Similar to ComBat and cVAE, the gcVAE model was trained using unmatched 

unharmonized brain volumes from ADNI and AIBL. A separate model was trained using 

ADNI and MACC. For consistency, the gcVAE model also treated ADNI and AIBL as single 

sites.  

 

2.9 Deep neural network implementation 

All DNNs were implemented using PyTorch (Paszke et al., 2017) and computed on 

NVIDIA RTX 3090 GPUs with CUDA 11.0. To optimize the DNNs, we used the Adam 

optimizer (Kingma & Ba, 2017) with default PyTorch settings.  

 

2.10 Statistical tests 

Two-sided two-sample t-tests were utilized to test for differences in age and MMSE 

between matched participants of AIBI and ADNI (as well as MACC and ADNI). In the case 

of sex and clinical diagnoses, we utilized chi-squared tests.  

As discussed in Sections 2.5 and 2.6, prediction performance was averaged across all 

time points of each participant and across the 10 sets of models, yielding a single prediction 

performance for each participant. When comparing dataset prediction performance and goal-

specific prediction performance between two harmonization approaches (Figure 1D), we 

utilized the permutation test with 10,000 permutations.      

Multiple comparisons were corrected with a false discovery rate (FDR) of q < 0.05. 

 

2.11 Data and code availability 

Code for the various harmonization algorithms can be found here (GITHUB_LINK). 

One of the co-authors (PC) reviewed the code before merging it into the GitHub repository to 

reduce the chance of coding errors. 

The ADNI and the AIBL datasets can be accessed via the Image & Data Archive 

(https://ida.loni.usc.edu/). The MACC dataset can be obtained via a data-transfer agreement 

with the MACC (http://www.macc.sg/).   
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3 Results 

3.1 Matched participants were more similar after VAE harmonization 

Figure 4A illustrates the Pearson's correlation of each brain ROI volume between 

matched ADNI and AIBL participants before and after harmonization. Before harmonization, 

the average correlation (across ROIs) was 0.16. After applying ComBat, the correlation 

remained low with an average correlation of 0.15. After applying cVAE and gcVAE, the 

correlations increased to an average of 0.30.  

Similar results were obtained with ADNI and MACC (Figure 4B). Before 

harmonization, the average correlation (across ROIs) was 0.20. After applying ComBat, the 

correlation remained low with an average correlation of 0.19. After applying cVAE and 

gcVAE, the correlations increased to an average of 0.44. 

Given that matched participants had similar age, sex, MMSE and clinical diagnosis, the 

results suggest that cVAE and gcVAE appeared to remove more dataset-specific differences 

than ComBat.  

 

3.2 cVAE & gcVAE removed more dataset differences than ComBat 

Figure 5A shows the dataset prediction performance for the matched ADNI and AIBL 

participants. Before harmonization, the XGBoost classifier was able to predict which dataset 

a participant came from with 100% accuracy. After applying ComBat, the prediction 

accuracy dropped to 0.626 ± 0.410 (mean ± std), suggesting significant removal of dataset 

differences. After applying cVAE and gcVAE, dataset prediction performance dropped to 

0.595 ± 0.381 and 0.603 ± 0.382 respectively, which were significantly lower than ComBat 

(Table 3). There was no statistical difference between cVAE and gcVAE. However, dataset 

prediction accuracies for cVAE and gcVAE were still better than chance (p = 1e-4), 

suggesting residual dataset differences.   

Similar results were obtained for matched ADNI and MACC participants (Figure 5B). 

Before harmonization, the XGBoost classifier was able to predict which dataset a participant 

came from with 100% accuracy. Dataset prediction accuracies after ComBat, cVAE and 

gcVAE were 0.721 ± 0.392, 0.603 ± 0.391 and 0.598 ± 0.398 respectively. There was no 

statistical difference between cVAE and gcVAE. Both cVAE and gcVAE had statistically 

lower dataset prediction performance than ComBat (Table 4).  
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Overall, cVAE and gcVAE appeared to remove more dataset differences than ComBat. 

However, dataset prediction accuracies for cVAE and gcVAE were still better than chance (p 

= 1e-4), suggesting residual dataset differences.   

 

Figure 4. Correlation of each brain volume across matched participants before and 

after harmonization. (A) Correlation between ADNI and AIBL matched participants. (B) 

Correlation between ADNI and MACC matched participants. The higher correlations for 

cVAE and gcVAE suggest better removal of dataset-specific differences.  
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Figure 5. Dataset prediction accuracies. (A) Left: Dataset prediction accuracies for 

matched ADNI and AIBL participants. Right: p values of differences between different 

approaches. "*" indicates statistical significance after surviving FDR correction (q < 0.05). 

"n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC 

participants. All p values are reported in Tables 3 and 4. 

 

 

Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.000 ± 0.027)  1e-4 1e-4 1e-4 

ComBat (0.626 ± 0.410)   0.0055 0.0410 

cVAE (0.595 ± 0.381)    0.1754 

gcVAE (0.603 ± 0.382)     

Table 3. Dataset prediction accuracies with p values of differences between different 

approaches for matched ADNI and AIBL participants. Statistically significant p values after  

FDR (q < 0.05) corrections are bolded.  
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Dataset Prediction Accuracies 

（mean ± std） 

p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.00 ± 1e-16)  1e-4 1e-4 1e-4 

ComBat (0.721 ± 0.392)   1e-4 1e-4 

cVAE (0.603 ± 0.391)    0.3584 

gcVAE (0.598 ± 0.398)     

Table 4. Dataset prediction accuracies with p values of differences between different 

approaches for matched ADNI and MACC participants. Statistically significant p values after  

FDR (q < 0.05) corrections are bolded. 

 

 

3.3 gcVAE outperformed cVAE for clinical diagnosis prediction 

Figure 6A shows the clinical diagnosis prediction accuracies for matched ADNI and 

AIBL participants. Because the matched participants had similar age, sex, MMSE and 

clinical diagnosis, comparison between unharmonized ADNI and unharmonized AIBL 

participants would indicate whether there was a drop in prediction performance due to dataset 

differences. Unexpectedly, there was no statistical difference in clinical diagnosis prediction 

performance between unharmonized ADNI and unharmonized AIBL participants (Table 5).  

Applying ComBat resulted in a statistical significant drop in prediction performance (p 

= 7e-4) compared with no harmonization. This suggests that ComBat removed biological 

information in addition to dataset differences (Figure 5A). cVAE exhibited an even bigger 

drop in prediction performance compared with ComBat (p = 1e-4), suggesting that the better 

removal of dataset differences (Figure 5A) came at the expense of removing even more 

biological information. gcVAE yielded the best prediction performance with statistically 

significant improvements over all other approaches, including unharmonized ADNI (see p 

values in Table 5).  

Figure 6B shows the clinical diagnosis prediction accuracies for matched ADNI and 

MACC participants. As expected, there was a significant drop in clinical diagnosis prediction 

performance between unharmonized ADNI and unharmonized MACC participants (p = 1e-

4). The decrease in clinical diagnosis performance was worsened by ComBat and cVAE, 

once again suggesting that the removal of dataset differences (Figure 5B) came at the expense 

of also removing biological information. gcVAE recovered a significant portion of the 

decrease in prediction performance, such that it was not statistically different from 
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unharmonized MACC (Table 6). However, it was still significantly worse than unharmonized 

ADNI, suggesting potential room for improvement.   

 

 

Figure 6. Clinical diagnosis prediction accuracies. (A) Left: Clinical diagnosis prediction 

accuracies for matched ADNI and AIBL participants. Right: p values of differences between 

different approaches. "*" indicates statistical significance after surviving FDR correction (q < 

0.05). "n.s." indicates not significant. (B) Same as (A) but for matched ADNI and MACC 

participants. All p values are reported in Tables 5 and 6. 
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Clinical Diagnosis Prediction 

Accuracies 

（mean ± std） 

p values 

Unharm ADNI Unharm AIBL ComBat cVAE gcVAE 

Unharm ADNI (0.48 ± 0.33)  0.5171 0.0077 1e-4 2e-4 

Unharm AIBL (0.47 ± 0.23)   7e-4 1e-4 1e-4 

ComBat (0.41 ± 0.34)    1e-4 1e-4 

cVAE (0.26 ± 0.29)     1e-4 

gcVAE (0.69 ± 0.41)      

Table 5. Clinical diagnosis prediction accuracies with p values of differences between different 

approaches for matched ADNI and AIBL participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded.  

 

 

Clinical Diagnosis Prediction 

Accuracies 

（mean ± std） 

p values 

Unharm ADNI Unharm MACC ComBat cVAE gcVAE 

Unharm ADNI (0.63 ± 0.33)  1e-4 1e-4 1e-4 1e-4 

Unharm MACC (0.45 ± 0.29)   0.0124 1e-4 0.0545 

ComBat (0.42 ± 0.35)    2e-4 0.0065 

cVAE (0.36 ± 0.26)     1e-4 

gcVAE (0.49 ± 0.30)      

Table 6. Clinical diagnosis prediction accuracies with p values of differences between different 

approaches for matched ADNI and MACC participants. Statistically significant p values after 

FDR (q < 0.05) corrections are bolded. 

 

 

3.4 gcVAE outperformed cVAE in MMSE prediction 

Figure 7A shows the MMSE prediction mean absolute error (MAE) for matched ADNI 

and AIBL participants. Because the matched participants had similar age, sex, MMSE and 

clinical diagnosis, comparison between unharmonized ADNI and unharmonized AIBL 

participants would indicate whether there was a drop in prediction performance due to dataset 

differences. As expected, there was a drop in MMSE prediction performance (increased 

MAE) for unharmonized AIBL participants compared with unharmonized ADNI participants 

(p = 1e-4).  

There was no statistical difference between ComBat and the unharmonized AIBL 

participants. cVAE had statistically worse MMSE prediction performance compared with all 
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other approaches (p values in Table 7). gcVAE  recovered a significant portion of the 

decrease in prediction performance, such that prediction performance was not statistically 

different from ComBat and unharmonized AIBL (Table 7). However, it was still statistically 

worse than unharmonized ADNI, suggesting further room for improvement. 

Figure 7B shows the MMSE prediction MAE for matched ADNI and MACC 

participants. As expected, there was a drop in MMSE prediction performance (increased 

MAE) for unharmonized MACC participants compared with unharmonized ADNI 

participants (p = 1e-4). Both ComBat and cVAE caused further drop in prediction 

performance (p values in Table 8). gcVAE had the best prediction performance (lowest 

MAE), such that prediction performance was not statistically different from unharmonized 

ADNI (Table 8). 

 

Figure 7. MMSE prediction errors as measured by mean absolute error (MAE). (A) 

Left: MMSE prediction errors for matched ADNI and AIBL participants. Right: p values of 

differences between different approaches. "*" indicates statistical significance after surviving 

FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for matched 

ADNI and MACC participants. All p values are reported in Tables 7 and 8. 
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MMSE Prediction MAE 

（mean ± std） 

p values 

Unharm ADNI Unharm AIBL ComBat cVAE gcVAE 

Unharm ADNI (1.60 ± 2.17)  1e-4 0.0061 1e-4 1e-4 

Unharm AIBL (1.86 ± 2.32)   0.4339 0.0054 0.0756 

ComBat (1.82 ± 2.07)    0.0322 0.1473 

cVAE (2.09 ± 3.29)     0.0023 

gcVAE (1.97 ± 2.93)      

Table 7. MMSE prediction errors with p values of differences between different approaches 

for matched ADNI and AIBL participants. Statistically significant p values after FDR (q < 

0.05) corrections are bolded. 
 

MMSE Pred MAE 

（mean ± std） 

p values 

Unharm ADNI Unharm MACC ComBat cVAE gcVAE 

Unharm ADNI (4.26 ± 3.87)  1e-4 1e-4 1e-4 0.9570 

Unharm MACC (5.09 ± 4.66)   1e-4 1e-4 1e-4 

ComBat (5.61 ± 5.03)    1e-4 1e-4 

cVAE (5.96 ± 5.50)     1e-4 

gcVAE (4.61 ± 3.57)      

Table 8. MMSE prediction errors with p values of differences between different approaches 

for matched ADNI and MACC participants. Statistically significant p values after FDR (q < 

0.05) corrections are bolded. 
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4 Discussion 

In this study, we proposed a flexible harmonization framework to utilize downstream 

application performance to regularize the harmonization model. Our proposed approach 

could be integrated with most harmonization approaches based on DNNs. Here, we integrated 

our approach with the cVAE model. Using three large-scale datasets, we demonstrated that 

gcVAE compared favorably with ComBat and cVAE.      

We found that cVAE was able to significantly remove more dataset differences than 

ComBat (Figure 5). This makes intuitive sense given that cVAE considered all brain regions 

jointly, so should theoretically be able to remove multivariate site effects distributed across 

brain regions. However, the removal of more dataset differences came at the expense of also 

removing relevant biological information as measured by downstream application 

performance (Figures 6 and 7).  

Indeed, the removal of relevant biological information was an issue not just for 

cVAE, but also for ComBat. In the case of predicting clinical diagnosis and MMSE, the use 

of ComBat led to similar or worse performance than not harmonizing at all. By constraining 

the harmonization with goal-specific DNNs, the cVAE models were able to yield better 

prediction of MMSE and clinical diagnosis (Figures 6 and 7), while removing as much 

dataset differences as cVAE (Figure 5). In the case of clinical diagnosis prediction, gcVAE 

was able to yield better prediction performance than no harmonization. In the case of MMSE 

prediction, gcVAE was able to yield better prediction performance than no harmonization in 

the MACC dataset, but was only able to yield comparable prediction performance than no 

harmonization in the AIBL dataset. 

  However, the strength of gcVAE is also its main limitation. The reliance of goal-

specific DNNs led to better downstream performance, but the resulting improvements might 

not generalize to new downstream applications. Therefore, the training procedure might have 

to be repeated for each new downstream application. Future research is necessary to address 

this limitation.  
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5 Conclusion 

In this study, we proposed a goal-specific brain MRI harmonization framework, which 

took into account downstream application performance in the harmonization process. Using 

three large-scale datasets, we demonstrated that our approach compared favorably with existing 

approaches in terms of preserving relevant biological information, while removing site 

differences.    
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Supplementary 

 Timepoint ADNI value AIBL value P value 

AGE 

1 71.0±5.5 70.8±5.3 0.96 

2 72.5±5.5 72.6±5.5 0.98 

3 74.2±5.5 73.9±5.6 0.93 

4 75.7±5.5 75.6±5.5 0.99 

MMSE 

1 29.3±0.9 29.2±0.9 1.00 

2 29.5±0.5 29.5±0.5 1.00 

3 29.7±0.5 29.7±0.5 1.00 

4 29.5±0.8 29.5±0.8 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

4 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S1. ADNI-AIBL matching results for participants having 4 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 Timepoint ADNI value AIBL value P value 

AGE 

1 73.3±3.3 73.1±3.3 0.96 

2 74.8±3.3 75.2±3.3 0.94 

3 76.3±3.3 76.1±3.3 0.97 

MMSE 

1 29.0±0.0 20.0±0.0 1.00 

2 30.0±0.0 30.0±0.0 1.00 

3 30.0±0.0 30.0±0.0 1.00 

AD diagnosis 

1 100%-0%-0% 100%-0%-0% 1.00 

2 100%-0%-0% 100%-0%-0% 1.00 

3 100%-0%-0% 100%-0%-0% 1.00 

Sex - 50% 50% 1.00 

Table S2. ADNI-AIBL matching results for participants having 3 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.483077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/


33 
 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

 Timepoint ADNI value AIBL value P value 

AGE 
1 74.4±9.8 74.5±9.8 0.99 

2 76.1±9.8 76.1±9.9 0.99 

MMSE 
1 27.9±2.8 27.9±2.8 1.00 

2 27.8±2.8 27.8±2.8 1.00 

AD diagnosis 
1 57%-43%-0% 57%-43%-0% 1.00 

2 57%-43%-0% 57%-43%-0% 1.00 

Sex - 88% 88% 1.00 

Table S3. ADNI-AIBL matching results for participants having 2 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 

 Timepoint ADNI value AIBL value P value 

AGE 1 74.8±5.9 74.8±5.9 1.00 

MMSE 1 27.3±3.9 27.3±3.9 0.98 

AD diagnosis 1 68%-19%-13% 68%-19%-13% 1.00 

Sex - 43% 43% 1.00 

Table S4. ADNI-AIBL matching results for participants having 1 time point (scan). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 
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 Timepoint ADNI value MACC value P value 

AGE 

1 71.5±6.8 72.3±6.7 0.67 

2 73.5±6.8 73.8±6.8 0.91 

3 75.9±6.9 75.5±6.6 0.81 

MMSE 

1 26.9±3.7 27.0±3.5 0.94 

2 26.1±4.5 26.1±4.5 0.98 

3 24.9±6.3 25.2±6.3 0.87 

AD diagnosis 

1 39%-46%-15% 36%-54%-10% 0.72 

2 43%-36%-21% 46%-36%-18% 0.88 

3 43%-36%-21% 46%-32%-22% 0.91 

Sex - 57% 57% 1.00 

Table S5. ADNI-MACC matching results for participants having 3 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 

 Timepoint ADNI value MACC value P value 

AGE 
1 73.6±5.7 73.9±5.6 0.78 

2 75.8±5.6 75.5±5.6 0.71 

MMSE 
1 24.7±4.9 24.8±4.6 0.86 

2 23.4±6.9 23.5±6.6 0.91 

AD diagnosis 
1 35%-38%-27% 35%-40%-25% 0.80 

2 37%-30%-33% 37%-35%-28% 0.49 

Sex - 51% 58% 0.20 

Table S6. ADNI-MACC matching results for participants having 2 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 
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 Timepoint ADNI value MACC value P value 

AGE 1 75.7±6.7 75.7±6.7 0.97 

MMSE 1 21.0±5.9 21.0±5.9 0.94 

AD diagnosis 1 14%-34%-52% 14%-38%-48% 0.64 

Sex - 52% 56% 0.34 

Table S7. ADNI-MACC matching results for participants having 1 time points (scans). For 

clinical diagnosis in the table, the percentage is showed as CN%-MCI%-AD%. For sex in the 

table, the portion is the ratio of male subjects. For Age/MMSE, the p value was calculated 

from a two-sample t-test. For Sex/AD diagnosis, the p value was calculated from the chi-

square goodness of fit test. 

 
 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.483077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483077
http://creativecommons.org/licenses/by-nd/4.0/

