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Abstract  28 
 29 
Syntax involves complex neurobiological mechanisms, which are difficult to disentangle for multiple 30 
reasons. Using a protocol able to separate syntactic information from sound information we investigated 31 
the neural causal connections evoked by the processing of homophonous phrases, either verb phrases 32 
(VP) or noun phrases (NP). We used event-related causality (ERC) from stereo-electroencephalographic 33 
(SEEG) recordings in 10 epileptic patients in multiple cortical areas, including language areas and their 34 
homologous in the non-dominant hemisphere. We identified the different networks involved in the 35 
processing of these syntactic operations (faster in the dominant hemisphere) showing that VPs engage a 36 
wider cortical network. We also present a proof-of-concept for the decoding of the syntactic category of 37 
a perceived phrase based on causality measures. Our findings help unravel the neural correlates of 38 
syntactic elaboration and show how a decoding based on multiple cortical areas could contribute to the 39 
development of speech prostheses for speech impairment mitigation. 40 
 41 
Key Words: SEEG, syntax, partial directed coherence, event-related causality, connectivity, speech, 42 
decoding  43 
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Introduction 44 
 45 
Traditionally, language is analyzed in relation to four main components: the acoustic level, that is the 46 
physical medium humans naturally exploit to convey information and its articulatory–phonatory 47 
counterpart; the lexicon, which is the repertoire of words expressing predicative contents and logical 48 
instructions; syntax, the set of principles to assemble larger units (phrases) from lexical items , in a 49 
recursive potentially infinite way; semantics, an interpretative component which captures the truth value 50 
conditions for each syntactic structure. However, since the acoustic and syntactic information are 51 
crucially intertwined (Ding et al., 2015), even during inner speech (Kayne, 2019; Magrassi et al., 2015), 52 
isolating syntax at the electrophysiological level appears to be an insurmountable empirical task. This is 53 
reflected in the difficulty of developing specific syntax-related tasks for experimental studies of language 54 
neurobiology and it is responsible for the relatively limited knowledge of syntax-related processing in the 55 
brain. Understanding the neural correlates of even the most basic syntactic operations, such as merging 56 
an article with a noun (N) yielding a Noun Phrase (NP) or a pronoun with a verb (V) yielding a Verb 57 
Phrase (VP) remains a crucial challenge for brain and language research (Grodzinsky & Friederici, 2006). 58 
 59 
In a recent study (Artoni et al., 2020), we designed and used a novel protocol aimed at isolating syntactic 60 
information from the acoustic associated information by exploiting pairs of sentences containing 61 
homophonous strings (same acoustic information but completely different syntactic content). 62 
Specifically, each pair of stimuli contained the same acoustic copy of two homophonous words, which 63 
could be interpreted either as a Noun Phrase (NP) or a Verb Phrase (VP) (Figure 1A). This approach 64 
was used to factor out any phonological and prosodical clue in a complete way, even at the subliminal 65 
level. We used this protocol while recording the related cortical activation using stereo-electroencephalo-66 
graphy (SEEG), an invasive recording technique with unparalleled signal-to-noise ratio and recording 67 
band-width (He et al., 2019; Lachaux et al., 2003). 68 
 69 
Here, we exploited the same dataset to investigate the amplitude, the direction, and the specific 70 
frequencies of the interactions taking place between brain structures, that is the collection of causal links 71 
elicited by different functional situations known as effective connectivity (Penny et al., 2004). Given the 72 
utmost importance of timing, here we analyze the directed connectivity patterns elicited by a stimulus, 73 
i.e., the event-related causality (ERC). We investigated the dynamical evolution of the causal integration 74 
in response to a specific part of the time-varying stimuli (sentences) - the response window (RW) - either 75 
the NP or the VP. To reach this aim and to characterize and define the different networks involved in 76 
the processing of the syntactic operations yielding a Noun Phrase or a Verb Phrase we used a recently 77 
validated pipeline of ours for the evaluation of ERC in a set RW (Cometa et al., 2021).  78 
We also present a proof-of-concept for the decoding of the syntactic category of a perceived sentence 79 
based on causality measures which could contribute to the future development of speech prostheses for 80 
speech impairment mitigation.  81 
  82 
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 83 
 84 

Results 85 

NPs and VPs elicit two unique networks 86 
The neural networks elicited by the processing of NPs and VPs were investigated with SEEG. The data 87 
were recorded from 10 Italian-native speaker patients with no language disorders who underwent surgical 88 
operation for drug-resistant epilepsy. NPs and VPs were encoded in the same acoustic stimulus and could 89 
be differentiated only by their syntactic context (some Italian homophonous phrases, such as la porta  /la 90 
ˈpɔrta/ – that can be interpreted either as a noun phrase - “the door” - or a verb phrase - “[s/he] brings 91 
her”). After pre-processing, close recording contacts were arranged in groups called mini-regions of 92 
interest (mini-ROIs), each represented by a prototypical contact. The grouping resulted in a total of 396 93 
mini-ROIs in the left – or dominant – hemisphere (DH) and 577 mini-ROIs in the right – or non-94 
dominant – hemisphere (NDH) (Figure 1B). To identify the networks involved in both NPs and VPs 95 
processing (i.e., the group of mini-ROIs bounded together by causal relations), we used Partial Directed 96 
Coherence (PDC) (Baccalá & Sameshima, 2001) and a recently developed pipeline to determine the 97 
significance of ERC elicited by an RW (Cometa et al., 2021). 98 
 99 
We restricted the analysis to connections identified within the ultra-high gamma frequency band (150 to 100 
300 Hz) (Artoni et al., 2020). The pipeline discovered 13 significant connections for the NP case (2 in 101 
the DH and 11 in the NDH) and 20 connections for the VP condition (6 in the DH, 13 in the NDH, 102 
and 1 from the right temporal lobe to the left temporal lobe). We observed 4 connections active for both 103 
phrases in the NDH. Of these shared connections 3 were intra-temporal (Figure 2A). All the significant 104 
connections are shown in Table S1. 105 
 106 
We compared the estimated connections with the recorded cortico-cortical evoked potentials (CCEPs) 107 
(Matsumoto & Kunieda, 2019), which are an indicator of the presence of a direct cortico-cortical or 108 
cortico-subcortico-cortical anatomical pathway (Matsumoto et al., 2004). Out of all the pairs of channels 109 
with a significant connection, only 11 exhibited a CCEP. The contacts involved in a significant 110 
connection and with a relevant CCEP were placed closer together than those not showing CCEPs (Mann-111 
Whitney U22,11 = 53, p < 0.005) (Figure 2B). 112 
Significant connections may be biased by clusters of closely placed contacts. Thus, to factor out a possible 113 
effect of this spatial sampling bias, we compared the distribution of the distances between pairs of 114 
contacts showing significant causal connections with the distribution of the distances between all 115 
channels (Figure 2C). We did not detect any difference between the two distributions (Mann-Whitney 116 
U29,47987 = 590819, p = 0.16). 117 
Finally, more significant connections in both NPs and VPs were found in subjects with electrodes placed 118 
in the NDH, in contrast to those with the DH explored (Mann-Whitney U4,5 = 18.5, p < 0.05, Figure 119 
2D). This difference was still present even when normalizing the number of significant directed 120 
connections by the total amount of the possible connections for each subject (Mann-Whitney U4,5 = 18, 121 
p < 0.05). Only one subject had both hemispheres explored and showed an inter-hemispheric connection 122 
(VP, from the right temporal lobe to the left one). 123 

VPs engage a wider network than NPs 124 
The recording contacts participating in the NP-related network or the VP-related network were not 125 
spread across the entire cortical surface but rather clustered in specific brain zones – i.e. the anatomical 126 
parcellation of cortical gyri and sulci according to the Destrieux atlas (Destrieux et al., 2010). In total, 64 127 
brain zones were probed in the DH and 88 in the NDH. Out of 152 cortical areas, 11 were involved in 128 
the processing of both homophonous phrases (2 in the DH and 9 in the NDH), 12 participated in the 129 
processing of the VPs alone (6 in the DH and 6 in the NDH) and 6 responded exclusively to NPs (1 in 130 
the DH and 5 in the NDH) (Figure 2E). 131 
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The connectivity estimated by the PDC is a directed causal information flow from one recording contact 132 
called source to another denoted sink. For NPs, all the sources were located bilaterally in the temporal 133 
lobes (2 in the DH and 11 in the NDH). For VPs, the temporal lobes contained 17 sources (5 in the DH 134 
and 12 in the NDH). The other 3 VPs sources were situated in the right occipital lobe, right frontal lobe, 135 
and left insula (Figure 2F, left). Most sinks, for both NPs and VPs, were in the two temporal lobes (DH: 136 
2 for NPs and 4 for VPs; NDH: 6 for NPs and 8 for VPs). Other sinks were in the right insula (1 for 137 
NPs, 2 for VPs), in the right frontal lobe (2 for NPs, 1 for VPs), right central lobe (1 for NPs), right 138 
cingulum (1 for NPs, 2 for VPs), left frontal lobe (2 for VPs), and left cingulum (1 for VPs) (Figure 2F, 139 
right). The lists of the cortical areas containing sources and sinks for a given connection are shown in 140 
Table S2 and Table S3. 141 
Overall, VPs elicited more sources or sinks than NPs, engaged a higher number of different cortical areas 142 
in both hemispheres, with almost no brain-zone being more active for NPs. 143 
The results show that VPs extended the processing network beyond the temporal lobes. 144 
Recording contacts that participated in VPs processing seemed to be located further than those involved 145 
in NPs processing (Mann-Whitney U13,20 = 93, p = 0.08, Figure 2G), even if not reaching the statistical 146 
significance level α = 0.05. 147 

Syntax processing is faster in the DH 148 
We then looked at the speed of response, or processing time, in the DH and NDH. The latencies of the 149 
peaks in the temporal evolutions of the time-varying significant causalities were thus compared among 150 
hemispheres. We considered only the highest peak, for each time series, occurring during the 151 
homophonous part of the stimuli (Figure 3A). These peaks arose earlier in the DH (Mann-Whitney U8,24 152 
= 54.5, p < 0.05), for both NPs and VPs (Figure 3B).  153 
The peak latencies in the directed connections evoked by the homophonous syntagms did not correlate 154 
linearly with the distances between the recording contacts involved in those connections (Pearson’s ρ = 155 
0.07, p = 0.71, Figure 3C). Moreover, distances between recording contacts implanted in the DH and 156 
NDH and participating in an active connection were not statistically different (Mann-Whitney U8,24 = 83, 157 
p = 0.29). Therefore, the difference in peak latencies was likely not due to the channel distribution in the 158 
two hemispheres, but rather solely to the syntactic processing time.  159 

Connectivity decodes homophonous phrases 160 
The general neural connectivity estimated by the time-varying PDC was able to determine if the subject 161 
was waiting for the sentence (baseline), listening to the initial part of the sentence, to the homophonous 162 
phrase (RW), or its ending. We used a Long Short-Term Memory Network (LSTM) (Hochreiter & 163 
Schmidhuber, 1997) to classify the stimulus segments with single-trial accuracy equal to 83.75 % (Figure 164 
4A). 165 
We finally extracted time-dependent features only on the identified significant connections. We used a 166 
Support Vector Machine (SVM) (Cortes & Vapnik, 1995) to predict the syntactic content of the 167 
homophonous phrase in the sentence. The accuracy was significantly above chance during the RW phase 168 
(Figure 4B). 169 
Both models were evaluated using a Leave-One-Subject-Out (LOSO) cross-validation. 170 
  171 
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Discussion 172 
 173 
Language comprehension and production, in particularly syntax processing, are complex and highly 174 
integrated tasks continuously carried out by our brain, seemingly without effort. Analysing their neural 175 
correlates thus requires sophisticated tools. One of the most promising techniques to identify the 176 
different neural processes underlying the syntactic operations leading to the processing of, for example, 177 
Noun Phrases or Verb Phrases is offered by directed connectivity evaluation related to the complexity of 178 
the large-scale networks. To our knowledge, this is the first time a difference in the connectivity elicited 179 
by NPs or VPs processing was identified. 180 
Traditionally, the problem of understanding the neural correlates of syntax is approached by studying the 181 
effects of brain lesions or with syntax-related experimental tasks adminstered during neurophysiological 182 
and neuroimaging acquisitions contaminated by confounding factors such as phonology or semantics 183 
(Friederici et al., 2017; Vigliocco et al., 2011). Our approach is to leverage NP/VP homophonous phrases. 184 
The advantage of our solution is that we can factor out confounding factors by analyzing these 185 
homophonous phrases. 186 
 187 
The shift from the analysis of isolated lexical elements such as bare Vs and Ns vs. syntactic units, namely 188 
VPs and NPs, is obviously a necessary step toward the goal of capturing syntactic information. Lexical 189 
elements in isolation contain linguistic information but these pieces of information are artificially 190 
expressed in single words whereas natural linguistic expressions always involve syntactic computation.  191 
In fact, the stimuli involved syntax in two directions: first, each homophonous phrase was syntactically 192 
connected with other words expressing a full-fledged sentence; second, each homophonous phrase 193 
contained very different syntactic structures. More specifically: in NPs the surfacing order of the two 194 
words composing them, namely an article and a noun, was the same as the underling structure composing 195 
it; in VPs, the situation is completely different and definitely more complex. In all VPs considered here 196 
a transformation called cliticization takes place. The order of the elements constituting it (a pronoun, 197 
playing the role of the object, and a verb) is reversed with respect to the canonical order in an SVO 198 
language like Italian; the canonical position of the object is to the right of the verb (Moro, 2016). All in 199 
all, the shift from V/N to VP/NP constitutes a necessary and relevant step towards the final goal of 200 
cracking the underlying code of human syntax. 201 
 202 
The information carried by all the directed connections was able to discriminate between parts of the 203 
sentence. The syntactic category of the stimulus was discriminable only by looking at the significant 204 
connections, showing the importance of restricting the topology analysis on the few significant 205 
connections. 206 
In recent years, there have been important technological and methodological advancements in perceived 207 
and imagined speech decoding (Martin et al., 2018; Panachakel & Ramakrishnan, 2021). Recent works 208 
focus on the classification of vowels (M. S. Mahmud et al., 2020; N. T. Duc & B. Lee, 2020), syllables 209 
(Archila-Meléndez et al., 2018; Brandmeyer et al., 2013; Correia et al., 2015), words (Ossmy et al., 2015; 210 
Proix et al., 2022; Vorontsova et al., 2021) and complete sentences (Chakrabarti et al., 2015; Zhang et al., 211 
2012), distinguishing stimuli mainly at the semantic level. The most advanced online decoding techniques 212 
rely heavily on the articulatory representation of syllables and words in the motor and supplementary 213 
motor cortices (Anumanchipalli et al., 2019). However, this approach can only be applied to patients with 214 
intact motor commands, which represent a minority of the patients with speech impairment (Guenther 215 
et al., 2009; Wilson et al., 2020). Thus, other decoding strategies that rely on the brain regions that encode 216 
speech are needed (Proix et al., 2022). 217 
Here, we decoded the acoustic stimuli exploiting 29 different speech-encoding cortical areas spanning 218 
the entire brain. Only recently such strategy has been used in the decoding of groups of syllables and 219 
words (Proix et al., 2022). 220 
However, our approach relies on the time evolution of the connectivity values between recording 221 
contacts. This solution has the advantage of assuring high inter-subject generalizability as shown by the 222 
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LOSO validation results: the connectivity features are independent of the location of the implanted leads, 223 
which may differ from subject to subject. Also, our method is well suited to be implemented in an online 224 
decoder. Moreover, the signals that drive the decoding are directly entangled to the syntactic 225 
representation of the stimuli rather than their phonological - and articular - components. 226 
We believe that a decoding strategy that relies on multiple language-encoding cortical areas will drastically 227 
improve the performance of speech prostheses and may be the key missing piece for the development 228 
of this technology. 229 
 230 
We showed that VPs processing, compared to NPs processing, elicited a significantly higher number of 231 
directed connections, linked together more brain structures both in the DH and in the NDH, and 232 
involved the activation of a wider cortical network. VPs processing was distributed beyond temporal 233 
lobes, pushing the information from sources located in the right frontal lobe and left insula, to sinks in 234 
both frontal lobes, anterior cingulate regions, and right insula. This suggests a greater network small-235 
worldness for NPs, with a preference for short-range connections over long range ones. 236 
Most of the literature converges on a more extended cerebral involvement in verb processing than for 237 
nouns (Lukic et al., 2021; Vigliocco et al., 2011). However, again, most evidence came from tasks 238 
requiring the processing of N/V as words in isolation: this is the first time an approach based on 239 
homophonous phrases, hence syntax, is used.  240 
 241 
Temporal lobes (both in the DH and in the NDH) seem to be the main hub in which the syntactic 242 
operations leading to NPs or VPs are analyzed and processed. For NPs all the information flow started 243 
from these areas, while for VPs 3 out of 20 sources were placed outside the temporal lobes (with the one 244 
in the right occipital cortex very close to temporal areas). Also, sinks were mostly located in the temporal 245 
lobes. The important role of the temporal lobes, in particular of left posterior regions, in syntactic 246 
processing is supported by lesion and imaging evidence (Friederici et al., 2017; Matchin & Hickok, 2020). 247 
The comparison of the estimated directed connections with the CCEPs arising between recording 248 
contacts showed a partial discrepancy. While the structural connectivity underlying CCEPs is well known 249 
(e.g., the Human Connectome Project) (Van Essen et al., 2012), the functional and effective connectivity 250 
are patterns of highly heterogeneous causal relationships that may reflect processes occurring during 251 
many different temporal time scales (Honey et al., 2009; Keller et al., 2014; Matsui et al., 2011; Shmuel & 252 
Leopold, 2008; Vincent et al., 2007). The event-related causality identified here, is thus the expression of 253 
more complex neural processes, for which there are no unique a priori hypotheses. 254 
Interestingly, recording contacts involved in a significant connection and showing at the same time 255 
CCEPs were implanted closed together than the pairs of channels without relevant CCEPs. Indeed, 256 
CCEPs may terminate their propagation early (Keller et al., 2014; Logothetis et al., 2010), which is in 257 
agreement with the description of CCEPs as supported by short-range local relations arising from direct 258 
hardwired connections via cortico-cortical or cortico-subcortico-cortical pathways (Matsumoto et al., 259 
2004). This suggests that syntax-related processing relies mostly on long-range connections between 260 
cortical areas, expressing network-level neural synchronization supported by long-range, indirect 261 
structural pathways, typical of high-level cognitive processing (Salmelin & Kujala, 2006). 262 
 263 
Earlier peaks in the connectivity time-series in the DH revealed that the syntax processing elicited by our 264 
stimuli started first in the temporal lobes of the left hemispheres and then spread to the right cortices. 265 
The directed links from DH to NDH that are necessary to transfer the information from one hemisphere 266 
to the other were not deemed significant because they were probably active during all sentence 267 
processing, and so they were masked during the search for the causal connections with the highest 268 
amplitude increase during the homophonous part of the stimulus. Also, only 1 subject out of 10 was 269 
explored in both hemispheres. 270 
 271 
Focal lesion, behavioral, fMRI and electrophysiological studies provide converging evidence for a 272 
dominant role of one hemisphere (the left in right-handers and in the majority of left-handers) for most 273 
aspects of language processing (Tzourio-Mazoyer et al., 2017). Here we detected more significant 274 
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connections arising in the NDH than in the DH.  Previous studies claim that speech perception is the 275 
only aspect of bi-hemispheric language processing, even if the successive linguistic elaboration is carried 276 
mainly by the DH (Hickok & Poeppel, 2000; Poeppel et al., 2008). We hypothesize that the lesser number 277 
of significant connections in the DH may be due to the spread of the syntactic-related information to the 278 
NDH after it is first processed in the DH. However, future work is needed to better characterize the role 279 
of the NDH in syntax processing. 280 
 281 
In conclusion, these results represent an important step forward in human language comprehension, 282 
contributing to the full characterization of syntactic processing. We showed a specific brain activity 283 
encoding a syntactic distinction, which is faster in the DH. Since, even from a purely formal point of 284 
view, syntactic processing cannot be compared with other computational systems, language-related or 285 
not (Chomsky, 2014; Moro, 2014b, 2014a), it is reasonable to conclude that the network highlighted here 286 
is not only specific but arguably it is uniquely dedicated to syntax. We prove that it is possible to decode 287 
the syntactic structure of a phrase by looking at the connections elicited by speech processing between 288 
multiple cortical areas. This could contribute to the future development of speech prostheses for speech 289 
impairment mitigation (Anumanchipalli et al., 2019).  290 
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 291 

Figure 1. Experimental set-up. (A) Example of a set of homophonous sequences (i.e., strings of words 
with the same sound but different syntactic structure) used in the experiment. For example, in PULISCE 
LA PORTA CON L’ACQUA (s/he cleans the door with water), the phonemic sequence [laˈpɔrta] (written 
here as: la porta) is a Noun Phrase (NP), while in DOMANI LA PORTA A CASA (tomorrow s/he brings 
her home), the same sequence is a Verb Phrase (VP). From (Artoni et al., 2020). (B) Mini-region-of-interests 
(merged across all subjects) in the dominant (left) and non-dominant (right) hemispheres. Contacts involved 
in the NP-related network are highlighted in blue, those involved in the VP processing network are 
highlighted in red, and those participating in both networks are coloured in purple. 
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  292 

 

Figure 2. VPs engage a wider and more complex network. (A) Lateral and dorsal views of the identified directed 
connections. Nodes and edges are highlighted in blue for the Noun Phrase (NP) processing network, in red for the 
Verb Phrase related network, or purple if shared by both processing systems. (B) Box plots of the distances between 
the contacts involved in a significant connection and with a relevant cortico-cortical evoked potential (CCEP) and 
between those not showing CCEPs. (C) Box plots of the distances between pairs of explored contacts, whether a 
significant connection exists between them (Conn) or not (No Conn). (D) Box plots of the number of connections 
in subjects with electrodes in the non-dominant (right) hemisphere and in those in which only the dominant (left) 
was probed. The vertical axis is normalized by the total number of significant directed connections identified across 
all subjects. (E) Lateral and dorsal views of the active brain zones during NPs (blue) processing, VPs (red) processing, 
or both (purple). An active brain zone is a cortical area containing one or more recording contacts that act as sources 
or sinks for a certain directed connection. The zoom-in pictures show the left and right insula. (F) Radar plots of 
the number of sources (left) and sinks (right) in each cerebral lobe, for the two conditions NP (blue) and VP (red). 
(G) Box plots of the distances between contacts involved in a significant connection during NP and VP processing. 
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Figure 3. Syntax is faster in the dominant hemisphere. (A) Time series of the identified directed connections, 
in the dominant (L, top) and non-dominant (R, bottom) hemispheres. Each time series is normalized between 0 and 
1. The 0 in the time axis is the start of the sentence, the coloured area represents the homophonous part (or response 
window - RW). Directed connections that are significant when listening Noun Phrases (NP) have this area coloured 
in blue, while those significant for Verb Phrases (VP) have this area highlighted in red. (B) Box plots of the latencies 
of the connectivity peaks during the RW in the dominant hemisphere (left) and in the non-dominant one (right). (C) 
Scatter plot of latencies of the peaks during the RW as function of the distances between channel pairs. 
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Figure 4. Connectivity decodes sentence structure. (A) Confusion matrix for the prediction of the stimulus phase. 
(B) Time-varying accuracy of the classification of noun phrases vs verb phrases. The blue line represents the median 
of the chance level, the boundaries of the light blue band are the 5th and 95th percentiles of the chance level 
distribution. The red part of the plot is the accuracy significantly above the chance level (p < 0.005).  
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STAR Methods 305 

Resource availability 306 

Lead Contact 307 
Further information and requests for resources should be directed to and will be fulfilled by the lead 308 
contact, Fiorenzo Artoni (fiorenzo.artoni@unige.ch). 309 
 310 
Materials availability 311 
This study did not generate new unique materials. 312 
 313 
Data and code availability 314 
All the data used for the study are available from the authors upon reasonable request. 315 
This study adapts built-in MATLAB functions, the EEGLAB toolbox, the BrainNet Viewer toolbox, 316 
and several publicly available Python packages to handle, analyze and plot data. Custom code is available 317 
from the authors upon request. 318 
Any additional information required to re-analyze the data reported in this paper is available from the 319 
lead contact upon request. 320 

Experimental model and subject detail 321 

Human subjects 322 
In total, 23 patients were recruited. All of them underwent surgical implantations of intracerebral 323 
electrodes for refractory epilepsy (Cossu et al., 2015) in the “Claudio Munari” Epilepsy Surgery Center 324 
of Milan, Italy (Cossu et al., 2005; Munari et al., 1994). The strategy of implantation was defined purely 325 
based on clinical needs, to locate the epileptogenic zone. 326 
All patients completed all experimental sessions. During the 24h before the experimental recording, no 327 
seizure occurred, no alterations in the sleep/wake cycle were observed, and no additional 328 
pharmacological treatments were applied. No language or neuropsychological deficits were found in any 329 
patients. Also, no anatomical alterations were made evident by magnetic resonance. High-frequency 330 
stimulation (50 Hz, 3 mA, 5 sec) through SEEG electrodes was used to assess language dominance in all 331 
subjects. Two patients also underwent an fMRI study during a language task before the implantation of 332 
the electrodes. 333 
Thirteen patients were excluded from the analysis. Eight of them exhibited pathological SEEG contacts. 334 
The others five patients showed no explored recording contacts with a task-related significant activation 335 
in our previous study (Artoni et al., 2020). Full demographic data are shown in Table S4. 336 
A total of 2186 recording contacts (median 210, range 168-272) were implanted, divided into 164 337 
electrodes (median 16.5, range 13-19). The number of contacts in the grey matter was 1439 (65.8%); 586 338 
recording contacts in the language dominant hemisphere (DH). The DH was explored in 5 subjects 339 
(median electrodes 16, range 3-18; median contacts 210, range 25-225). The non-dominant hemisphere 340 
(NDH) was explored in 6 subjects (median electrodes 15, range 14-19; median contacts 208, range 182-341 
272). SEEG exploration involved both hemispheres with a preference for the non-dominant side in 1 342 
patient. 343 
Overall, 68 electrodes were implanted in the temporal lobe (26 in DH, 42 in NDH), 43 in the frontal 344 
lobe (22 in DH, 21 in NDH), 22 in the central lobe (9 in DH, 13 in NDH), and 30 in the parieto-occipital 345 
region (9 in DH and 21 in NDH). 346 
The present study received the approval of the Ethics Committee of ASST Grande Ospedale 347 
Metropolitano Niguarda (ID 939-2.12.2013) and informed consent was obtained from all participants. 348 
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Methods details 349 

Stimuli 350 
The set of stimuli is based on three characteristics of Italian. First, some definite articles are pronounced 351 
exactly like some object clitic pronouns (such as [la] written as la; it can be both “the - fem.sing.” or “her 352 
- fem.sing.”). Second, the syntax of articles and clitic pronouns is very different: articles precede nouns, 353 
complements follow verbs, but object clitics are placed before the verb. Third, the Italian lexicon contains 354 
several homophonous pairs of nouns and verbs, such as [ˈpɔrta] (written porta), which can either mean 355 
“door” or “brings”. A set of pairs of words such as [la ˈpɔrta] (written as la porta) can thus be interpreted 356 
either as a noun phrase (“the door”) or a verb phrase (“brings her”) depending on the syntactic context 357 
(homophonous phrases). For example, in PULISCE LA PORTA CON L’ACQUA (s/he cleans the door 358 
with water), la porta is a Noun Phrase (NP), while in DOMANI LA PORTA A CASA (tomorrow s/he 359 
brings her home), la porta is a Verb Phrase (VP). 360 
To be sure to eliminate phonological and prosodical factors, the pronunciation of one homophonous 361 
phrase was copied in the syntactic counterpart. No other semantic or lexical distinction differentiated the 362 
two types of phrases.  363 
The acoustic stimuli were recorded using a Sennheiser Microphone MH40P48, connected via a Firewire 364 
400 to an Apple OSX 10.5.8 with a Motu Ultralight Mk3 sound card. The stimuli were edited and 365 
mastered using Audiodesk 3.02 and Peak Pro7, respectively. Files were generated in 16 bits, with a 366 
sampling frequency equal to 44.1 kHz; intensity was normalized to 0 Db and rendered in .wav format. 367 
All sentences were read by the same person, an Italian native speaker, male, 53 years old. 368 
 369 
Surgical procedure and recording equipment 370 
SEEG electrodes have a diameter of 0.8 mm. They contain 5 to 18 recording contacts, which are 2 mm 371 
long and spaced by 1.5 mm. The strategy of implantation was planned on 3D multimodal imaging and 372 
the electrodes were stereotactically implanted with robotic assistance. The position of every recording 373 
contact was assessed by registering a post-implantation Cone-Beam-CT (O-arm scanner, Medtronic, 374 
Minneapolis, Minnesota) to pre-implantation T1 weighted MR images. 375 
SEEG sampling rate during the experiment was set to 1 kHz (patients 1-12) or 2 kHz (patients 13-23). 376 
Recordings were carried out using a 192-channels EEG-1200 (Neurofax, Nihon Kohden). All recording 377 
contacts were re-referenced to two leads in the white matter, in which electrical stimulations did not 378 
produce any manifestation. 379 
 380 
Recording protocol 381 
Each subject rested in a comfortable armchair. Stimuli were delivered using the software Presentation 382 
(Neurobehavioral Systems). Phrases were delivered via audio amplifiers at the minimum volume for 383 
words to be perceived with ease, according to the subject. During stimuli delivery, subjects gazed at a 27 384 
inches cross on a screen. A synchronization TTL trigger spike was sent to the SEEG trigger port at the 385 
beginning of the sentence. Jitter and delays were lower than 1 ms. The experiment lasted around 30 386 
minutes. At the end of each task, subjects were always able to correctly answer short questions about the 387 
stimuli. A camera was used to control for eye movement, silence, and any unexpected behavior from the 388 
patients. 389 
 390 
Data pre-processing 391 
An anti-aliasing band-pass filter (0.015-500 Hz) was applied at the hardware level. Recordings acquired 392 
at 2 kHz were down-sampled to 1 kHz. Artifacts and pathological interictal activity were controlled and 393 
removed by clinicians and scientists by visual inspection. Recordings were annotated with the events 394 
triggered by the beginning of each word in all stimulus sentences. Epochs were extracted from -1.5 s to 395 
4.5 s time-locked to the beginning of each stimulus. The length of the epochs always ensured the inclusion 396 
of the complete stimulus presentation. Epochs with notable artifacts were rejected. Contacts in white 397 
matter were excluded from the subsequent analysis. 398 
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 399 

Cortico-cortical evoked potentials 400 
During the presurgical evaluation, an effective connectivity of the explored brain areas was assessed for 401 
each subject by evaluating the Cortico-Cortical Evoked Potentials (CCEP) elicited by Single-Pulse 402 
Electrical Stimulation (SPES) (Matsumoto et al., 2017; Russo et al., 2021; Trebaul et al., 2018). 403 
In the condition of eyes open resting wakefulness, SPES was delivered through each pair of adjacent 404 
contacts, with at 5 mA current intensity, a single pulse of 0.5 ms (biphasic rectangular stimuli of 405 
alternating polarity), at 1 Hz frequency, for 15 s. 406 
The presence of CCEPs response following a SPES was visually verified by trained neurophysiologists. 407 
 408 
Stimulus-evoked causality estimation 409 
To estimate the stimulus-evoked directed connections, recording contacts were first divided into mini-410 
regions of interest (mini-ROIs). Then, the Partial Directed Coherence (PDC), a measure deriving from 411 
the Granger causality framework (Baccalá & Sameshima, 2001; Geweke, 1982; Granger, 1969) was 412 
computed. Finally, a non-parametric statistical test was used to evaluate the significant connections 413 
elicited in the response window (RW), i.e., the part of interest of the stimulus (NP or VP). This stimulus-414 
evoked causality estimation pipeline, designed for SEEG data, is proposed in (Cometa et al., 2021). 415 
 416 
Mini ROI extraction 417 
Recording contacts showing high correlation coefficients between their time series were combined into 418 
mini-ROIs. Specifically, mini-ROIs are groups of leads having an averaged across trials coefficient of 419 
determination R2 > 0.8. The prototypical channel of a mini-ROI was selected as the one showing the 420 
highest linear correlation with the mini-ROI mean time series. Mini-ROIs grouping was performed 421 
independently for each subject. Most mini-ROIs were populated by just one channel, with the most 422 
numerous ones not being populated by more than 3 recording contacts. All leads contained in a single 423 
mini-ROI were spatially very close and always belonged to the same electrode. 424 
 425 
Causality estimation 426 
Within the Granger causality framework, a time series 𝑥 (𝑡) causes another time series 𝑥 (𝑡) if knowledge 427 
of past samples of 𝑥 (𝑡) reduces the prediction error for the current sample of 𝑥 (𝑡). The relation 428 
between 𝑥 (𝑡) and 𝑥 (𝑡) can be estimated by fitting a time-varying multivariate autoregressive (MVAR) 429 
model on 𝑿(𝑡): 430 

 𝑿(𝑡) = [𝑥 (𝑡), 𝑥 (𝑡), … , 𝑥 (𝑡)]   (1) 
where D is the total number of channels. 431 
The MVAR model assumes a linear relationship between the channels in 𝑿(𝑡) of the form: 432 

 
𝑿(𝑡) = − 𝐴 (𝑡)𝑿(𝑡 − 𝑘) + 𝒆(𝑡)  (2) 

Where 𝐴 (𝑡) is the time-varying 𝐷𝑥𝐷 MVAR coefficients matrix, 𝒆(𝑡) is a white noise process with 433 
covariance matrix 𝑊 and p is the model order. The 𝐴 (𝑡) matrices were derived by using a general linear 434 
Kalman Filter (GLKF) (Milde et al., 2010). To estimate the model order p, the Bayesian information 435 
criterion (BIC) was used (Schwarz, 1978), resulting in p = 4 for all subjects. 436 
After estimating, trial by trial, the 𝐴 (𝑡) matrices, the single-trial time-varying 𝑃𝐷𝐶(𝑓, 𝑡) (Astolfi et al., 437 
2008) was computed. 438 
To lower the computational complexity of the pipeline, PDC time samples were down-sampled by a 439 
factor of 40 (from 6000 samples to 150). Frequencies were averaged into overlapping frequency bins 440 
(width = 50 Hz, overlap = 25 Hz, range = 0 – 300 Hz). 441 
Subsequent analysis was done only in the ultra-high gamma frequency range (150 – 300 Hz), i.e., on 442 
frequency bins from [125-175 Hz] to [250-300 Hz]. 443 
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 444 
Significance during the homophonous phrase 445 
All the next steps of the algorithm were independently applied for each syntactic structure (NPs or VPs), 446 
each subject, and each frequency band f. Linear interpolation time-warping was used to align the RW 447 
across all trials (Artoni et al., 2017; Do et al., 2021; Gwin et al., 2011; Nordin et al., 2019). Baseline 448 
correction was then carried out by dividing 𝑃𝐷𝐶 (𝑓, 𝑡), trial by trial and for each 𝑖, 𝑗 (𝑖 ≠ 𝑗) couple 449 
independently, by its mean baseline value. The 𝑃𝐷𝐶 (𝑓, 𝑡) matrices were obtained by averaging 450 
𝑃𝐷𝐶 (𝑓, 𝑡) over trials. The mean values of the 𝑃𝐷𝐶 (𝑓, 𝑡) during the RW were calculated for each pair 451 
𝑖, 𝑗 (𝑖 ≠ 𝑗) of channels. These mean values were compared against a null distribution: to generate the 452 
null (permutation) distribution and to control for false discovery rate (Maris & Oostenveld, 2007; Nichols 453 
& Holmes, 2002) the time samples of the 𝑃𝐷𝐶 (𝑓, 𝑡) were shuffled 1000 times and the mean values 454 
during the RW were re-computed for each permutation. The maximum mean value across all channel 455 
couples was retained for each permutation.  456 
A p-value for each recording contact pair was calculated by comparing the original mean connectivity 457 
value in the RW with the permutation distribution. The p-value was the number of instances in the null 458 
distribution that were greater than the mean RW causality. Significance was then assigned to connections 459 
between pairs of leads whose p-value was below a certain threshold. The threshold was set to 0.33, being 460 
the lowest one that allowed the arising of at least one significant connection for either NPs or VPs in 461 
every subject, in at least one of the considered frequency bins. 462 
 463 
Latency analysis 464 
To detect the peaks in connectivity during the RW of the stimuli, the average connectivity time series 465 
were first smoothed. A Savgol filter was used (Guiñón et al., 2007). The polynomial order was set to 2, 466 
with 9-samples long windows. The window size was chosen as the knee of the curve formed by the sum 467 
of absolute differences between the smoothed time series and the raw ones for different window lengths. 468 
The latencies were defined as the time instant at which the maximum of each smoothed time series 469 
occurred, within the homophonous phrase interval. 470 
 471 
Cortical surface plotting 472 
Mini-ROIs (Figure 1B), active directed connections (Figure 2A), and active cortical areas (Figure 4A) 473 
were graphically represented using the BrainNet Viewer toolbox for Matlab (Xia et al., 2013). Plotting was 474 
done using MNI coordinates on a FreeSurfer fsaverage template (Fischl, 2012; Wu et al., 2018). 475 
 476 
Decoding 477 

Response window prediction 478 
The prediction of the phase of the stimulus was carried out on a trial-by-trial basis. All the connections 479 
were used. The time-varying connectivity amplitudes were divided into overlapping bins of size 20 480 
samples and step 1 sample. These were fed to a Long Short-Term Memory network (LSTM) (Hochreiter 481 
& Schmidhuber, 1997) together with the labels corresponding to the stimulus phase (baseline, sentence 482 
start, RW, sentence ending) of the last sample of the overlapping windows. 483 
The training was carried out using a Leave-One-Subject-Out (LOSO) cross-validation procedure. For 484 
each fold of the LOSO cross-validation, 2 trials of the training set were removed and used as the 485 
validation set. The decoder hyperparameters were optimized according to the performance on the 486 
validation set. 487 
A weighted version of the categorical cross-entropy (Martín Abadi et al., 2015; Y. Ho & S. Wookey, 2020) 488 
was used as the loss function to minimize during the training of the LSTM, with the weights for each 489 
class inversely proportional to the length of the stimulus phase. 490 
The accuracy was obtained by averaging the accuracies across all folds of the LOSO cross-validation. 491 
Code implementation was based on the TensorFlow package for python (Martín Abadi et al., 2015). 492 
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Syntactic content decoding 493 
The prediction of the content of the homophonous phrases (NP vs VP) was carried out on a trial-by-494 
trial basis. Only the significant connections were selected, regardless of whether the connections were 495 
significant during NPs or VPs processing. For each time point, a number of values equal to the number 496 
of significant connections were thus retained, corresponding to the amplitudes of the significant 497 
connections during that instant. A total of 7 features were then calculated for each time point: the 498 
statistical moments up to order 4, the median, the maximum, and the range (the difference between the 499 
maximum and the minimum). 500 
A Support Vector Machine (Cortes & Vapnik, 1995) with a radial basis function kernel was trained for 501 
each time point. The training was carried out using a nested cross-validation procedure: (i) LOSO cross-502 
validation was used to split the dataset into training and test set, and (ii) for each fold of the LOSO cross-503 
validation, 10 fold cross-validation was used to furtherly divide the training set into training and validation 504 
set. 505 
The inner validation loop was used to optimize the decoder hyperparameters and to perform feature 506 
selection through the minimum redundancy maximum relevance (Radovic et al., 2017) algorithm. 507 
The time-varying accuracy was obtained by averaging the accuracies across all folds of the LOSO cross-508 
validation procedure. 509 
For each time point, the predicted labels were compared 1000 times with 1000 shuffled versions of the 510 
test set labels (NP or VP) to calculate the chance level. The procedure was repeated for each fold of the 511 
LOSO cross-validation, resulting in a null distribution of 1000 x (number of fold) accuracy values. An 512 
exact p-value was obtained by comparing the original accuracy with the null distribution. 513 
The time-varying p-values were corrected for the multiple comparisons using a cluster-size-based 514 
statistical non-parametric mapping approach (Nichols & Holmes, 2002) and deemed significant if lower 515 
than α = 0.05. 516 
Code implementation was based on the scikit-learn package for python (Pedregosa et al., 2011). 517 
 518 

Quantification and statistical analysis 519 
The non-normality of the data undergoing statistical testing was assessed using Shapiro-Wilk tests 520 
(Shapiro & Wilk, 1965). Sizes n1 and n2 of the independent samples undergoing Mann-Whitney tests 521 
(Neuhäuser, 2011) and the associated U statistics are reported in the Results Section as Un1,n2 = U. 522 
Statistical significance level α was 0.05. The inter-hemispheric significant connection that arose in one 523 
subject was not considered in the tests comparing connections in the DH versus connections in the 524 
NDH. Tests were computed using the scipy package for Python (Virtanen et al., 2020). 525 
  526 
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KEY RESOURCES TABLE 527 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB MathWorks https://www.mathworks.com/ 

EEGLAB toolbox for 
MATLAB 

Swartz Center for Computational 
Neuroscience 

EEGLAB (ucsd.edu) 

Python Python Welcome to Python.org 

Scipy ecosystem for Python Scipy SciPy.org 

scikit-learn Scikit-Learn scikit-learn.org 

Pytorch Google AI 10.5281/zenodo.4724125 

BrainNet Viewer toolbox for 
MATLAB 

Xia et al., 2013 NITRC: BrainNet Viewer: Tool/Resource 
Info 

Presentation Neurobehavioral Systems Neurobehavioral Systems (neurobs.com) 
 528 
 529 
  530 
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