
CLEAN: Leveraging spatial autocorrelation in neuroimaging data in
clusterwise inference

Jun Young Parka,∗, Mark Fiecasb

aDepartment of Statistical Sciences and Department of Psychology, University of Toronto, Toronto, ON M5S,
Canada.

bDivision of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, U.S.A.

Abstract

While clusterwise inference is a popular approach in neuroimaging that improves sensitivity, current
methods do not account for explicit spatial autocorrelations because most use univariate test statis-
tics to construct cluster-extent statistics. Failure to account for such dependencies could result in
decreased reproducibility. To address methodological and computational challenges, we propose a
new powerful and fast statistical method called CLEAN (Clusterwise inference Leveraging spatial
Autocorrelations in Neuroimaging). CLEAN computes multivariate test statistics by modelling
brain-wise spatial autocorrelations, constructs cluster-extent test statistics, and applies a refitting-
free resampling approach to control false positives. We validate CLEAN using simulations and
applications to the Human Connectome Project. This novel method provides a new direction in
neuroimaging that paces with advances in high-resolution MRI data which contains a substantial
amount of spatial autocorrelation.

Keywords: cluster inference, task-fMRI, group-level activation, neuroimaging data analysis,
permutation, spatial autocorrelation modelling

1. Introduction

The Human Connectome Project (HCP) has incorporated state-of-the-art advances in neu-
roimaging acquisition and processing [1]. In particular, the analytic approach using surface-based
analysis has attractive features compared to volumetric analysis, including dimension reduction
and improved cross-subject alignment and visualization [2, 3, 4]. Surface-based data has been used
in FreeSurfer [5] and is available as a CIFTI format developed by the HCP for the analysis of the
grayordinate data [6]. The CIFTI format is available for processing, analysis, or visualization in
Python [2], R [7], and Matlab [8].

Statistical methods for surface-based analysis, however, are still lacking, and there remain a
number of challenges that need to be addressed. First, surface-based data exhibit strong spatial
autocorrelation that impacts the sensitivity and specificity of statistical tests. Second, cluster-wise
inference with adjustments for multiple comparisons can lead to the use of a stringent threshold,
further affecting sensitivity and specificity [9]. Finally, the use of small sample size (e.g. N ≤ 30)
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has been shown to impact the reproducibility of the results [10, 11]. Current statistical practices
include spatial smoothing (blurring) of the images to reduce the noise variance at each location
which could improve statistical power. However, spatial smoothing decreases the benefits gained
from having high-resolution data, but it has also been shown to potentially lead to a significant
loss in sensitivity and specificity [3].

We first review existing statistical methods that improve statistical power in neuroimaging data
with spatial autocorrelations in Sections 1.1 and 1.2 [12]. It is summarized into two major areas:
including modelling the mean (i.e. regression parameters in the general linear model (GLM)) and
modelling the covariance (i.e. noise in GLM). We then provide an outline of our approach in 1.3.

1.1. Modelling the mean structure: clusterwise inference

In this paper, we define clusterwise inference as a statistical method that aggregates test statis-
tics (e.g. z or t statistics) in the spatial domain [13]. Clusterwise inference has good statistical
power when signal locations form a spatial cluster within the brain [14, 15]. Two approaches include
(i) a two-step approach, where first an initial threshold for each location to define spatial clusters
is set and then inference on the clusters is conducted and (ii) a one-step approach that constructs a
cluster-enhanced statistic for every location and set a threshold that controls the familywise error
rate (FWER). The former approach relies on setting an initial cluster-defining threshold (CDT)
that balances false positives with power. While p < 0.001 is commonly used [16], setting a model-
based or adaptive threshold has also been proposed at the expense of computational cost [17, 18].
The latter approach is represented by the threshold-free cluster enhancement (TFCE), where the
FWER-controlling threshold is determined by either resampling methods or Gaussian Random
Field Theory (GRFT) [14, 19]. Other related methods have shown to be powerful in task-fMRI by
borrowing information from the neighboring locations through a non-linear filter [15].

Despite its popularity, current clusterwise inference is limited mainly to volumetric (3D) fMRI
data or relies heavily on GRFT. Also, a comprehensive exploratory data analysis revealed that the
spatial covariance structure is far from Gaussian but closer to exponential or a mixture of Gaussian
and exponential, implying that the assumptions needed by GRFT may be too strong, motivating
a need for new methods to replace GRFT [20, 21].

While spatial smoothing increases signal-to-noise ratio (SNR) in each location, unwanted vari-
ations arise when conducting statistical inference. We consider each location to be either a signal
location or a null location. After smoothing, a null location may become a signal location if other
signal locations are nearby, and is thus a pseudo-signal since it was truly null prior to smoothing.
Thus, any powerful statistical inference that identifies the pseudo-signal location as signal would
be prone to decreased specificity. Also, smoothing is not beneficial when a signal cluster (i.e. a col-
lection of neighboring and spatially connected signal locations) is small in size, in which case these
small signal clusters may only be detected if they have large effect sizes that would decrease when
blurred with neighboring null locations, implying that smoothing can also decrease sensitivity.

1.2. Modelling the covariance structure: spatial autocorrelation

Most clusterwise inference methods use univariate test statistics (e.g. voxel-wise t statistics)
to compute cluster-enhanced test statistics. However, neuroimaging data, especially surface-based
data, reveals a high degree of spatial autocorrelation. Ignoring such dependencies in constructing
test statistics in each location could result in low sensitivity when the signal-to-noise ratio (SNR)
is low. In clusterwise inference, this would be problematic when the size of a signal region is small.
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In the neuroimaging literature, there are both parametric and nonparametric approaches to
model the spatial structure of the test statistics. Examples of a nonparametric approach are the
methods that locally smooth the variance of the test statistics. FSL provides a variance smoothing
option [10] to generate ‘pseudo’ t statistics, and Wang et al. [22] recently proposed an approach
based on empirical Bayes, termed ‘locally moderated’ t statistic, by pooling variance information
across a predefined set of neighbors. An example of a parametric approach includes modelling the
spatial covariance using a Gaussian process (GP). Indeed, this parametric approach is the most
straightforward and commonly-used way to address the spatial autocorrelation and reduce the
variance of a test statistic at each location. One can find this approach in constructing multivariate
test statistics [23, 12, 24] or in constructing a posterior probability map [4]. From the modelling
perspective, several autoregressive (AR) models have been proposed in the neuroimaging literature,
including the simultaneously autoregressive (SAR) model [25] or the conditional autoregressive
(CAR) model [26]. However, while both SAR and CAR models account for spatial autocorrelations,
the implied spatial covariance structure by CAR or SAR is often misleading in approximating the
spatial covariance [27]. Also, in task-fMRI data in 3D, the parametric structure for the spatial
covariance could be prone to misspecification, e.g. Eklund et al. [20] illustrated that the covariance
structure is Gaussian locally but exponential in large distances. Another possibility is to construct
an explicit spatial covariance using a pairwise distance matrix [23, 12, 24]. However, without
any simplification, the spatial Gaussian process is computationally infeasible when the number of
spatial locations is large. Therefore, it is common to divide the brain into several homogeneous
regions based on atlases and model each region separately [12, 24] or use a data-driven approach
[23]. However, these approaches depend heavily on ROI selections or parcellation algorithms and
do not benefit from modelling the autocorrelation structure in the entire brain.

We comment that, because fitting a model that accounts for the spatial structure of the data is
already computationally intensive, resampling would not be applicable in general to control FWER.
Moreover, to our knowledge, its extension to clusterwise inference (modelling mean structure) has
not been developed in the neuroimaging literature.

1.3. Our contribution: new clusterwise inference leveraging spatial autocorrelation modelling

This paper aims to develop a fast and powerful one-step clusterwise inference method that
measures the association between an image and a covariate while explicitly modelling the spatial
autocorrelation in the data. We address improving the sensitivity of statistical tests by modelling
both mean structures (clusterwise inference) and covariance structures (Gaussian process) simul-
taneously. While (i) the clusterwise inference with univariate statistics and (ii) massive-univariate
inference with multivariate statistics are developed to improve the power of the brain imaging
studies, to our best knowledge, there is no method for clusterwise inference with multivariate test
statistics that adjusts for spatial autocorrelations. The challenges here are (i) modelling brain-wise
correlation structure in a scalable manner and (ii) constructing clusterwise inference without relying
on Gaussian Random Field Theory (GRFT) [20]. Our recent work provided a foundation for this
goal by extending scan statistics and adopting permutation to obtain an empirical null distribution
of the test statistic [28].

A summary of our methodological contributions is as follows:

• We use the nearest-neighbor Gaussian Process (NNGP) to get a close approximation of the
true spatial autocorrelation structure with significantly reduced computation time.
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• We propose a new cluster-enhanced statistic based on the multivariate test statistics leveraging
an explicit spatial autocorrelation modelling.

• We use a refitting-free resampling method to compute the FWER-controlling threshold fast
and accurately.

The proposed approach, called CLEAN (Clusterwise inference leveraging spatial autocorrelations
in neuroimaging) results in significantly improved sensitivity and specificity. We show that CLEAN
controls FWER accurately through our permutation scheme and is also computationally highly
efficient, which we will illustrate through a data analysis that took only a few minutes to complete.

The rest of the article is organized as follows. In Section 2, we describe the details of CLEAN and
characterize its connections and differences to other clusterwise inference methods. In Section 3,
we conduct extensive simulation studies to compare the performance of CLEAN to other methods,
including the clusterwise inference without covariance modelling or the massive univariate analysis,
with respect to different smoothing levels and SNRs. We then apply our method to a group of 44
subjects from the Human Connectome Project (HCP) who conducted the social cognition (theory of
mind) task and the relational processing task twice (test-retest) [29]. We conclude with discussions
in Section 4.

2. Methods

2.1. Data

We consider continuous (Gaussian) neuroimaging data collected in the spatial domain. Two
examples are (i) activation in task-fMRI measured in cortical surface (exemplified by the Human
Connectome Project) and (ii) cortical thickness or cortical area (structural MRI). The explicit
pairwise distance information can be obtained on the cortical surface by computing the pairwise
geodesic distance from the triangular mesh.

In this article, we use the two-level approach in analyzing task-fMRI. We obtain first-level
contrast of parameter estimates (COPE) for each vertex from the fMRI time-series data for each
subject, which we will treat as our ‘data’ for the group-level analysis [30].

2.2. Notations and model specifications

Let i = 1, . . . , N and v = 1, . . . , V be the indices for subjects and vertices of the triangulated
brain surface. We assume that a location in a hemisphere of the brain is correlated only with
locations within the same hemisphere. Let zi be row nuisance covariate vectors (e.g. age or gender)
and xi be the covariate of interest (e.g. behavioral performance). The observed brain imaging data
yi = (yi1, . . . , yiV )′ are modelled by yi = Ziα + Xiβ + εi, where Zi = zi ⊗ IV , Xi = xi ⊗ IV and
⊗ is the Kronecker product. This is equivalent to the stack of the univariate (vertex-level) models
but allows modelling the noise structure εi. For example, the one-sample test used in group-level
activation in task-fMRI corresponds to xi = 1 for all subjects while Ziα is ignored. Similarly, the
two-sample test for comparing group differences in means corresponds to zi = 1 for all subjects

and xi = 1 if i is in group 1 and xi = −1 if i is in group 2. Lastly, we assume εi
i.i.d∼ N (0,Σ) with

Σ = σ2Φ(φ) + τ2IV , where Φ(φ) is the matrix of the spatial autocorrelation function (SACF) with
a prespecified spatial kernel with a parameter φ and a pairwise distance matrix. For example, for
the exponential kernel, Φ(φ)[v, v?] = exp(−φ · dv,v?) when dv,v? is the distance between vertices v
and v?. τ2 is the nugget effect, the non-spatial variability of the data.
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2.3. CLEAN

The key idea of CLEAN is three-fold. First, we model the spatial autocorrelation of the data
and construct multivariate test statistics. Second, we construct an enhanced test statistic for each
vertex by borrowing information from the spatial domain. Third, we use resampling to estimate
the variance of each statistic and to control for the family-wise error rate (FWER).

2.3.1. Multivariate test statistics

Our null hypothesis is H0 : β = 0, with a specific goal of identifying nonzero indices of β.
Instead of obtaining β̂ and its covariance matrix, we propose using the score test statistics, which
can be obtained by fitting the model assuming that H0 : β = 0 is true (i.e. the null model is
yi = Ziα + εi). The score test is equivalent to the Wald test with large sample size, but the score
test has a dramatically lower computational cost when using permutations [28]. The multivariate
score statistic for testing H0 is

U = (U1, . . . , UV )′ =
N∑
i=1

X′iΣ̃
−1

(yi − Ziα̃), (1)

with α̃ and Σ̃ obtained by fitting the null model. We propose using a one-step update using the
generalized least squares (GLS) framework to reduce the computational burden. Specifically, we
regress {yi} on {Zi} via ordinary least squares (OLS) and obtain residuals, and use them to obtain

Σ̃
−1

, and then to update α̃. Using simulations and a real data analysis, we show that the one-step
update sufficiently controls for false positives and preserves high statistical power.

2.3.2. Spatial autocorrelation modelling using the nearest-neighbor Gaussian process (NNGP)

A key challenge to constructing the test statistics in Equation (1) is inverting Σ̃. Due to the
large number of vertices, it is computationally infeasible to invert this matrix without using an
approximation. To resolve this problem, we use the nearest-neighbor GP (NNGP) to obtain an
accurate approximation of the true spatial Gaussian process and alleviate the computational cost
[31]. The NNGP assumes that the Cholesky decomposition of Σ−1 consists of sparse matrices and
uses nearest neighbors to approximate the true GP [31, 32]. Specifically, we replace Σ−1 with
Σ−1

NNGP = (I−A)D−1(I−A)′ in Equation (1), where D is a diagonal matrix and I−A is a sparse
lower triangular matrix constructed by J predefined nearest neighbors and {σ2, τ2, φ} (see Figure
1). A detailed procedure of obtaining A and D is illustrated in the Appendix A. J balances the
quality of the approximation of true Gaussian process and computational efficiency. Following the
suggestions by Datta et al. [31], we set J = 50, but one can flexibly change this based on the
resolution of the images. For example, when using the exponential kernel, one can first determine
the smallest d such that the parametric correlation σ̃2 exp(−φ̃ · d)/(σ̃2 + τ̃2) is less than a certain
threshold (e.g. 0.05) and use the number of vertices within the neighbor of radius d as J . As shown
in Appendix C, setting J = 50 yielded qualitatively similar results to J = 100 in the data analysis.
Because obtaining {σ̃2, τ̃2, φ̃} would be relatively easy by using a method-of-moment approach,

as outlined in the Appendix A2, obtaining Σ̃
−1

NNGP has a significantly reduced computational cost
(O
(
V J3

)
) than naively inverting Σ̃ (O

(
V 3
)
). In fact, the computational burden only increases

linearly with V [31], which is very practical since the number of vertices is often very large in
neuroimaging. Also, fitting an NNGP can be further accelerated using parallel computing [32].
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(i) Σ−1
NNGP with J = 20 (ii) Σ−1

NNGP with J = 50 (iii) Σ−1 (truth)

Figure 1: Illustration of NNGP, using a 20×20 rectangular grid (V = 400), using the exponential covariance function
with σ2 = 2, τ2 = 0.5, φ = 0.5. The true Σ−1 as well as the NNGP approximations with different neighbor sizes
(J = 20, 50) are shown. White entries in (i) and (ii) correspond to entries that are exactly 0.

Unlike other approximation methods such as the spatial Gaussian predictive processes (SGPP),
the NNGP is a well-defined GP derived from the actual spatial GP and uses the same parametriza-
tions, with fairly accurate approximations [31]. Since the NNGP is not uniquely defined and
depends on the initial vertex that constructs the process, we choose the initial vertex where the
sum of the pairwise distances is the smallest. However, as argued by Datta et al. [31] and as shown
in Appendix C, the results are robust to the choice of the initial vertex.

With a minimal smoothing level, we find that the exponential covariance structure closely re-
flects the empirical covariance computed using data on the spherical surface, which agreed with
Risk et al. [12] (Appendix D). We estimate {σ2, τ2, φ} by minimizing the sum of squared differ-
ences between empirical and theoretical spatial covariances. The detailed estimation procedure is
provided in the Appendix B.

2.3.3. Clusterwise inference

Spatial modelling would need to model both the mean structure and the error structures to
achieve higher power [4, 12]. Using the score test statistics (Equation (1)), we propose to use
clusterwise inference to model the mean structure of the data by using neighboring vertices’ test
statistics. We first define Nr(v) be the collection of vertices whose distances from vertex v is less
than r. The cluster-enhanced test statistic for vertex v is defined by T (v) = max{Tr(v)|r ∈ Γ}
where Tr(v) is a standardized average of the score test statistics within Nr(v),

Tr(v) =

∑
k∈Nr(v) Uk√

V̂arH0

(∑
k∈Nr(v) Uk

) , (2)

and Γ is a set of radii, with each element corresponding to the set of neighbors Nr(v).
WhenH0 is true, the distribution of U is multivariate normal with zero mean [28, 33]. Therefore,

the distribution of Tr(v) is approximately standard normal for any r and v. If Nr(v) specifies the
true signal regions, Tr(v) will be more powerful in rejecting H0 than univariate inference. For
illustration, Figure 2 describes three candidate clusters such that the true signal region is (i)
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correctly specified (ii) underspecified, and (iii) overspecified. The ideal goal is to have correctly
specified clusters as shown in (i), since under/over-specification of the clusters can affect statistical
power. Since the true signal location is unknown, T (v) uses a combination of candidate clusters
with various sizes to determine the location of the signal locations in a data-adaptive manner.

Pa
ra

m
et

er
 v

al
ue

Spatial domain Spatial domain Spatial domain

True signal locations

𝑁!(𝑣)

Signal locations correctly specified by 𝑁!(𝑣)

Signal locations underspecified by 𝑁!(𝑣)

Null locations overspecified by 𝑁!(𝑣)

Figure 2: Illustration of possible cases regarding the choice of candidate clusters. (Left) Correctly-specified candidate
cluster. (Middle) Under-specified candidate cluster, which does not include all signal locations. (Right) Over-specified
candidate cluster, which contains null vertices.

2.3.4. Refitting-free resampling

Nonparametric approaches are necessary to control false positives accurately in clusterwise in-
ference [20]. We use a resampling approach to (i) obtain the empirical distribution of T (v) under
the null hypothesis H0 and (ii) set a threshold that controls FWER. Among existing approaches
[34], we use the method of Draper and Stoneman [35] which was also proposed in our early work
with the score test framework [28]. In particular, by combining the score test with the proposed
resampling method, obtaining the permuted test statistic only requires matrix multiplications (ap-
plying Equation (1) with resampled Xi). This approach is computationally highly efficient since it
does not require refitting the full model.

In the one-sample test, we flip signs of each individual’s image and construct permuted score
statistics. In the two-sample test, we permute xi across subjects. We then use the sample covariance
of the sign-flipped/permuted score statistics to obtain the empirical null distribution of T (v) (i.e.
the denominator of Equation (2)). The permuted score statistics can also be used to set a threshold
that controls family-wise error rate (e.g. the (1 − α)th quantile of the maximum of the permuted
test statistics).

We note that, because the denominator of Equation (2) is obtained by the sample covariance
of the permuted score statistics, having a sufficient number of permutations is necessary, especially
when |Nr(v)| is large. Therefore, we recommend having at least 10,000 resamples to robustly
estimate the empirical distribution of Tr(v) in Equation (2).

2.3.5. Remarks

• On choosing the neighbor set Γ: The performance of the proposed method depends on the
specification of neighbors Nr(v). While a large radius size r would result in a higher power
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when the actual size of a cluster is large. However, every clusterwise inference that borrows
information from the neighbors suffers from the loss of specificity. Therefore, an appropriate
level of radii is necessary to balance power/sensitivity and specificity. Therefore, we use
Γ = {1mm, 2mm, . . . , 20mm}. However, the elements of Γ can be set by investigators a
priori.

Defining neighbor sets by distances provides a uniform degree of combination in any resolution
of the image. Our earlier work used the number of nearest neighbors to specify candidate
sets [28], which is another possible way. Still, it does not give uniform candidate sets with
different resolutions of the image.

• On the nugget effect τ2: While existing methods modelling spatial autocorrelation ignored
or removed τ2, our data analysis reveals that non-ignorable non-spatial variation is present
unless data has been sufficiently smoothed. Therefore, ignoring the nugget effect would result
in inaccurate control of FWER and potentially affect statistical power.

• Comparisons to existing clusterwise inference methods: The proposed method adaptively
combines test statistics across predefined neighbors, including locations with negative test
statistics. Existing methods, such as TFCE, computes cluster-enhanced test statistic for each
location by aggregating test statistics in the spatially connected region (i.e. locations with
non-negative test statistics). An assumption on the smoothness is a key idea that increases
sensitivity in TFCE. Motivated partially by Gaussian Random Field Theory, E = 0.5 and
H = 2 is used to set the TFCE statistic as follows:

TFCE(v) =

∫ hv

h=h0

e(h)EhH dh,

where hv is the univariate test statsitic (z score) for location v and e(h) is the ‘support’ (i.e.
area of the locations) corresponding to statistic h [14].

CLEAN is better motivated when the shape of test statistics in the spatial domain is not
smooth. It is useful in our setting where spatial smoothness (i.e. autocorrelation) is modelled
directly. By restricting the maximum of Γ, it also limits the degree in the spatial domain
that test statistics borrow information. As a result, it avoids the issue that the clusterwise
inference method is prone to low specificity when the cluster size is large [16].

CLEAN also has some overlaps with LISA (Local Indicators of Spatial Association) [15] in
that the cluster-enhanced statistic is computed by aggregating test statistics in pre-defined
neighbor sets. Given zv, the z score for voxel v, LISA uses the following statistic:

λv =

∑
v?∈Ωv

zv? · fr(||zv − zv? ||) · gs(d(v, v?))∑
v?∈Ωv

fr(||zv − zv? ||) · gs(d(v, v?))

where Ωv is a neighbor set (analogous to Nr(v)) and fr(·) and gs(·) are kernel functions for
differences in z scores and pairwise distance, respectively. LISA applies the mixture model
framework and uses permutation to control false discovery rate (FDR), whereas CLEAN

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482664doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482664
http://creativecommons.org/licenses/by-nc-nd/4.0/


TFCE

CLEAN

Figure 3: A conceptual illustration of the difference between TFCE and CLEAN. The y axis denotes for the test
statistic (either univariate or multivariate). TFCE uses the distribution of the test statistics to obtain enhanced test
statistic, defined by enhanced area. The support depends on the distribution of the test statistics and TFCE statistic
does not follow an explicit probability distribution. CLEAN considers a fixed yet wide range of supports predefined
by the neighbor information and takes the maximum of the test statistics as the enhanced statistic for the voxel. The
covariance of the test statistics is used to compute a test statistic in each domain, and each test statistic follows χ2

df=1

asymptotically (in two-sided tests). In this example, a cluster with test statistic 3.20 is preferred to other candidates,
when all these test statistics exceed the FWER-controlling threshold.

controls FWER. Also, we allow multiple neighbor sets for each v to reflect the true and
unknown size of signal clusters data-adaptively. Also, CLEAN models spatial autocorrelations
explicitly, which is not the case in LISA.

• Software: CLEAN is currently available at https://github.com/junjypark/CLEAN as an
R package. It uses C++ to boost computational efficiency, and additional gain is feasible by
using the parallel computing supported by the package. Without parallel computing, applying
CLEAN to a neuroimaging data of 10,000 vertices and 44 subjects took less than 5 minutes
using 10,000 permutations on a Macbook Pro with 2.3 GHz Quad-Core Intel Core i5 and
16GB RAM.
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3. Data analysis

3.1. Data Collection

We obtained data from the Human Connectome Project (1200 Subjects Data Release) who
completed the social cognition (SC) task and the relational processing (RP) task and passed quality
control. It resulted in 1050 subjects for SC and 1041 subjects for RP. In SC, we considered
the Theory of mind (TOM) versus Random contrast. In RP, we considered Relational vs Match
contrast. As previous analyses revealed that the effects in SC are strong and widely spread over the
brain and the effects in RP are sparse and weak, these tasks are appropriate to see how each method
performs with respect to different effect sizes. For analysis, we chose 44 subjects who completed
the task twice (test-retest). These subjects included 31 females and the age ranged between 22 and
35.

The fMRI data were processed with HCP’s minimal surface processing pipeline. Using the
fMRI time series with 2mm surface smoothing, we obtained the contrast of parameter estimates
(COPEs) from each subject. To reduce the dimension of the data, we resampled 10K vertices per
hemisphere using the R package ciftiTools [7], yielding 9394 and 9398 vertices in the left and
right hemispheres, respectively.

Our analysis primarily focuses on 44 subjects who completed the task twice. Because of the
large number of samples used in this study, we pooled information across all subjects (more than
a thousand) to obtain an image of effect sizes to evaluate the validity of the proposed method. We
computed Cohen’s d for each vertex as a measure of the effect size, given by the absolute value of the
average of the COPEs divided by the standard deviation of COPEs across all subjects. Following
Geuter et al. [36] and Cohen [37], we thresholded the effect size image using 0.2, 0.5, and 0.8 (see
Figure 4).

3.2. Results

We fitted three different models to analyze 44 subjects’ test data: (i) CLEAN, which leverages
the spatial autocorrelation in clusterwise inference, (ii) clusterwise inference without leveraging the
spatial autocorrelation, and (iii) massive-univariate analysis. Approach (ii) is equivalent to CLEAN
but without using NNGP. All methods used permutation to control FWE at the rate of 0.05.

The areas of significance are illustrated in Figure 5. In both tasks, CLEAN was superior to
the other approaches in capturing areas of small effect sizes and small signal clusters. Specifically,
CLEAN identified most areas with Cohen’s d of 0.5 or greater. It also identified a few areas
with Cohen’s d less than 0.5. Massive univariate analysis identified areas with high effect sizes
but underperformed when the effect size is small. We also note that the CLEAN without spatial
autocorrelation modelling (Approach (ii)) resulted in smoother areas of significance when compared
to the massive univariate analysis. Because in clusterwise inference one may only conclude that
‘at least one location’ within the cluster is truly a signal location, Approaches (ii) and (iii) were
qualitatively similar. Moreover, Approach (ii) oversmoothed the areas and reported a false direction
of the effect in (ROI), which implies that it could be prone to low specificity.

3.3. Analysis of the retest data

We also analyzed the retest data from the same set of subjects. The result is shown in Figure 11
in Appendix E. Overall, there is a high agreement on the detected signal locations between the test
and retest data, supporting the reproducibility of the results using CLEAN. However, we do not
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Figure 4: The effect size image (lateral and medial views) of the HCP’s social cognition task with thresholds 0.2,
0.5, and 0.8. The effect sizes were computed using the COPE information from 1050 (social cognition) and 1041
(relational processing) subjects. Signs are preserved for visualizations. The figures are displayed on the inflated
surface.

compare different methods based on the empirical agreement measure (e.g. proportion of overlap)
because the interpretation of clusterwise inference cannot be made on a vertex level. We therefore
conducted empirical simulations in Section 3.5.3 to evaluate vertex-wise reproducibility.

3.4. Sensitivity analysis

As discussed in Section 2, NNGP is not uniquely defined and its specification depends on the
initial vertex as well as the number of neighbors used to specify the process. We evaluated the
sensitivity of the result by trying 10 randomly chosen initial vertices to construct NNGP with
J = 50 and 100 neighbors. As shown in Figure 9 of Appendix C, there is a high agreement among
the results with different initial values when J is fixed. It supports the robustness of the proposed
method. The results using J = 50 and J = 100 were qualitatively similar, which agrees with Datta
et al. [31].
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Figure 5: Analysis of 44 subjects who completed the tasks twice (test-retest) in the HCP. FWER is controlled at the
rate of 0.05. CLEAN identified more regions that aligned with population-level effect size images in Figure 4.

3.5. Simulation studies

3.5.1. Family-wise error rate

We evaluated empirical FWER using two designs: inference for the mean (one-sample test)
and inference for the difference (two-sample test). In both designs, each simulated data consisted
of N = 30 left-hemisphere images from the HCP’s social cognition task. In the one-sample test,
we generated noise-only images by first computing the “population-mean” image by taking the
average of all 1050 subjects’ COPE images, then subtracting the population-mean image from each
subject’s COPE image. In the two-sample test, we used the original data, but we randomly assigned
subjects into two groups with 15 subjects each. Because of the random assignment, it is expected
that the difference of the means of the two groups has a zero mean. Therefore it is valid to evaluate
FWER. Using the FWER of 0.05, we computed the empirical FWER, the proportion of datasets
that at least one vertices were declared as signals.

Each simulation was repeated 1000 times. The empirical FWERs were 0.051 (one-sample test)
and 0.048 (two-sample test), respectively, suggesting that the proposed method accurately controls
the false positives.
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3.5.2. Power

We evaluated statistical power of the global hypothesis using simulations. We first defined the
“signal-only” image as the “population-mean” image where the effect size is greater than 0.8. We
then scaled signal-only image to have the range between 0.01 and 5. For each subject’s noise-only
image, we added the signal-only image scaled by γ = 1, 2, · · · , 10. For each γ, the power was defined
by the proportion of simulated datasets (out of 1000) rejected by each method, using the FWER
of 0.05. We first verified that the competitors controlled FWER at the nominal level 5%.

The power curve for each method is summarized in Figure 6. The power curve for CLEAN is
uniformly higher than the curves of the competitors. The simulation results reveal that CLEAN
without spatial autocorrelation modelling is equivalent to massive univariate analysis in terms of
power. Notably, for the competitors, 80% power is obtained when γ = 6, whereas CLEAN achieves
the same power with lower effect size (γ ≈ 5.5).

Figure 6: Power analysis from the simulation studies. Simulated data is generated by adding signal images (thresh-
olded by high effect size) to the noise-only images from the HCP social cognition task. Purple dotted line is the
FWER (0.05).

3.5.3. Vertex-level reproducibility

Note that power is insufficient to evaluate how each method identified signal regions because re-
jecting the null hypothesis only yields that ‘at least one’ vertex is statistically significant. Therefore,
we used the SC and RP data from HCP to evaluate the reproducibility of scientific findings.

In this section, we used varying numbers of sample sizes: N = 20, 30, 40. For each fixed sample
size, we generated 500 simulated datasets of the COPE images from each task of the HCP. Then we
fitted each method and extracted the detected signal vertices for each simulated data. We visualized
these differences in Figure 7 by computing the proportion of times selected by each method for every
vertex (out of 500 simulated datasets). The proposed approach still outperformed the others in
detecting new signal regions with higher reproducibility. Notably, when N = 40, 16.7% (SC)
and 4.3% (RP) of the vertices had over 80% reproducibility with CLEAN, which were substantially
higher than CLEAN without leveraging (14.9% and 0.8%) and the massive univariate analysis (5.4%
and 0.4%). Even when we used the 50% cutoff for the reproducibility, CLEAN (24.8% and 9.1%)
is superior to CLEAN without leveraging (21.6% and 3.3%) and the massive univariate analysis
(10.2% and 0.6%). Also, we observe in Figure 7 that CLEAN successfully identifies new localized
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regions with high reproducibility, while CLEAN without leveraging tended to smooth wider, which
agrees with Figure 5.

We also defined three different signal images based on the effect size (Cohen’s d greater than
0.8, 0.5 and 0.2), and computed the sensitivity. In each dataset, we computed the number of
overlapping vertices between the signal image and identified vertices divided by the total number
of signal vertices. We then averaged the proportion across 500 simulated datasets. Figure 8 shows
that CLEAN, regardless of the modelling of spatial autocorrelations, yielded higher sensitivity than
massive univariate analysis. In SC, CLEAN without autocorrelation modelling yielded slightly
higher reproducibility than the proposed approach with medium and large effect sizes, but CLEAN
slightly better when effect size is small. It is understandable because the brain activation in
SC is global and widespread, and CLEAN without leveraging spatial autocorrelation tended to
oversmooth the areas of significance. In RP, where effect size is small and more localized, CLEAN
without leveraging did not gain much by oversmoothing. Therefore, it is understandable that
CLEAN resulted in higher sensitivity in RP than the competitors.

3.5.4. Summary

Benefiting from the large database of the Human Connectome Project, we validated that
CLEAN controlled false positives accurately, which is attributed to the use of permutations.
CLEAN also showed higher power and vertex-wise reproducibility that agreed closely on the
population-level effect sizes. Comparing it to two competitors (massive univariate analysis and
CLEAN without leveraging), we showed that both spatial autocorrelation modelling and cluster-
wise inference contributed to the higher reproducibility.

4. Discussion

We propose a novel clusterwise inference method for neuroimaging data called CLEAN that
models the spatial autocorrelation explicitly through a spatial Gaussian process for improved sensi-
tivity and specificity. By analyzing the HCP data and using empirical simulations, we demonstrated
that CLEAN controls FWER accurately and outperforms massive univariate analysis and cluster-
wise inference without modelling spatial autocorrelations. CLEAN is computationally very efficient
and applicable to a wide range of neuroimaging data with spatial autocorrelation. Our method is
publicly available as a form of an R package at https://github.com/junjypark/CLEAN, and it
supports parallel computing to further reduce the computational cost.

The key ideas that played a central role in the proposed approach are the nearest-neighbor
Gaussian process (NNGP), the refitting-free permutation via the score test framework, and the
construction of the cluster-enhanced test statistic. NNGP provided a close approximation to the
true spatial Gaussian process that captured most spatial variations of the noise. This is very
useful when working with images with higher resolutions because the construction of NNGP can be
parallelized, and the computational cost increases linearly with respect to the number of vertices.
Also, our method is based on the score test, which does not require refitting a multivariate model
multiple times. Moreover, the proposed clusterwise inference procedure constructs test statistics
based on prespecified neighbor sets and avoids restrictive GRFT. Finally, quantifying uncertainty,
or a degree of the spatial extent that benefits from the clusterwise inference, is straightforward.

The proposed method addresses a few issues on existing clusterwise inference. First, existing
methods have used a degree of Gaussian smoothing to increase the signal-to-noise ratio, but we
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Figure 7: Vertex-level reproducibility for each method. 500 simulated data with different sample sizes (N = 20, 30, 40)
were generated. For each vertex, the proportion of time detected by each method is displayed.

point out that it makes the null location into the pseudo-signal location. Because, in theory, a
spatial location is either a null or a signal location, identifying a pseudo-signal location as a signal
location would only decrease specificity. Our approach does not rely on a wide extent of smoothing
because it models spatial autocorrelation explicitly and in a scalable manner. Second, Woo et al.
[16] discussed that clusterwise inference is prone to low specificity when the actual cluster size is
large. This is a common problem in clusterwise inference, and one may only conclude that at least
one vertex within the declared regions is significant. Although the proposed method also falls in this
category, one can control the maximum distance where information is borrowed. This is contrary
to other methods where the cluster-enhanced statistic is constructed using non-negative statistics
of the neighboring locations. The cluster-enhanced statistic is also straightforward in meaning, and
it determines how well ‘collapsing’ data across the cluster maximizes the mean (1-sample test),
the difference in means (2-sample test), correlation (simple linear regression) or partial correlation
(GLM).
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Figure 8: Sensitivity with respect to different ‘signal’ images binarized by different Cohen’s d levels. We averaged
the sensitivity across 200 simulated datasets. In the social cognition task where activation levels are strong and
widespread, CLEAN without spatial autocorrelation modelling tended to have higher sensitivity by oversmoothing
the activation regions. In the relational processing task where activations levels are weak and localized, CLEAN
yielded higher sensitivity.

The proposed approach has room for improvement. First, our analysis focused on brain imaging
data, including activation in task-fMRI, measured on the cortical surface that shows an explicit
spatial autocorrelation. Extending it to 3D (volumetric) fMRI data would be straightforward as
long as the assumption on the stationarity of the spatial autocorrelation is valid. We leave it as
future work. Second, our approach is currently restricted to group-level analyses (i.e. population-
level inference). A method for analyzing a single subject’s fMRI would be an interesting extension
of the current work. Third, we used the spherical surface to compute the geodesic distance matrix
to ensure that subjects are registered onto the same surface [12, 23]. However, this could be
sensitive to the distortion of the distance information, and other surfaces, such as the midthickness
surface, might be more appropriate to reflect the cortex. Fourth, the proposed model assumes a
stationary Gaussian process, meaning that any pair of vertices would reveal the same degree of
autocorrelation if the distances are the same. Although the proposed method controlled FWE
accurately, accounting for potential nonstationarity would further improve statistical power.

5. Conclusions

We proposed a novel and general statistical method that simultaneously models both the mean
structure and the spatial covariance structure. It is a powerful method that successfully unveiled
regions with low-medium effect sizes. Our method is a general approach applicable to many neu-
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roimaging data with spatial autocorrelations. It is computationally highly efficient and is imple-
mented as a R package.
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Appendix

A. Construction of the nearest-neighbor Gaussian process (NNGP)

Provided a V × V pairwise distance matrix D and spatial covariance parameters {σ2, τ2, φ},
constructing NNGP with J neighbors is summarized by two steps: (i) Constructing nearest-neighbor
information and (ii) using it to compute Σ−1

NNGP.
The step (i) constructs the neighborhood information. Let P be a V × J matrix and let Pj

the jth row of P. We first choose an initializing vertex v? and store it to the element of P1.
Then, for rows j > 1, Pj include a new vertex v closest to the vertex chosen in the row j − 1 and
min(j − 1, J − 1) closest vertices of v chosen among the collection of vertices of P1, . . . ,Pj−1.

The step (ii) is summarized by the following steps.

1. Let A = 0V×V and D = IV , and let D[v?, v?] = σ2 + τ2.

2. For j = 2, . . . , V ,

(a) Construct Kj = σ2ΦPj (φ) + τ2I|Pj |, where ΦPj (φ) is a submatrix of Φ(φ) constructed
by the indices Pj .

(b) Let k be the last element of Pj and P?
j is the remaining elements, with the order pre-

served.

• A[k,P?
j ] is the vector x that solves the linear system Kj [P?

j ,P?
j ]x = Kj [k,P?

j ].

• D[k, k] = (σ2 + τ2)−K[k,Pj ] ·A[k,P?
j ]

Note that this step can be easily parallelized.

3. The resulting Σ−1
NNGP is (IV −A)D−1(IV −A)′

B. Estimation of the spatial covariance parameters

We propose estimating spatial covariance parameters via the covariance regression analysis
proposed by Zou et al. [38]. With φ provided, a consistent estimator of {σ2, τ2} can be obtained
by minimizing

N∑
i=1

||εiε′i − σ2Φ(φ)− τ2IV ||2F , (3)

where || · ||2F is the squared Frobenius norm of a matrix (sum of squared elements). With some
algebra, a closed-form solution for these parameters is provided by

(
σ̃2

τ̃2

)
=

[
||Φ(φ)||2F V

V V

]−1
(

1
N

∑N
i=1 ε

′
iΦ(φ)εi

1
N

∑N
i=1 ε

′
iεi

)
.

Therefore, it is sufficient to find φ to estimate {σ2, τ2} in which {σ2, τ2, φ} conditionally minimizes
Equation (3), where a nonlinear optimization can be used. We the use {σ̃2, τ̃2, φ̃} as resulting
parameter estimates. When there are q covariates used to extract εi including the intercept, then
we multiply σ̃2 and τ̃2 by N/(N − q) to adjust for the degrees of freedom. In Appendix F, we
use simulations to show that the proposed loss function successfully recovers the true parameter
estimates on average.
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C. Sensitivity analysis of the NNGP

We used 44 subjects from the HCP’s social cognition task, who completed the task twice (test-
retest). Fixing the number of nearest neighbors J for specification of the NNGP, we used 5 different
vertices that initialize the process. The results shown in Figure 9 reveal that the proposed method
is robust to the initial vertex.

5 different initializing vertices with 𝐽 = 50

5 different initializing vertices with 𝐽 = 100

Figure 9: Analysis of the test data of 44 subjects with 5 different vertices that initialize the NNGP. The initializing
vertex is the same for each column image.

D. Empirical covariogram analysis

Using the contrast of parameter estimates (COPEs) data from the HCP’s social cognition and
relational processing tasks, we first subtracted the group mean from each vertex, then computed the
empirical covariogram for each subject. We used geodesic distance information from the spherical
surface. We then computed the group-level empirical covariogram by taking the point-wise average.
Figure 10 suggests that the exponential kernel closely approximates the spatial covariance of both
data showing a slowly-decaying pattern.
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Figure 10: Empirical covariogram of the social cognition and relational processing tasks from the Human Connectome
Project. The red line denotes for the fitted parametric covariogram using the exponential kernel.

E. Analysis of the retest data

We used 44 subjects from the HCP’s social cognition task, who completed the task twice (test-
retest). We fitted CLEAN to each of test and retest data and identified the areas of significance.
As shown in Figure 11, CLEAN showed high reproducibility of the activation areas.

Test Retest

Positive effect Negative effect

Figure 11: Areas of significance identified by CLEAN for both test data (left two columns) and retest data (right two
columns).

F. Simulation studies for the covariance regression

We conducted simulation studies to evaluate how the proposed method estimates parameters
for spatial autocorrelation (σ2, τ2, φ). We first randomly sampled 3,000 vertices from the spherical
surface from the left hemisphere. Using the exponential spatial autocorrelation function, we set
two parameter sets for evaluations.

• Set 1: σ2 = 500, τ2 = 200 and φ = 0.001 (median correlation: 0.60)

• Set 2: σ2 = 200, τ2 = 500 and φ = 0.001 (median correlation: 0.25)

We generated N images from MVN (0,Σ), where N = 20, 30, 40. We then applied the proposed
method to estimate these parameters (i) without any covariate (q = 0), (ii) with an intercept
(q = 1), and (iii) with an intercept and a covariate generated randomly from the standard normal
distribution (q = 2). When q > 0, we first regressed out the covariate effect for each vertex and
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used residuals to minimize the loss function. In each setting of N and q, we repeated simulations
2,000 times and took the average of the parameter estimates.

The simulation results are summarized in Table 1 and Table 2. The proposed estimator is
nearly unbiased, and the standard error decreased as (i) the number of subjects increased, (ii)
less covariates are used, or (ii) the proportion of the variability explained by the nugget effect τ2

increases.

q = 0 q = 1 q = 2
Parameters σ2 τ2 φ σ2 τ2 φ σ2 τ2 φ

Estimate 500.17 199.72 0.0011 500.37 199.64 0.0011 501.44 199.63 0.0011
[N = 20] (133.78) (9.38) (0.0005) (138.13) (9.69) (0.0005) (141.26) (10.07) (0.0005)

Estimate 502.28 200.19 0.0011 502.09 200.20 0.0011 502.32 200.15 0.0011
[N = 30] (110.73) (7.60) (0.0004) (112.46) (7.74) (0.0004) (114.27) (7.90) (0.0004)

Estimate 499.63 200.24 0.0010 499.23 200.25 0.0010 498.74 200.23 0.0010
[N = 40] (95.47) (6.54) (0.0003) (96.12) (6.62) (0.0003) (97.16) (6.73) (0.0003)

Table 1: Simulation results for the parameter set 1. Parentheses denote for the standard error.

q = 0 q = 1 q = 2
Parameters σ2 τ2 φ σ2 τ2 φ σ2 τ2 φ

Estimate 200.63 499.85 0.0011 200.06 499.84 0.0011 200.19 499.80 0.0011
[N = 20] (53.52) (4.69) (0.0004) (54.87) (4.78) (0.0005) (56.44) (4.93) (0.0005)

Estimate 200.91 499.93 0.0011 200.91 499.91 0.0011 201.00 499.91 0.0011
[N = 30] (42.91) (3.78) (0.0003) (43.75) (3.85) (0.0004) (44.64) (3.95) (0.0004)

Estimate 200.52 500.10 0.0010 200.49 500.12 0.0010 200.45 500.12 0.0010
[N = 40] (39.81) (3.31) (0.0003) (40.39) (3.37) (0.0003) (40.93) (3.42) (0.0003)

Table 2: Simulation results for the parameter set 2. Parentheses denote for the standard error.
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