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21  Abstract

22 Salt taste sensation is multifaceted: NaCl at low or high concentrations is preferably or
23 aversively perceived through distinct pathways. Cl is thought to participate in taste sensation
24 through an unknown mechanism. Here we describe Cl™ ion binding and the response of taste
25  receptor type 1 (Tlr), a receptor family composing sweet/umami receptors. The T1r2a/T1r3
26  heterodimer from the medaka fish, currently the sole T1r amenable to structural analyses,
27  exhibited a specific ClI” binding in the vicinity of the amino-acid-binding site in the
28  ligand-binding domain (LBD) of T1r3, which is likely conserved across species, including
29  human T1r3. The CI” binding induced a conformational change in T1r2a/T1r3LBD at sub- to
30 low-mM concentrations similar to canonical taste substances. Furthermore, oral CI
31  application to mice increased impulse frequencies of taste nerves connected to T1r-expressing
32  taste cells and promoted their behavioral preferences attenuated by a Tlr-specific blocker or
33 T1r3 knock-out. These results suggest that the C1 evokes taste sensations by binding to Tlr,
34  thereby serving as another preferred salt taste pathway at a low concentration.

35
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36 Introduction

37  The taste sensation is initiated by specific interactions between chemicals in food and taste
38  receptors in taste buds in the oral cavity. In vertebrates, the chemicals are grouped into five
39  basic modalities: sweet, umami, bitter, salty, and sour. This sensation occurs through taste
40  receptor recognition specific to a group of chemicals representing each taste modality (Taruno
41 et al, 2021). Regarding the salty taste, the preferable taste, ~100 mM concentration of table
42  salt, is evoked by specific interaction between the epithelial sodium channel (ENaC) and
43 sodium ion (Chandrashekar et al, 2010) (Figure 1). Notably, salt sensation exhibits multifaced
44  properties (Roper, 2015), thereby suggesting the existence of an adequate concentration range
45  for salt intake to maintain the homeostasis of body fluid concentration. For example, high
46  concentrations of salt over levels perceived as a preferred taste, such as ~500 mM, stimulate
47  bitter and sour taste cells and are perceived as an aversive taste (Oka et a/, 2013). Conversely,
48  low salt concentrations under the “preferable” concentration, such as several mM to a hundred
49 mM concentrations, are perceived as sweet by human panels (Bartoshuk et al, 1964;
50  Bartoshuk et al, 1978; Cardello, 1979). However, its mechanism has never been extensively
51  pursued. The various impacts of the salt taste sensation indicate multiple salt detection
52 pathways in taste buds (Roper, 2015). Moreover, another component of table salt, the chloride
53  ion, participates in taste sensation because of the existence of the “anion effect”: the salty
54  taste is most strongly perceived when the counter anion is a chloride ion (Ye et al, 1991).
55  Several reports suggested a certain cellular/molecular machinery underlying anion-sensitive
56  Na'-detection or Cl-detection, which is independent of ENaC (Lewandowski et al, 2016;
57  Roebber et al, 2019). Indeed, a recent study indicated that transmembrane channel-like 4
58 (TMC4) expressed in taste buds involves high-concentration Cl -sensation (Kasahara et al,
59  2021). Nevertheless, no candidate molecule capable of sensing low or preferable

60  concentrations of Cl” has been elucidated. Therefore, the complete understanding of salt taste
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61  sensation, including the mechanism of chloride ion detection, remains unclear.

62 Unlike salt taste sensation, those for nutrients as sugars, amino acids, and
63  nucleotides are understood as sweet and umami sensations through specific receptor proteins
64  (Li et al, 2002; Nelson et al, 2002; Nelson et al, 2001). Sweet and umami receptors are
65  composed of taste receptor type 1 (T1r) proteins in the class C G protein-coupled receptor
66  family. In humans, the T1rl/T1r3 heterodimer serves as the umami taste receptor and
67 responds to amino acids as L-glutamate and aspartate, and nucleotides. In contrast, the
68  TI1r2/T1r3 heterodimer is the sweet taste receptor and responds to sugars. We previously
69 elucidated the crystallographic structure of the medaka fish T1r2a/T1r3 extracellular
70  ligand-binding domain (LBD) (Nuemket et al, 2017), which is currently the sole reported
71  structure of Tlrs. In the structure, the amino acid-binding was observed in the middle of the
72 LBD of T1r2a and T1r3 subunits, which was consistent with the fact that T1r2a/T1r3 is an
73 amino-acid receptor (Oike et al, 2007). Furthermore, chloride ion binding was found in the
74  vicinity of the amino-acid binding site in TI1r3 (Figure 2A). So far, the physiological
75  significance of Cl -binding for Tlrs functions remains unexplored. Nevertheless, chloride
76  ions regulate other receptors in class C G protein-coupled receptors (GPCRs), such as
77  metabotropic glutamate receptors (mGluRs) and calcium-sensing receptors (CaSRs), and act
78  as positive modulators for agonist binding (Eriksen & Thomsen, 1995; Kuang & Hampson,
79  2006; Liu et al, 2020; Tora et al, 2018; Tora et al, 2015). The potential effect of CI -binding
80  on Tlr receptor function is of significant interest under these conditions.

81 Here, we investigated the ClI” actions on Tlrs using structural, biophysical, and
82  physiological analyses. The CI” binding to the LBD was investigated using the medaka fish
83  TIr2a/T1r3LBD, which is amenable to structural and biophysical analyses. Since the CI
84  -binding site in T1r3 was conserved across various species, taste nerve recordings from mice

85  were used to investigate the physiological significance of CI". The results suggest that CI”
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86  induces the moderate response via Tlrs, thereby implying that Tlrs are involved in CI”
87  sensation in taste buds.

88

89  Results

90  CI'-binding site in T1r3

91 In the previously reported structure of T1r2a/T1r3LBD crystallized in the presence of NaCl,
92  bound CI” was identified based on electron density and binding distances (Nuemket et al.,
93  2017). To verify the Cl-binding, C1™ in the T1r2a/T1r3LBD crystal was substituted with Br,
94 a halogen ion amenable for specific detection by anomalous scattering using a synchrotron

95  light source (Figure 2—figure supplement 1). The diffraction data from the crystal resulted in

96  an anomalous difference Fourier peak at 14.1 ¢ at the site in the vicinity of the amino-acid
97  binding site in T1r3, where CI" was originally bound (Figure 2B, Figure 2—figure
98  supplement 2). For further confirmation, the anomalous data of the original crystal containing
99  CI” was collected at 2.7 A, where the anomalous peak for Cl and several other elements such
100 as Ca or S can be detected (Figure 2—figure supplement 1). The resultant anomalous
101  difference Fourier map showed a peak at the bound CI™ position, while all the other peaks
102 were observed at the S atoms in the protein (Figure 2C, Figure 2—figure supplement 2).
103 These results verify that the site is able to bind halogen ions, likely accommodating CI” under
104  physiological conditions.

105 Cl” was coordinated at the binding site by the side-chain hydroxyl group of Thr105
106  and the main-chain amide groups of GInl148 and Ser149 (Figure 2D). These main-chain
107  coordinating residues are followed by Serl50, a critical residue for binding amino-acid
108  ligands (Nuemket et al., 2017). Furthermore, the loop regions where Thr105 and the
109  GIn148-Ser150 locate are followed by helices B and C, respectively. These helices are

110  essential structural units at the heterodimer interface (Nuemket et al., 2017) (Figure 2A).
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111 They are known to reorient upon agonist binding, resulting in conformation rearrangement of
112 the subunits in the dimer, likely inducing receptor activation in class C GPCRs (Koehl et al,
113 2019; Kunishima et al, 2000). In addition, the side-chain hydroxyl group of Ser149, which
114  serves as a cap for the positive helix dipole of helix C, simultaneously functions as a distal
115  ligand for CI” coordination. Therefore, the Cl™ binding at this site is important for organizing
116  the structure of the amino-acid binding site and the heterodimer interface.

117 The CI-binding site observed in the crystal structure is most likely conserved
118 among Tl1r3s in various organisms, such as humans (Figure 2E). Thr105, the residue that
119  provides the side-chain-coordinating ligand for Cl -binding, is strictly conserved as either
120  serine or threonine among T1r3s. Additionally, the amino-acid sequence motifs surrounding
121  the main-chain-coordinating ligands, FP*L and VIGPCMSCMg, where “C” is a hydrophilic
122 amino acid, are well conserved to present the main-chain amide groups to coordinate Cl with
123 an appropriate geometry. Notably, the site structurally corresponds to the CI -binding site in
124 the hormone-binding domain of the atrial natriuretic peptide receptor (ANPR) (Figure 2F, 2G),
125 in which CI” positively regulates the peptide hormone binding (Misono, 2000). Although
126 ANPR is not a member of class C GPCR, the hormone-binding domain in ANPR shares a
127  similar structural fold with LBD of Tlrs and other class C GPCRs, and bacterial
128  periplasmic-binding proteins (Kunishima ez al, 2000; van den Akker et al, 2000).
129 Accordingly, the conservation of the structure and the sequence motif at the Cl -binding site
130  at ANPR is also observed on mGluRs (Ogawa et al, 2010). Indeed, CI” binding at the site
131  corresponding to that in T1r3 was observed in several mGluR and CaSR structures (Monn et
132 al, 2015b; Zhang et al, 2016) (Figure 2F, 2G) and was identified as a potential site responsible
133 for regulating agonist binding (Liu et al., 2020; Tora et al., 2015). These results strongly
134 imply the possibility that C1” has some actions on T1r receptor functions.

135 In contrast, conservation at the Thr105 position was not observed among T1rl and
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136  TI1r2 (Figure 2E). Evidently, no significant anomalous peak derived from Br - or CI -binding
137  was observed in the crystal structure at the corresponding site in T1r2a (Figure 2B, 2C).
138 His100 in T1r2a, which corresponds to Thr105 in T1r3, adopted a significantly different
139  side-chain conformation from that of Thr105 in T1r3 (Figure 2—figure supplement 2).
140  Therefore, T1rl and T1r2’s ability to bind CI is unlikely.

141 In addition to the CI -binding site discussed above, the Br -substituted crystal
142 exhibited an anomalous peak at 8.5 ¢ in T1r2a, at a position close to the Lys265 side-chain
143 g-amino group (Figure 2B, Figure 2—figure supplement 2). Nevertheless, Cl -binding was
144  not observed in the original CI -contained crystal. This is further confirmed by the absence of
145  an anomalous peak at this position in the data collected at 2.7 A (Figure 2C, Figure 2—figure
146  supplement 2). Therefore, the site might have the ability to bind anions such as Br™ or larger;
147  but be not specific to CI". In human T1r1, the residue corresponding to Lys265 (Arg277) was
148  suggested as a critical residue for activities of inosine monophosphate, an umami enhancer
149  (Zhang et al, 2008).

150

151  CI'-binding properties in T1r2a/T1r3LBD

152 To investigate the Cl™ actions on Tlr functions, we first examined the properties of the CI”
153  -binding to medaka T1r2a/T1r3LBD using various biophysical techniques. For this purpose,
154  the purified T1r2a/T1r3LBD was subjected to differential scanning fluorimetry (DSF), which
155  we previously used for the amino acid-binding analysis (Yoshida et al, 2019). In order to
156  prepare a Cl -free condition, CI” in the sample was substituted with gluconate, as it is unlikely
157  accommodated in the Cl -site due to its much larger size. We confirmed that gluconate does
158  not serve as a ligand for T1r2a/T1r3LBD (Figure 3—figure supplement 1).

159 The addition of CI" to the CI-free T1r2a/T1r3LBD sample resulted in thermal

160  stabilization of the protein (Figure 3A), which is indicative of ClI” binding to the protein. The
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161  apparent Ky value for CI” estimated by the melting temperatures (7;,) at various CI
162 concentrations was ~110 uM (Figure 3B, Table 1). The CI -dependent thermal stabilization
163 was confirmed by the fluorescence-detection size-exclusion chromatography-based
164  thermostability (FSEC-TS) assay (Hattori et al/, 2012) (Figure 3C, Table 1). However, the CI”
165  -dependent stabilization was not observed on T1r2a/T1r3 with the CI -site mutation, T105A in
166  TI1r3. In the case of this mutant, the 7}, values for both in the presence and absence of Cl~ was
167  similar to the values obtained for the wild-type protein in the absence of CI™ (Figure 3C,
168  Figure 3—figure supplement 1, Table 1). These results indicate that the CI™ effect attributed to
169  the identical site where the C1 -binding was observed in the crystal structure of T1r3.

170 Next, we examined the consequence of the Cl-binding to T1r2a/T1r3LBD via
171  Forster resonance energy transfer (FRET) using the fluorescent protein-fused sample. Class C
172 GPCRs commonly exhibit agonist-induced conformational changes in LBD, such as the
173 dimer rearrangement, which is essential for receptor activation and signaling (Ellaithy et al,
174 2020; Koehl et al., 2019; Kunishima et al., 2000; Lin et al, 2021). Consistent with this, we
175  previously reported that T1r2a/T1r3LBD shows conformational change concomitant with the
176  binding of amino acids, which can be detected as increased FRET intensity (Nango et al,
177  2016). Notably, adding CI to the fluorescent protein-fused T1r2a/T1r3LBD also increased
178  FRET intensities, similar to amino acids (Figure 3D). The ECs for Cl-induced FRET signal
179  change was determined as ~1 mM (Table 1). Note that both DSF and FRET estimations have
180  some degree of error: the former produced slightly lower values than the latter, particularly in
181  the case of weak affinities in the mM concentration range (Yoshida et al., 2019). As such,
182  although the ECsy value determined by FRET was slightly higher than the apparent K4 value
183  of CI" determined by DSF, the two are most likely relevant. Considering that the CI -binding
184  site is located adjacent to the dimer interface, which exhibits reorientation upon agonist

185  binding (Figure 2D), the results suggest that the ClI binding to T1r2a/T1r3LBD induces a
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186  conformational rearrangement of TI1r2a/TIr3LBD similar to its agonist amino acid.
187  Nevertheless, the extent of the FRET change induced by CI was smaller than the changes
188  induced by amino acids, such as ~1/2 of the latter (Figure 3E). Therefore, the results suggest
189  that the extent of the conformational change induced by Cl” is smaller than the change
190  induced by amino acids. The extent of Cl -dependent FRET index change was reduced on
191  TIr2a/T1r3 with the CI -site mutation, T105A in T1r3 (Figure 3E). Considering that the
192  amino-acid-dependent change in the mutant was also significantly reduced (Figure 3E), the
193 T105A mutation on T1r3 might result in losing the ability of the conformational change
194  induced by CI'- and amino-acid bindings, although the possibility of deactivation of the
195  protein during preparation due to its low stability cannot be excluded.

196 In addition to the Cl-binding effect, the Cl~ effect on amino-acid binding to
197  TIr2a/T1r3LBD was investigated by FRET and isothermal calorimetry (ITC). The Kqvalues
198  for L-glutamine binding determined by ITC, as well as the ECsy values and the other
199  parameters for L-glutamine-induced conformational change determined by FRET, did not
200  differ in the presence and absence of CI” (Figure 3F, Figure 3—figure supplement 1, and
201  Table 1). These results indicated that the CI” binding had no significant effect on the binding
202  of L-glutamine, a representative taste substance, at least for T1r2a/T1r3LBD from medaka
203  fish.

204

205  Taste response to Cl” through T1rs in mouse

206  Biophysical studies on T1r2a/T1r3LBD from medaka fish suggested that Cl binding to
207  TIr3LBD induces a conformational change similar to that of an agonist without affecting
208  agonist binding. As described above, the CI -binding site is likely conserved among T1r3 in
209  various species, such as those in mammals. Therefore, we analyzed single fiber responses

210  from mouse chorda tympani nerve to investigate the physiological effect of Cl™ on taste
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211  sensation. While conventional cell-based receptor assay systems are affected by changes in
212 extracellular ionic components, the application of various solutions to the taste pore side of
213 the taste buds projected to taste nerve systems, are transduced exclusively as “taste” signals,
214 without inducing the other cellular responses derived from the ionic component changes in
215  the surrounding environment.

216 We first identified nerve fibers that connect to Tlr-expressing taste cells in
217  wild-type (WT) mice, i.e., that receive taste information from cells likely possessing sweet
218  (T1r2/T1r3) and umami (T1r1/T1r3) receptors (Yasumatsu et al, 2012). The identification was
219  evidenced by responses to T1r agonists, such as sugars and amino acids, which were inhibited
220 by gurmarin (Gur), a Tlr-specific blocker (Daly et al, 2013; Margolskee et al, 2007,
221  Ninomiya & Imoto, 1995; Ninomiya ef al, 1999). Then, we examined the responses to CI in
222 these fibers. Remarkably, the fibers also exhibited responses induced by Cl, which was
223 applied as a form of NMDG-CI devoid of the known salty taste stimulant, sodium ion (Figure
224 4A). CI'-induced impulse frequencies from the nerves increased in a concentration-dependent
225  manner (Figure 4B). The responses to NMDG-CI, NaCl, and KCI at the same concentrations
226  did not differ significantly (repeated measures analysis of variance [ANOVA], P > 0.05),
227  whereas responses to NMDG-gluconate were significantly smaller than those to NMDG-Cl
228  (repeated measures ANOVA: F{; 43y = 31.33, P <0.001) and did not induce explicit responses
229  up to 10 mM. These results confirmed that the observed responses were attributed to Cl™. All
230  responses to Cl, regardless of the type of counter cations, were significantly decreased by
231  lingual treatment with Gur (Figure 4B, repeated measures ANOVA: F(1 4)= 56.65, P <0.001
232 for NMDG-CI; Fi,50) = 24.78, P < 0.001 for NaCl; and F(1,45) = 35.72, P < 0.001 for KCI).
233 Furthermore, responses to Cl in T1r3-KO mice were significantly lower than those in WT
234 mice (repeated measures ANOVA: F(; 43y = 25.36, P < 0.001; Figure 4C). The results indicate

235 that the observed Cl-dependent responses were mediated by Tlr. Notably, the CI

10
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236  -concentration range that induced nerve responses was lower (< ~10 mM) than that for
237  Na'-detection by ENaC when applied as the NaCl form (> ~30 mM) (Chandrashekar et al.,
238  2010) but is consistent with those for CI -binding and Cl -induced conformational change
239  observed on T1r2a/T1r3LBD (Table 1). These results suggest that a low CI™ concentration is
240  sensorily detected via Tlr in taste buds. Although the responses induced by known taste
241  substances for Tlrs, such as sugars and amino acids, range from tens to hundreds of impulse
242 frequencies per 10 s (Yasumatsu et al., 2012); the maximum response level induced by Cl
243 was low, ~10 per 10 s (Figure 4B). According to our observations, CI” likely produces a “light”
244  taste sensation compared with other known taste substances.

245 Next, to examine the physiological interaction between a canonical taste substance
246  for mouse Tlr and Cl', we recorded responses to 20 mM L-glutamine or 100 mM sucrose
247  from Tl1rl/T1r3- and T1r2/T1r3-expressing cells, respectively, with or without NMDG-CI
248  from the same Tlr-connecting single fibers (Figure 4A). The concentrations for the taste
249  substances were set to induce responses greater than the baseline but less than maximum. As
250  shown in Figure 4D, the response to L-glutamine or sucrose increased significantly by adding
251 10 mM NMDG-CI (paired #-test, 2 = 7.56, p = 0.017 for L-glutamine and 2 = 5.05, p = 0.037
252  for sucrose). We confirmed that these responses had been suppressed by a lingual treatment of
253 Gur in the presence (£2 = 6.73, p = 0.021 for L-glutamine and £2 = 8.80, p = 0.013 for sucrose)
254  or absence (2 = 8.32, p = 0.014 for L-glutamine and 2 = 11.72, p = 0.007 for sucrose) of
255 NMDG-CI to a similar extent and a similar level to the responses in T1r3-KO mice. Moreover,
256  the responses to the mixtures did not differ significantly from the summation of the responses
257  to each solution (2 = 2.34, p = 0.145 for L-glutamine and 2 = 2.31, p = 0.147 for sucrose).
258  The results suggest that the simultaneous binding of CI and a canonical taste substance, such
259  as amino acids and sugars, to T1r do not cause synergistic responses.

260 Finally, we addressed whether Tlr-mediated CI™ responses observed in the taste

11
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261  nerves involve taste perception. Thus far, most reported behavioral assays for examining the
262  gustatory detection of NaCl were performed with concentrations above ~30 mM, which can
263  induce ENaC-mediated responses. Nevertheless, a few reports have shown that NaCl solution
264  induced higher consumption relative to water even below 10 mM concentration (Dyr et al,
265  2014; Stewart et al, 1994), which is below the range inducing ENaC-mediated responses
266  (Chandrashekar et al., 2010) but within what we observed in the Cl -induced taste nerve
267  responses via Tlr. For verification, we performed a mouse two-bottle choice test using
268  NMDG-CI solution and analyzed the preference relative to water. The mouse preferred water
269  containing 10 mM NMDG-CI, which was abolished by the application of Gur (Figure 4E, 4F).
270  These results suggest that Cl™ is preferably perceived through taste signal transduction
271  mediated by Tlr.

272

273  Discussion

274  Inthis study, CI" is found to specifically interact with the LBD in T1r3, a common component
275  of sweet and umami taste receptors, and induces a conformational change in the receptor’s
276  LBD region. The CI” binding to Tlr in taste cells is likely further transmitted to the sweet
277  taste nervous system, resulting in a light yet preferable taste sensation. Since Tlrs are
278  conserved across vertebrates and the Cl -binding site is likely conserved among T1r3 in
279  various organisms, Tlr-mediated Cl” responses might be common in many animals, such as
280  humans. Evidently, the concentration range for the Cl -induced conformational change of
281  medaka T1r2a/T1r3LBD and increase in murine sweet nerve impulses observed in this study
282  (i.e., < ~10 mM) agrees with the NaCl concentration perceived as ‘“sweet” by humans
283  (Bartoshuk et al., 1964; Bartoshuk et al., 1978; Cardello, 1979) (Figure 1). Additionally, the
284  sweet sensation induced by NaCl was reportedly suppressed by topical application of

285  Gymnema sylvestre (Bartoshuk et al., 1978), containing Gymnemic acids, which are specific

12
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286  inhibitors of human sweet taste receptor T1r2/T1r3 (Sanematsu et al, 2014). Overall, these
287  results agree with the involvement of Tlrs in the Cl -taste detection. These findings agree
288  with an earlier hypothesis by Bartoshuk and colleagues that dilute NaCl contains a sweet
289  stimulus that interacts with the same receptor molecules as sucrose (Bartoshuk et al., 1978).
290  The reported “sweet” sensation by low NaCl concentration faded out at the concentrations
291  detected as “salty” (Bartoshuk et al., 1964; Bartoshuk et al., 1978; Cardello, 1979), thereby
292  agreeing with the fact that we might be unaware that table salt is sweet at such concentrations.
293  The phenomenon could be explained by “mixture suppression” (Bartoshuk, 1975; Keast &
294 Breslin, 2002; Stevens, 1996), such that a light sweet sensation is masked by an intense salty
295  sensation in a higher concentration range of NaCl.

296 The CI” perception at low salt concentrations found in this study is achieved via the
297  Tlrs-mediating taste system, which transduces information as a preferred taste by nature.
298  Since CI is also a component of table salt, this system might serve as another pathway for
299  preferred salt perception promoting intake along with the pathway for Na' perception as a
300 preferred taste via taste cells that express the Na' receptor ENaC and a purinergic
301  neurotransmission channel CALHM1/3 (Nomura et al, 2020). In contrast, the TIr-mediated
302  CI-sensing observed in this study shows several different properties from those of cells or the
303  molecules reportedly exhibiting anion-sensitive Na' detection or CI™ detection in taste buds
304  thus far. Specifically, the anion-sensitive Na'-responding taste cells reported by Lewandowski
305  etal aretype 3 cells, which include sour- but not sweet-responding cells (Lewandowski et al.,
306 2016). The CI -detection pathway reported by Roebber et al. was observed in type 2 cells,
307  which include both sweet- and bitter-responding cells, but was inhibited by a blocker of
308  phospholipase C, which mediates sweet- and bitter-signaling downstream of Tlr and bitter
309  receptors (Roebber ef al., 2019). The Cl -responses mediated by TMC4 were observed in the

310  glossopharyngeal nerve but not in the chorda tympani nerve wherein T1r-mediated responses
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311  were observed (Kasahara et al., 2021). Notably, responses by these reported pathways were
312 tested by much higher concentrations of NaCl, typically in the several hundred mM range
313 (Kasahara et al., 2021; Lewandowski et al., 2016; Roebber et al., 2019), than those used in
314  this study. These results imply that there may be multiple distinct concentration-dependent
315  pathways for CI™ detection in taste buds. Given that high NaCl concentration is transduced as
316  an aversive taste through bitter and sour taste cells (Oka et al., 2013), the relevance between
317  the reported high CI -responsive pathways and high NaCl responses by bitter and sour cells is
318  ofinterest, as pointed out by the previous studies, and will require further investigation.

319 Salt taste sensation and natriuresis are critical physiological processes that regulate
320  sodium intake and excretion to maintain body fluid homeostasis. Intriguingly, both processes
321  were found to use the counter anion Cl to regulate the molecular functions of the receptors,
322 Tlrs and ANPRs, which share a similar extracellular protein architecture with a conserved CI”
323  -binding site. In the case of ANPR, mGluRs, and CaSR, positive allosteric modulations by CI”
324  for agonist binding have been observed, with some variations in the extent of the
325  enhancement (Eriksen & Thomsen, 1995; Kuang & Hampson, 2006; Liu et al., 2020; Tora et
326  al, 2018; Tora et al., 2015). Whether the Cl™ actions on T1rs of other subtypes or from other
327  organisms have some variance is yet to be examined.

328

329  Materials and methods

330  Crystallography

331  All protein samples used for structural and functional analyses were prepared using
332  Drosophila S2 cells (Invitrogen) or high-expression clones for each protein sample
333  established from S2 cells in previous studies (Nuemket ef al., 2017; Yamashita et a/, 2017).
334  No authentication or test for mycoplasma contamination was performed.

335 The L-glutamine-bound T1r2a/T1r3LBD crystals, in complex with a crystallization
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336  chaperone Fabl6A, were prepared in the presence of NaCl as described (Nuemket et al.,
337  2017). For the preparation of the Br -substituted crystals, the obtained crystals were soaked in
338 a mother liquor consisting of 100 mM MES-Tris, pH 6.0, 50 mM NaBr, 17% PEG1500, 5%
339 PEG400, 5 mM L-glutamine, 2 mM CaCl,, cryoprotected by gradually increasing the
340  concentration of glycerol to 10%, incubated for 2 hours, and flash-frozen.

341 The X-ray diffraction data were collected at the SPring-8 beamline BL41XU using
342  a PILATUS6M detector (DECTRIS) at wavelength 0.9194 A or at the Photon Factory
343 beamline BL-1A using an EIGER X4M detector (DECTRIS) at wavelength 2.7 A. The data
344  were processed with XDS (Kabsch, 2010) (Figure 2—figure supplement 1). The phases for
345 anomalous difference Fourier map calculation were obtained by molecular replacement
346  methods with the program PHASER (McCoy et al, 2007), using the structures of a single unit
347  of the mfT1r2a-3LBD-Fab16A complex (PDB ID: 5X2M; ligands and water models were
348 removed) (Nuemket et al., 2017) as the search model (the R/Ry.. of the model for the Br -data
349  collected at 0.9194 A: 0.248/0.350; the Cl™-data collected at 2.7 A: 0.233/0.339).

350

351 Differential scanning fluorimetry (DSF)

352  Differential scanning fluorimetry was performed as previously described (Yoshida et al.,
353 2019). The purified mfT1R2a/3LBD heterodimer protein was prepared (Nango et al., 2016)
354  and dialyzed with buffer A (20 mM HEPES-NaOH, 300 mM sodium gluconate, pH 7.5) to
355 remove CI'. 1 pg of the dialyzed protein sample was mixed with Protein Thermal Shift Dye
356  (Applied Biosystems) and 0.003 — 10 mM NacCl in 20 pL of buffer A. The mixture solutions
357  were then loaded to a MicroAmpR Fast Optical 48-Well Reaction Plate (Applied Biosystems).
358  Fluorescent intensities were measured by the StepOne Real-Time PCR System (Applied
359  Biosystems) while the temperature raised from 25 °C to 99 °C with a velocity of 0.022 °C/sec.

360  For detection, the reporter and quencher were set as “ROX” and “none,” respectively. The
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361  apparent melting transition temperature (7;,) was determined using the maximum of the
362  derivatives of the melt curve (dFluorescence/dT) by Protein Thermal Shift Software version
363 1.3 (Applied Biosystems). The apparent dissociation constant (Kg.app) for CI™ derived from the
364 Ty, values at different NaCl concentrations was estimated using a thermodynamic model
365 proposed by Schellman (Schellman, 1975) as described (Yoshida et al., 2019). The sample
366  sizes for the analyses by DSF, as well as Forster resonance energy transfer and isothermal
367 titration calorimetry described below, were set to obtain reliable values based on the
368  experiences in the previous studies (Nango ef al., 2016; Nuemket et al., 2017; Yoshida et al.,
369  2019).

370

371  Forster resonance energy transfer (FRET)

372  FRET analysis was performed as described previously (Nango et al., 2016; Nuemket ef al.,
373 2017). The WT T1r2aLBD-Cerulean and T1r3LBD-Venus fusion heterodimer proteins were
374  prepared as described (Nuemket et al., 2017). For the mutant protein preparation, a
375  TI1r3-T105A mutation was introduced into the vector pAc-mfT1r3al-Ve (Nango ef al., 2016)
376  using polymerase chain reaction. The mutant expression vector was co-introduced with
377  pAc-mfT1r2al.-Ce (Nango et al., 2016) to Drosophila S2 cells using Polyethyleneimine (PEI)
378  “MAX” (Polysciences) as previously described (Bleckmann et al, 2019) with a ratio of 0.5 pg
379 pAc-mfT1r2al-Ce, 0.5-pg pAc- mfT1r3aL-Ve-T105A, and 10-ug PEI to ~1 x 10° cells.
380  Protein expression and purification were conducted similarly as for the WT protein.

381 For the CI -titration, the purified protein samples were dialyzed against buffer A in
382  the presence of 1-mM L-alanine. Afterward, the samples were diluted with buffer A to reduce
383  the remaining L-alanine concentration below 1 uM (< ~1/100 of ECsy (Nango et al., 2016;
384  Nuemket et al., 2017)), and then incubated in the presence of 0.001-10 mM NaCl or 1 mM

385  L-glutamine in buffer A at 4°C overnight. For L-glutamine titration in the presence or absence
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386  of CI, the protein solution was dialyzed with buffer B (20 mM HEPES-Tris, 300 mM NaCl,
387  pH 7.5) or buffer C (20 mM HEPES-Tris, 300 mM sodium gluconate, pH 7.5) in the presence
388 of 1 mM L-alanine to prepare the conditions with or without CI', respectively. Then, the
389  samples were diluted with buffer B or C to reduce the remaining L-alanine concentration
390 Dbelow 1 uM and then incubated in the presence of 0.01-1000 uM L-glutamine at 4°C
391  overnight. Fluorescence spectra were recorded at 298 K with a FluoroMax4
392  spectrofluorometer (Horiba). The sample was excited at 433 nm, and FRET was detected via
393  the emission at 526 nm. The emission at 475 nm was also recorded for the FRET index
394  calculation. The FRET index (intensity at 526 nm/intensity at 475 nm) was plotted against the
395  CI or L-glutamine concentration, and the titration curves were fitted to the Hill equation using
396  KaleidaGraph (Synergy Software) or ORIGIN (OriginLab).

397

398  Isothermal titration calorimetry

399 In order to prepare the conditions with or without CI, the purified mfT1R2a/3LBD
400  heterodimer protein was dialyzed with buffers B or C, respectively. The dialyzed protein
401  solution (~50 uM) was then loaded into the sample cell in iTC200 (GE Healthcare) after the
402  removal of insoluble materials by centrifugation (10,000xg, 15 min, 277 K). The titration was
403  performed by injecting 2 uL of 400 uM L-glutamine at intervals of 120 s at 298 K. The
404  thermograms and the binding isotherms were analyzed with Origin software, assuming one
405  set of binding sites for fitting.

406

407  Fluorescence-detection size-exclusion chromatography-based thermostability assay
408 (FSEC-TS)

409 A TI1r3-T105A mutation was introduced in the vector pAc_ mfT1r3L (Yamashita et al., 2017)

410 by PCR. The mutant expression vector was co-introduced with pAc_mftlr2al. (Yamashita et
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411  al., 2017) to Drosophila S2 cells to establish a stable high-expression clone cell as previously
412 described (Yamashita et al, 2017). The wild-type TI1r2a/T1r3LBD and mutant
413  TI1r2a/T1r3-105A-LBD proteins were expressed and purified as previously described (Nango
414 et al.,, 2016) with several modifications as listed below. After the protein binding to
415 ANTI-FLAG M2 affinity gel, the resin was washed with either buffer D (20 mM
416 HEPES-NaOH, 0.3 M NaCl, 2 mM CaCl,, 5 mM L-GIn, pH 7.5) or buffer E (20 mM
417  HEPES-NaOH, 0.3 M Na gluconate, 2 mM Ca gluconate, 5 mM L-GlIn, pH 7.5). Then, the
418  protein was eluted with 100 pg/mL FLAG peptide in buffer D or E.

419 The protein solutions (50 pug/mL) in buffer D or E were incubated at 4 °C, 37 °C,
420 50 °C, 70 °C, or 90 °C at 2 hours. Subsequently, the samples were loaded on an SEC-5
421  column, 500 A, 4.6 x 300 mm (Agilent) connected to a Prominence HPLC system (Shimadzu),
422 using buffer D or E as a running buffer at a flow rate of 0.3 mlmin '. The elution profiles
423  were detected with an RF-20A fluorometer (Shimadzu), using excitation and emission
424 wavelengths of 280 and 340 nm for the detection of intrinsic tryptophan fluorescence.

425 The residual ratio after incubation at each temperature was estimated using the
426  fluorescence intensity at the elution peak, which corresponded to the TIrLBD dimer, i.e., the
427  peak height at ~11.6 min. The values were normalized to the intensity of the sample incubated
428 at4 °C as 1. In order to estimate the apparent melting temperature (7m-app) 0of the sample, the
429  values of residual ratio at each temperature were fitted to the Gibbs-Helmholtz equation
430  transformed as shown below (assuming that the sample protein is under equilibrium between

431  afolding and unfolding state under each condition):

1

T T
AH (1 + Tm_app) — ACp {(Tm_app —T)+Tin (Tm_app)}

1+exp|-— RT

Residual ratio = 1 —

432 where AH and AC, are the enthalpy and heat capacity change of unfolding, respectively; T is

433 the temperature of the sample incubation; R is the gas constant. The fittings were performed
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434 with KaleidaGraph (Synergy Software), with AH, AC,, and Tr,..pp are set as valuables.

435

436  Single fiber recording from mouse chorda tympani (CT) nerve

437  All animal experiments were conducted following the National Institutes of Health Guide for
438  the Care and Use of Laboratory Animals and approved by the committee for Laboratory
439  Animal Care and Use and the local ethics committee at Tokyo Dental College (Permit
440  Number: 228101) and Okayama University (Permit Number: OKU-2022897) Japan. The
441  subjects were six adult male C57BL/6JCrj mice (Charles River Japan, Tokyo, Japan) and four
442  T1r3GFP-KO mice, which were obtained by mating T1r3-GFP (Damak et al/, 2008) and
443  T1r3-KO (Damak et al/, 2003) mice. Mice were maintained on a 12/12-h light/dark cycle and
444  fed standard rodent chow and 8-20 weeks of age ranging in weight from 20 g to 30 g.

445 The mice were anesthetized with an injection of combination anesthetic agents
446  contained midazolam (0.8 mL/kg, Sandoz, Yamagata, Japan), medetomidine (0.75 mL/kg,
447  Nippon Zenyaku Kogyo Co., Fukushima, Japan), butorphanol tartrate (1 mL/kg, Meiji Seika
448  Pharma, Tokyo, Japan) and physiologic saline (7.45 mL/kg), and maintained at a surgical
449  level of anaesthesia, with additional injections of sodium pentobarbital (Nakarai Tesque,
450  Kyoto, Japan, 810 mg/kg ip every hour). Under anaesthesia, each mouse was fixed in the
451  supine position with a head holder, and the trachea cannulated. The right CT nerve was
452  dissected, free from surrounding tissues, after the removal of the pterygoid muscle and cut at
453 the point of its entry to the tympanic bulla. A single or a few nerve fibers were teased apart
454  with a pair of needles and lifted onto an Ag-AgCl electrode, and an indifferent electrode was
455  placed in nearby tissue. Their neural activities were amplified (K-1; Iyodenshikagaku,
456  Nagoya, Japan) and recorded on a computer using a PowerLab system (PowerLab/sp4; AD
457  Instruments, Bella Vista, NSW, Australia). For taste stimulation of fungiform papillae, the

458 anterior half of the tongue was enclosed in a flow chamber. Taste solutions or rinses (distilled
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459  water) (~24 °C) were delivered to the tongue by gravity flow at the same flow rate (~0.1 mL
460 s ). For data analysis, we used the net average frequency for 10 sec after the stimulus onset,
461  which was obtained by subtracting the spontaneous frequency for the 10 sec duration before
462  stimulation from after stimulation. In the initial survey to identify a nerve fiber connecting to
463  Tlr-expressing cells, test stimuli such as 100 mM NaCl, 10 mM HCI, 500 mM sucrose, 100
464 mM monopotassium glutamate, 20 mM quinine HCI were separately applied. If the fiber
465  responded to sucrose, we applied 10 pM—-100 mM NMDG-CI, NaCl, KCI, or either of 20 mM
466  L-glutamine or 100 mM sucrose with or without 10 mM NMDG-CI to the tongue. The criteria
467  for the occurrence of response were the following: the number of spikes was larger than the
468 mean + two standard deviations of the spontaneous discharge for three 10 sec periods before
469  stimulation, and at least three spikes were evoked by taste stimulation (Yasumatsu et al.,
470  2012). In the case of TIr3GFP-KO mice, as the mice showed a significant response to 0.5 M
471  sucrose, we could identify sweet-responsive fibers (impulse frequency of 13.4 + 1.31)
472  (Yasumatsu et al., 2012). The reagents used were purchased from Wako Pure Chemical
473  Industries (Osaka, Japan; others). To block responses via T1r (Daly et al., 2013; Margolskee
474 et al., 2007; Ninomiya & Imoto, 1995; Ninomiya et al., 1999), each tongue was treated with
475 30 pg ml™' (~7 uM) gurmarin (Gur) dissolved in 5 mM phosphate buffer (pH 6.8) for 10 min,
476  similarly as described by Ninomiya & Imoto (Ninomiya & Imoto, 1995). To assure the
477  detection of responses from Tlr-expressing cells, recordings from Gur-insensitive
478  sweet-responsive fibers were defined as those retaining impulse frequencies to 0.5 M sucrose
479  more than 60% after the Gur treatment (Ninomiya et al., 1999) were excluded from the data.
480  The number of Gur-sensitive and Gur-insensitive fibers were six and three, respectively,
481 among 0.5 M sucrose responding fibers. The sucrose application was repeated 3—6 times
482  during the recordings. Additionally, the recovery of the suppressed responses was confirmed

483 using 15 mM B-cyclodextrin, which could remove the effect of Gur from the tongue
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484  (Ninomiya et al., 1999). All Gur-sensitive fibers recovered up to 60%—150% of responses
485  before Gur. At the end of the experiment, animals were killed by administering an overdose of
486  the anaesthetic. Repeated measures ANOVA and Student’s paired r-test were used to
487  statistically evaluate the effects of chemicals or gene deletion. The sample size was calculated
488  according to power analysis, thereby resulting in three per group due to the effect size (d) of
489  6-9.3 to detect the effects of blocking or deleting T113.

490

491  Two-bottle preference tests

492  All training and testing sessions occurred during the light phase of the light/dark cycle. On the
493  first day of training, the WT mice (adult male C57BL/6JCrj) were water deprived for 23 h and
494 then placed in a test box with two bottles: one filled with water and the other empty. The
495  amount of fluid intake was measured after a 5 min presentation. After 4 days of training, mice
496  were used for test sessions if they drank water evenly on either side (nine mice). In the test
497  sessions, they were provided with two bottles, one containing 10 mM NMDG-CI and the
498  other containing water, with or without Gur, for 5 min. The amount of liquid consumed was
499  measured by weighing the bottles, and a preference score of NMDG-CI was calculated using

500 the following equation:

V
Preference score(%) = € %100
w

Ve, + Yy
501  where V. and V,, are the amount of NMDG-CI intake and water intake, respectively.

502
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673  Table 1. Properties of the CI -binding to T1r2a/T1r3LBD.
CI™-binding, DSF (n = 4)
Ki-app (MM) 0.111 £0.046
Protein thermal stability, DSF (n = 6)

condition +CI” -CI
Melting temperature ("C) 55.2+0.03 46.6 = 0.06
Protein thermal stability, FSEC-TS

wild type T1r2a/T1r3LBD (n = 3)

condition +CI” -CI
Melting temperature ("C) 56.4+5.1 46.0+ 0.3
mutant T1r2a/T1r3-T105ALBD

condition +CI” -ClI
Melting temperature ("C) 42.7+0.1 46.7+0.7
CI'- binding, FRET (n = 3)

FRET index minimum 1.00 + 0.005

FRET index change 0.119+0.014

ECso (mM)’ 1.23 +0.53

L-glutamine binding, FRET (n = 3)

condition +CI” -CI’
FRET index minimum 1.08 £0.01 0.86 +0.01
FRET index change 0.11 0.17
ECso (uM) 3.78+1.29 3.87+1.76
Hill coefficient 1.20+0.88 0.94 +0.29

L-glutamine binding, ITC

condition +CI” -CI”

N (sites) 0.389+0.028 0.303 +£0.023
K, (M) (2.85+0.65)x 10°  (2.12+0.46) x 10°
[converted to Kq (LM)] [3.51] [4.72]

AH (kcal/mol) -123+£1.2 -129+13

AS (cal/mol/deg) -16.3 -18.8

674  “Hill coefficient was fixed to 1 for fitting.
675
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676  Figure legends

677  Figure 1

678  Salt taste sensation.

679  Approximate concentration ranges of salt taste perceptions in humans (Bartoshuk ez al., 1978)
680  and qualities of taste sensation with known cells and receptors responsible for their sensing
681  are summarized.

682

683  Figure 2

684  CI'-binding sites in the medaka fish taste receptor T1r2a/T1r3LBD.

685  (A) Schematic drawing of the overall architecture of T1r2a/T1r3. The crystal structure (PDB
686  ID: 5X2M) (Nuemket et al., 2017) is shown at the LBD region, and helices B and C in T1r3
687 are labeled. (B) Anomalous difference Fourier map (4.5 o, red) of the Br -substituted
688  TI1r2a/T1r3LBD crystal. (C) Anomalous difference Fourier map (4.5 o, red) of the Cl -bound
689  T1r2a/T1r3LBD crystal derived from the diffraction data collected at the wavelength of 2.7 A.
690  In panels B and C, the site originally identified the CI -binding was framed. (D) A close-up
691  view of the Cl -binding site in T1r3LBD in the Cl-bound T1r2a/T1r3LBD (PDB ID: 5X2M).
692 (E) Amino-acid sequence alignment of Tlr proteins and the related receptors at the CI”
693  -binding site. The “h,” “m,” and “mf” prefixes to Tlrs indicate human, mouse, and medaka
694  fish, respectively. The position corresponding to Thr105 in TIr3 from medaka fish is
695  highlighted. (F) The structures of ANPR (PDB ID: 1T34, left) (Ogawa et al, 2004) and
696 mGIluR2 (PDB ID: 5CNI, right) (Monn ef al, 2015a) bound with CI". (G) Superposition of the
697  CI-binding site in T1r3, ANPR, and mGIluR2.

698

699  Figure 2—figure supplement 1

700  X-ray data collection statistics of T1r2a/T1r3LBD-Fab16A complex.
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Figure 2—figure supplement 2

The structure of the regions relating to the CI-binding site in medaka fish
T1r2a/T1r3LBD.

(A) The Br -binding site in T1r3. The anomalous difference Fourier map (4.5 o, red) of the
Br -substituted crystal is overlayed to the Cl-bound T1r2a/T1r3LBD structure (PDB ID:
5X2M). (B) The CI"-binding site in T1r3. The anomalous difference Fourier map (4.5 o, red)
calculated from the data collected at the wavelength of 2.7 A is overlayed. (C) The region in
T1r2a, which corresponds to the Cl -binding site in T1r3, in the Cl-bound T1r2a/T1r3LBD.
(D) The Br -binding site in T1r2. The anomalous difference Fourier map (4.5 o, red) is
overlayed to the Cl™-bound T1r2a/T1r3LBD structure. (E) The Br -binding site in T1r2. The
2.7 A-anomalous difference Fourier map (4.5 o, red) of the CI"-bound T1r2a/T1r3LBD, which
is the same map shown in panel B, is overlayed to the Br -binding site in T1r2. No significant

peak was observed.

Figure 2—source data 1
The anomalous difference Fourier maps shown in Figure 2B and 2C.
The structure factor files and the coordinate files used for anomalous difference Fourier

calculation, and the resultant maps were included.

Figure 3

The CI'-binding properties of T1r2a/T1r3LBD.

(A) Representative thermal melt curves of T1r2a/T1r3LBD in the presence of 0.003 —10 mM
concentrations of Cl° measured using DSF. (B) Dose-dependent 71, changes of

T1r2a/T1r3LBD by addition of CI'. (n = 4) (C) Thermal melting curves of WT and the
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726  TI1r3-T105A mutant of T1r2a/T1r3LBD in the presence and absence of CI', analyzed by
727  FSEC-TS. (n = 1) (D) Dose-dependent FRET signal changes of the T1r2aLBD-Cerulean and
728  TI1r3LBD-Venus heterodimer by addition of Cl'. (» = 3) (E) FRET index increases by adding
729 10 mM ClI' or 1 mM L-glutamine to the WT or TIr3-T105A mutant
730  T1r2aLBD-Cerulean/T1r3LBD-Venus heterodimer relative to that in the absence of any
731  ligand in the absence of CI". (n = 3) (F) Dose-dependent FRET signal changes of the
732 Tl1r2aLBD-Cerulean and TIr3LBD-Venus heterodimer induced by the addition of
733 L-glutamine in the presence and absence of Cl'. (n = 3) The experiments were performed two
734  (panels A, B, D, and E), three (C and WT), four (F and +CI” condition), or one (C and mutant;
735  F and —CI" condition) time(s), and the results from one representative experiment are shown
736  with numbers of technical replicates. Data points represent mean and s.e.m.

737

738  Figure 3—figure supplement 1

739  The properties of T1r2a/T1r3LBD in the presence and absence of CI".

740  (A) Binding analysis of gluconate by DSF. 0.1, 1, and 10 mM of L-glutamine, as a
741  representative ligand, and sodium gluconate was added to T1r2a/T1r3LBD in 20 mM
742  HEPES-NaOH, 300 mM NaCl, pH 7.5. The mean increases of 7, (AT},) from that in the
743 absence of a ligand (54.1 °C, measured on the same sample, n = 2) are plotted. Error bars are
744  in s.e.m. (n = 4). (B) Representative thermal melt curves of T1r2a/T1r3LBD in the presence
745  or absence of CI', measured by DSF in the same condition in Figure 3C, and the panels C, D
746  in this figure. (C, D) The L-glutamine-binding to TIr2a/T1r3LBD was measured by
747  isothermal titration calorimetry. The upper and lower panels show the raw data and integrated
748  heat signals upon L-glutamine injection to T1r2a/T1r3LBD in the presence (C) and absence
749 (D) of CI'. The binding isotherms were fitted assuming 1 ligand: 1 heterodimer binding. The

750  experiments were performed one (panel A), two (B) four (C), or five (D) time(s), and the
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751  results from one representative experiment are shown with numbers of technical replicates.
752

753  Figure 3—source data 1

754  Excel file with numerical data used for Figure 3.

755

756  Figure 4

757  Electrophysiological and behavioral analyses of the Tlr-mediated CI” responses in
758  mouse.

759  (A-D) Results of single fiber recordings from the mouse chorda tympani nerve. (A)
760  Representative recordings of single fibers that connect to Tlr-expressing taste cells. The
761  stimuli were 10 mM NMDG-CI, 100 mM sucrose, 100 mM sucrose + 10 mM NMDG-CI, 20
762  mM L-glutamine, or 20 mM L-glutamine + 10 mM NMDG-CI. Lines indicate the application
763  of stimuli to the tongue. All the responses were suppressed by lingual treatment with a Tlr
764  blocker, Gur (right). (B) Impulse frequencies in response to the concentration series of
765 < NMDG-CI, NaCl, or KCI before and after Gur treatment in WT mice. Responses to
766  NMDG-gluconate are also shown. The mean number of net impulses per 10 s (mean
767  response) = s.e.m. in Gur-sensitive fibers (n = 5-6 from six mice). (C) Impulse frequencies in
768  response to the concentration series of NMDG-Cl before and after Gur treatment were
769  measured in T1r3-KO mice (n = 4-5 from three mice). Responses to NMDG-gluconate are
770  also shown. (D) Impulse frequencies to 20 mM L-glutamine or 100 mM sucrose in the
771  absence or presence of 10-mM NMDG-CI before and after Gur treatment. Responses to 20
772  mM L-glutamine or 100 mM sucrose by T1r3-KO mouse are also shown. Values are mean =+
773 s.e.m. (n = 3-5 from three mice each). *, **: paired #-test; P < 0.05 (*) and < 0.01 (**). (E)
774  Amount of fluid intake for water and 10-mM NMDG-CI in the two-bottle preference tests.

775  Values are mean + s.e.m. (n = nine mice) (F) NMDG-CI intake shown in (E) normalized to
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776  water intake (preference score) in the two-bottle preference tests. A score > 50% indicates that
777  the taste solution was preferred over water.

778

779  Figure 4—source data 1

780  Excel file with numerical data used for Figure 4.
781

782  List of Figure supplements and source data

783  Figure 2—figure supplement 1

784  Figure 2—figure supplement 2

785  Figure 2—source data 1

786  Figure 3—figure supplement 1

787  Figure 3—source data 1

788  Figure 4—source data 1

789
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X-ray data collection statistics of T1r2a/T1r3LBD-Fabl16A complex.

Br-bound CI'-bound
Beamline SPring-8 Photon Factory
BL41XU BL-1A
Detector PILATUS6M EIGER X4M
Wavelength (A) 0.9194 2.7
Space group P2,2,2, P2,2,2,
Cell dimensions
a(A) 102.8 102.8
b (A) 121.6 120.8
c(A) 129.9 129.1
Resolution (A) 50-3.41 (3.43-3.41) 49.8-3.32 (3.33-3.32)
Roym (%) 0.094 (0.808) 0.089 (0.865)
Iol)" 16.4 (2.3) 15.1 (2.45)
Completeness (%)* 99.8 (99.2) 99.6 (97.8)
Redundancy” 7.0 (7.0) 6.9 (6.8)

"Values in parentheses refer to data in the highest resolution shells.
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