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1 Summary 22 

• The initial phases of plant-pathogen interactions are critical since they are often decisive 23 

for the successful infection. However, these early stages of interaction are typically 24 

microscopic, making it challenging to study on a large scale. 25 

• For this reason, using the powdery mildew fungi of cereals as a model, we have developed 26 

an automated microscopy pipeline coupled with deep learning-based image analysis for the 27 

high-throughput phenotyping of plant-pathogen interactions.  28 

• The system can quantify fungal microcolony count and density, the precise area of the 29 

secondary hyphae of each colony, and different morphological parameters. Moreover, the 30 

high throughput and sensitivity allow quantifying rare microscopic phenotypes in a large 31 

sample size. One of these phenotypes is the cryptic infection of non-adapted pathogens, 32 

marking the hidden transition stages of pathogen adaptation and breaking the nonhost 33 

barrier. Thus, our tool opens the nonhost resistance phenomenon to genetics and genomics 34 

studies. 35 

• We have developed an open-source high-throughput automated microscopy system for 36 

phenotyping the initial stages of plant-pathogen interactions, extendable to other 37 

microscopic phenotypes and hardware platforms. Furthermore, we have validated the 38 

system's performance in disease resistance screens of genetically diverse barley material 39 

and performed Genome-wide associations scans (GWAS), discovering several resistance-40 

associated loci, including conferring nonhost resistance. 41 

 42 

2 Introduction 43 

Public authorities and society, particularly in Europe, mostly agree about an agroecological 44 

transition toward a chemical pesticide-free and GMO-free agriculture. However, this ambitious 45 

aim might be challenged by increased outbreaks of new aggressive pathogens promoted by global 46 

trade, monocultures, and climatic changes. As high as 40% of global crop production is lost due 47 

to pests and diseases, regardless of the extensive use of pesticides (FAO, 2020). Therefore, reduced 48 

chemical pesticide use without compensating measures will threaten global food safety to an 49 

unacceptable level.  One of the most sustainable and environmentally friendly alternatives to 50 

chemical pesticides is employing the natural disease resistance of plants. This approach was 51 
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successfully used in the long history of crop breeding. Still, to meet the new challenges, the plant 52 

breeders need to discover new disease resistance sources by digging deep into the genetic diversity 53 

stored in the gene banks and germplasm collections worldwide by using more sensitive 54 

phenotyping tools capable of discovering quantitative trait loci (QTLs) even with minimal effects 55 

and low allele frequency.  56 

The scientific community has identified this need and initiated precise and high-throughput 57 

phenotyping tools to establish a new scientific discipline called phenomics. However, most of 58 

these efforts were aimed at phenotyping on a larger object level, such as whole plants and canopy, 59 

with an insufficient spatial resolution for detailed studies of the typically microscopic plant-60 

pathogen interactions. To contribute to this bottleneck's alleviation, we started developing a highly 61 

automated phenotyping platform to cover the subcellular, tissue, and organ level of phenotyping. 62 

The system for organ-level phenotyping on a macroscopic scale called Macrobot, and the 63 

corresponding software framework (BluVision Macro), were published previously (Lück et al., 64 

2020; Lueck et al., 2020). This article is focused on the high-throughput microscopic system for 65 

phenotyping on the cellular and subcellular level, named BluVision Micro. 66 

The primary aim of the BluVision framework is the phenotyping of plant-pathogen interactions on 67 

microscopic and macroscopic levels. As a model for the development was selected, the well-68 

established system of the powdery mildew fungus Blumeria graminis as a pathogen of barley and 69 

wheat (Panstruga and Dodds, 2009; Spanu and Kamper, 2010; Douchkov et al., 2014). 70 

B. graminis is the only species of the ascomycete genus Blumeria, the order of Erysiphales. They 71 

are causing powdery mildew diseases on many different grass species. All Blumeria graminis are 72 

obligate parasites with typically extremely specific host-specialization forms, called formae 73 

speciales (ff.spp.), e.g., B. graminis f. sp. tritici (wheat powdery mildew, Bgt), and the B. graminis 74 

f. sp. hordei (barley powdery mildew, Bgh) (Wyand and Brown, 2003). Typically the plants are 75 

entirely immune against the non-adapted pathogens, e.g., barley is immune to Bgt and wheat to 76 

Bgh. However, some plant genotypes may allow microscopic growth of non-adapted pathogens, 77 

known as cryptic infection (Romero et al., 2018; Bourras et al., 2019; Bettgenhaeuser et al., 2021). 78 

The barley/wheat - powdery mildew model provides several advantages to the researchers: the 79 

fungus growth is fast and highly synchronized, the majority of the fungal biomass is located on 80 

the leaf surface, with straightforward to observe structures. Furthermore, the fungus interacts only 81 
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with the uppermost layer of plant leaf cells, the epidermis, via a specialized intracellular feeding 82 

organ called a haustorium (Huckelhoven and Panstruga, 2011). This system of reduced complexity 83 

provides an excellent environment for studying plant-pathogen interactions on a microscopic scale. 84 

However, full-size and multilevel microscopy images of large objects, such as leaf segments, are 85 

typically significant portions of complex data that were only very limitedly accessible with 86 

automated image analysis methods until recently. The situation improved dramatically with the 87 

coming of age of machine learning (ML) methods that use analytical models to identify patterns 88 

and make decisions with minimal human intervention (Mitchell, 1997; Voulodimos et al., 2018). 89 

There are two main approaches to ML – supervised learning from pre-labeled data (Russell, 2010) 90 

and unsupervised learning from unlabeled data (Hinton, 1999). The analysis of images usually 91 

includes classification and segmentation steps. The image classification uses features (variables) 92 

from images that help classify the objects. The image segmentation assigns labels to the individual 93 

pixels, groups them into subgroups (image objects), and subtracts them from the background 94 

(Stockman and Shapiro, 2001). Choosing meaningful classification features (feature engineering) 95 

(Zheng and Casari, 2018) can be crucial for the success of image analysis. This work compares 96 

two main methods -  selecting features by human decision (handcrafted features) and automatically 97 

extracting features using a convolutional neural network (CNN). CNN can automatically select 98 

many features, which leads to more robust prediction models. The downside of the CNNs is the 99 

requirement of large training datasets, where predictive models like Random forest (RF) with 100 

carefully selected handcrafted features show satisfying results even on small training sets (Lin et 101 

al., 2020). The optimal approach depends on the specific application and typically would require 102 

preliminary testing of different methods. 103 

Here we present the BluVision Micro system dedicated to phenotyping the initial stages of plant-104 

pathogen interactions using high-throughput automated microscopy and computer vision methods 105 

for localization and quantification of microscopic fungal structures. Unlike the macroscopic 106 

systems that typically quantify the disease's visible symptoms, the BluVision Micro delivers 107 

precise information about the pathogen behavior, the host's early response to the pathogen attack, 108 

and the fungus's biomass and growth, virtually eliminating the environment's effects.  109 

 110 

 111 
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3 Related work 112 

The first software development for segmentation and quantifying secondary hyphae of B. graminis 113 

f. sp. hordein (barley powdery mildew) was the HyphArea Tool (Seiffert and Schweizer, 2005; 114 

Baum et al., 2011) . The software was developed in Python 2. It is based on a  histogram-based 115 

threshold for hyphae segmentation and a shape descriptor for classifying the regions of interest 116 

(ROI).  117 

4 Material and methods 118 

4.1 Plant and fungal material 119 

Barley cv. Golden Promise and cv. Morex, and wheat cv. Kanzler were grown in 12 cm pots with 120 

IPK-soil substrate. The plants were incubated in a plant growth cabinet (Sanyo/Panasonic MLR-121 

352H-PE Versatile Environmental Test Chamber, white LED upgrade; Panasonic Healthcare Co., 122 

Ltd.) at controlled conditions (dark period of 8h, light period of 16h, 20°C and 60 RH%) for 7 days 123 

or 14 days. The second leaves were harvested and mounted on 1% water agar (Phyto agar, 124 

Duchefa, The Netherlands) plates supplemented by 20 mg/L benzimidazole as a senescence 125 

inhibitor. The barley leaf segments were inoculated with the Bgh isolate CH4.8, and the wheat leaf 126 

segments were inoculated with Bgt isolate FAL92315 at approximately 5 spores/mm2 in an 127 

inoculation tower. The fungus was stopped at 36-96 hours after inoculation (hai) by incubating the 128 

leave segments in a clearing solution (7 mL 96% Ethanol and 1 mL Acetic acid) for 48 hours at 129 

room temperature. After that, the fungal colonies were stained with Coomassie staining solution 130 

(0.3% Coomassie R250, 7.5% (w/v) trichloroacetic acid, and 50% (v/v) methanol) for 5 minutes 131 

and then washed several times with water. The prepared samples were mounted on microscope 132 

slides with 50 % glycerol to avoid drying the leaves during image acquisition. 133 

The material of the barley core collection of genotypes was grown, collected, and inoculated as 134 

described in (Lück et al., 2020). In brief, the plants were grown in 24-well seedling trays, ten plants 135 

of the same genotype per well, in a climatized greenhouse for 14 days. Leaf fragments from the 136 

second leaf were harvested and mounted on standard 4-well microtiter plates, filled with 1% water 137 

agar supplemented by 20 mg/L benzimidazole. The leaf fragments were inoculated, incubated, and 138 

stained as described above. 139 
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4.2  Image acquisition and analysis hardware 140 

The microscopy image data was acquired on a commercial Zeiss AxioScan.Z1 high-performance 141 

microscopy slide scanner and ZEN 3.0 (blue edition) software (Carl Zeiss AG). The imaging was 142 

done in a bright field configuration with a Hitachi HV-F202SCL camera (3 CCD 1/1.8" progressive 143 

scan color sensor with 1600x1200 effective pixels and 24-bit color depth), 1x camera adapter. As 144 

scanning objective typically was used an EC Plan-Neofluar 5x/0.16 M27 with 0.16 NA (numerical 145 

aperture) that provided a large depth of field (DoF), which was particularly advantageous for 146 

scanning very thick and uneven objects as whole-leaf fragments and helped reduce the Z-stack 147 

levels to only five by keeping the most fungal structure focus. The acquired image data was stored 148 

in a CZI file container that combines all relevant image and meta information in one file. The 149 

image data were analyzed on a Windows 10 Enterprise server with a double Intel Xeon™ E5-2695 150 

processor with 36 physical cores and 512 GB RAM, allowing nearly real-time analysis if required. 151 

The macroscopic image data were acquired six days after infection, as described in (Lück et al., 152 

2020). Monochrome images in all illumination modes were acquired separately and stored in 16-153 

bit TIFF image files. 154 

4.3 Software implementation 155 

The software BluVision Micro and all experiments were implemented in Python 3.6 under 156 

Windows 10 operating system. The following free Python libraries were used for development: 157 

OpenCV-Python, NumPy, Pandas, Keras, Tensorflow, czifile, skimage, mahotas, joblib and Scikit-158 

learn. Training of the CNN model was done on NVIDIA TITAN X GPU with Keras 2.3.1 and 159 

Tensorflow 2.1.0 backend, and training time of about 20.000 images per hour on an Intel® Core™ 160 

i7-9700 CPU 3.00 GHz with 64-Bit Windows 10 operation system. 161 

The software is implemented as a two-step command-line tool with separated image processing 162 

and data analysis, allowing curation of the intermediate results without rerunning the entire 163 

analysis. In addition, the images processing can be parallelized, depending on the installed 164 

computer memory. 165 

 166 

 167 
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4.4 Barley Genotyping 168 

Two hundred barley accessions from the barley collection of the Federal ex-situ Genebank in 169 

Gatersleben, selected for maximized genetic diversity, were genotyped by using whole-genome 170 

sequencing (WGS) data from Illumina short-read sequencing with 3x genome coverage (Milner et 171 

al., 2019), and aligned to the barley MorexV2 reference genome (König et al., 2020; Mascher, 172 

2020) (Supplemental Figure S1). A quality filter on 223 387 147 variants was applied with the 173 

Plink 2.0 software as follows: missing values ≤ 0.02 and minor allele frequency (MAF) ≥0.05. 174 

After filtering, 949 174 high-quality variants remained and were used in GWAS analysis. 175 

4.5 Best linear unbiased estimator (BLUE) 176 

To obtain robust and unbiased phenotype means for the individual genotypes from the three 177 

independent experiment repetitions, we used the Best linear unbiased estimator (BLUE) 178 

(Henderson, 1975; Liu et al., 2008). BLUE were calculated by using the lme4 library for R using 179 

the spore inoculation density as fixed factor. 180 

4.6 Genome-Wide Association Study 181 

GWAS for the seven traits was conducted with a Factored Spectrally Transformed Linear Mixed 182 

Model using a kinship (K) matrix provided by the FaST-LMM program (fastlmm 0.5.5) (Lippert 183 

et al., 2011; Listgarten et al., 2012). Suggestive threshold (−log10 P ≥ 6.0) was calculated based 184 

on the formula -log10 (1/ number of independent SNPs)(Yang et al., 2014) and significance 185 

threshold (−log10 P ≥ 8.0)   for the identification of QTLs was calculated by using the Bonferroni 186 

correction method (Hommel, 1988). 187 

4.7 Phenotype Preprocessing  188 

Six direct phenotypes and one derivative were derived for each leaf sample (Figure 1). The 189 

microscopic phenotypes include normalized colony counts at 48 and 96 hours after infection (hai) 190 

with the adapted pathogen (Bgh), and 96 hai with the non-adapted fungus (Bgt). In addition, one 191 

macroscopic phenotype (infection spread at 168 hai) was included for comparison (Table 1).  192 

 193 

 194 
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 195 

 196 

Figure 1. Microscopic and macroscopic phenotypes derived from a single leaf. Up to eight barley 197 

plants of the same phenotype were grown for 14 days. Two segments from the second leaf of each 198 

plant were cut and inoculated with adapted (Bgh) or non-adapted (Bgt) pathogen. Samples for 199 

microscopy were collected at 48 and 96 hai.  200 

 201 

Table 1. Analyzed phenotypes. 202 

Phenotype Phenotyping module Scale Pathogen Time (hai) Interaction type 

Bgh_48hai_counts BluVision Micro Micro Bgh 48 host 

Bgh_48hai_size BluVision Micro Micro Bgh 48 host 

Bgh_96hai_size BluVision Micro Micro Bgh 96 host 

Bgt_96hai_counts BluVision Micro Micro Bgt 96 nonhost 

Bgt_96hai_counts_bin BluVision Micro Micro Bgt 96 nonhost 

Bgh_48-96hai_slope BluVision Micro Micro Bgh 48-96 host 

Bgh_168hai_area Macrobot Macro Bgh 168 host 

 203 
 204 

For colony mean size per leaf 48 and 96 hours after Bgh inoculation, the colony area was extracted 205 

from the segmented images with the OpenCV contourArea() function, and the BLUE was 206 
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calculated from the mean of three experiment repetitions for each barley genotype. The colony 207 

sizes at both time points were used to calculate the slope of the growth curve, which was also used 208 

as a phenotype in GWAS.  209 

In addition to the quantitative phenotype (normalized colony counts) for the non-adapted pathogen 210 

(96 hai Bgt), we also calculated a binary qualitative phenotype using a threshold for the normalized 211 

colony count of 0.1. This approach reflects the qualitative nature of the NHR and allows for the 212 

identification of major R-genes involved in this complex phenomenon.  213 

The macroscopic infection severity was calculated as the percentage of leaf area covered by the 214 

powdery mildew colonies 168 hai using the BluVision Macro software (Lueck et al., 2020). A 215 

mean of up to 8 technical replicates per accession in an experiment was used to calculate the BLUE 216 

values. 217 

5 Results 218 

5.1 Image processing 219 

5.1.1 Focus stacking  220 

For finding the optimal focus stacking strategy of the multilevel CZI-images, we have tested five 221 

different Z-projection methods included in the Fiji distribution package of ImageJ v1.53 - Average 222 

intensity (Khamfongkhruea et al., 2017), Maximum intensity (Sato et al., 1998), Minimum 223 

intensity (Hayabuchi et al., 2011), Sum slices, Standard deviation and Median (Figure 2).  224 

 225 

Figure 2. Comparing stacking algorithms. Five stacking algorithms were compared: Average 226 

intensity, Maximum intensity, Median, Minimum intensity, Sum slices. The Minimum intensity 227 

method achieved the highest quality measure (FM). 228 
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Furthermore, for each stacked image, the image Quality Measure (FM) has been computed and 229 

compared (Table 2) (De and Masilamani, 2013). The minimum intensity projection method 230 

achieved the best FM score in all tested cases and was selected for the image processing pipeline.  231 

 232 

Table 2. Intensity Z-projection methods compared on two image stacks 233 

Stack Nr. Method FM 

Stack 1 average 0.0449 

Stack 1 maximum intensity 0.0444 

Stack 1 median 0.0456 

Stack 1 minimum intensity 0.0825 

Stack 1 sum slices 0.0691 

Stack 2 average 0.0690 

Stack 2 maximum intensity 0.0429 

Stack 2 median 0.0647 

Stack 2 minimum intensity 0.1633 

Stack 2 sum slices 0.1382 

 234 
 235 

5.1.2 Colony segmentation 236 

The fungal colony images were extracted and classified in several steps. A significant challenge 237 

was to design a reliable pipeline that tolerates staining quality and background variability without 238 

losing too many positive objects.  239 

First, the Z-stacked images were segmented to find the putative ROIs. Then, regions of interest 240 

were extracted as a bounding box, and the image was classified into a positive or negative class. 241 

Different common color spaces were tested: HSV, L*a*b, YCbCr, XYZ, AC1C2, YUV, I1I2I3 242 

and YQ1Q2, in combination with different thresholding algorithms: Yen's maximum correlation 243 

(Yen et al., 1995), Li's minimum cross-entropy method (Li and Lee, 1993; Li and Tam, 1998; 244 

Sezgin and Sankur, 2004), Otsu (Otsu, 1979), Isodata (Ridler and Calvard, 1978), Mean (Glasbey, 245 

1993), Minimum (Prewitt and Mendelsohn, 1966; Glasbey, 1993), Triangle (Zack et al., 1977), 246 

Canny edge detector (Canny, 1986) (Table 3). Combining the Q2 channel from the YQ1Q2 color 247 

space with Yen's thresholding generated the most reliable results. Using only a single-color 248 

channel, we achieved a robust and reliable segmentation method that is insensitive to staining 249 

variations and performs well on different sizes of the hyphae (36 to 72 hai). 250 
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 251 

Table 3. Segmentation methods for colony detection (image of 30 000 x 12 000 pixels containing 252 

120 colonies). Comparision of the used software libraries, run-time per image and colony 253 

segmentation performance. 254 

Method 

Library Time(s) 
Segmented 

colonies 

Partial 

segmented 

colonies 

Canny edge detector OpenCV 6.5 30 109 

Global thresholding OpenCV 0.3 44 5 

Adaptive Thresholding Mean OpenCV 2.0 87 20 

Adaptive Thresholding Gaussian OpenCV 3.9 86 5 

Otsu’s Binarization  OpenCV 1.4 79 16 

Li Minimum scikit-image 112.0 4 22 

Yen thresholding scikit-image 81.0 16 19 

 255 

A morphological closing operation was applied to the segmented binary images to close the gaps 256 

that may lead to partial object extraction. Finally, a Moore-Neighbour tracing algorithm 257 

(Weisstein, 2021) was used to extract the contours of the binary image for colony classification. 258 

 259 

5.2 Machine learning 260 

5.2.1 Training data set 261 

Bgh inoculated barley leaves were Coomassie-stained at 36-72 hai and scanned with the 262 

AxioScan.Z1 system. The multilevel images were processed as described above. The putative ROIs 263 

were extracted with a bounding box and saved as separate images. The images were manually 264 

curated, and about 10 000 ROI containing fungal colonies were selected. Another 8 000 images 265 

without any fungal structures but other objects and artifacts were selected as negative training data. 266 

Finally, a small training set with 3 200 images per class was extracted from the large training set 267 

to study the prediction performance based on the training set size. 268 

Both datasets were split randomly into 75% of the images for training the models and 25% for 269 

validation and evaluation. Since the Convolutional Neuronal Network (CNN) approach requires 270 

identical dimensions of the training images, they were resized to 150 x 350 pixel, the mean ROI 271 

size of the particular data set.  272 
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5.2.2 Classification using handcrafted features 273 

Manual selection of features for building a reliable classifier is still a widely used approach that, 274 

in some cases, may outperform more sophisticated methods (Lück et al., 2020). However, the 275 

success of this approach strongly depends on the selection of informative and robust features. In 276 

our case, of particular importance was to select color- and scale-invariant features because of the 277 

high staining intensity- and colony size variation.  278 

The contours received after the segmentation step were first filtered using geometrical features 279 

(Table 4) to reduce artifacts and non-fungal structures.  280 

 281 

Table 4. Object size parameters for filtering colonies from the artifacts. Minimum and maximum 282 

thresholds for colonies are indicated. 283 

Feature Minimum pixel values Minimum pixel values 

Width 100 1400 

Height 100 800 

Aspect ratio 0.5 10.0 

Area 1000 30000 

 284 

Then, five scale- and color-invariant features (Histogram of oriented Gaussians (Dalal and Triggs, 285 

2005), Local binary pattern (Dong-chen and Li, 1990; Wang and He, 1990), Haralick (Haralick et 286 

al., 1973), Zernike Moments (Tahmasbi et al., 2011), Parameter-free threshold adjacency statistics 287 

(Coelho et al., 2010); Table 5) were extracted with the mahotas and scikit-image library, and a 288 

random forest classifier with 80 trees was trained with the two training sets (3 200 and 10 000 289 

images per class). 290 

  291 

Table 5. Edge and texture descriptors. 292 

Name Abbreviation Descriptor 

Histogram of oriented Gaussians HOG Edge 

Local binary pattern LB Texture 

Haralick HA Texture 

Zernike Moments ZM Shape 

Parameter-free threshold adjacency statistics PFTAS Texture 
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 293 

Finally, the performance of Accuracy, Precision, and Recall scores were calculated according to 294 

Equation 1 and shown in Tables 6 and 7. 295 

 296 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 297 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 298 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 299 

Equation 1. Accuracy, Precision, and Recall scores calculation. TP – true positive, TN – true 300 

negative, FP – false positive, FN – false negative (according to the ground thought, see Validation 301 

chapter). 302 

 303 

 Table 6. Random Forest model for image features. Ca. 3 200 objects per class. Average of 10 304 

independent trainings. 305 

Method Precision SD Recall SD Accuracy SD 

HOG 0.8493  0.0097 0.8895 0.0110 0.8634 0.0053 

LB 0.9346 0.0076 0.9547 0.0077 0.9429 0.0048 

HA 0.9075 0.0100 0.9216 0.0071 0.9109 0.0056 

ZM 0.7816 0.0144 0.8239 0.0075 0.7919 0.0066 

PFTAS 0.8821 0.0070 0.9288 0.0082 0.9000 0.0042 

 306 

Table 7. Random Forest model for image features. Ca. 10 000 objects per class. Average of 10 307 

independent trainings. 308 

Method Precision SD Recall SD Accuracy SD 

HOG 0.8472 0.0081 0.8893 0.0080 0.8641 0.0059 

LB 0.9346 0.0076 0.9547 0.0077 0.9429 0.0048 

HA 0.9088 0.0057 0.9311 0.0059 0.9186 0.0046 

ZM 0.6841 0.0116 0.7419 0.0120 0.7018 0.0064 

PFTAS 0.8516 0.0082 0.8830 0.0055 0.8653 0.0056 

 309 

 310 

 311 
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5.2.3 Convolutional neural network 312 

We implemented a standard convolutional neural network (Figure 3) with dropout 0.2 and trained 313 

two training sets with different sizes (ca. 3 200 and 10 000 images per class) over 25 epochs. We 314 

used rectified linear activation function during training, followed by a final SoftMax activation 315 

function to receive the probability distribution over the classes. In addition, we used the stochastic 316 

gradient descent optimizer with a learning rate of 0.01, batch size of 32, and momentum of 0.9 to 317 

allow one training image to pass through the neural network at a time and update the weights for 318 

each layer. The final validation accuracy of the model was 97.13% (Figure 4). 319 

 320 

Figure 3. The structure of a convolutional neural network consists of convolutional, pooling, and 321 

fully connected layers. 322 

 323 

 324 

Figure 4. Training and validation accuracy of the model CNN model trained with ca. 10 000 325 

positive images. 326 

 327 
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5.3 Validation  328 

One hundred twenty colonies were labeled manually as ground truth by a domain expert. When 329 

comparing the handcrafted features random forest models trained on 3 200 images per class, the 330 

local binary pattern feature reached the highest accuracy and precision (>0.94; Table 6) but failed 331 

when using the model on the validation set (False negative > 90%; Table 8). This is usually an 332 

indication of model overfitting resulting in a too stringent prediction or a poor capability to deal 333 

with new data. This example demonstrates how misleading the theoretical performance metrics 334 

can be if used solely without validating the model with new experimental data. Re-testing all 335 

previously built models with a new validation data set revealed the Parameter-free threshold 336 

adjacency statistics (PFTAS) and haralick (HA) as best performing (True positives > 88 %, False 337 

positives < 10%). Furthermore, a new model based on the combination of both methods 338 

significantly improved the accuracy ending up with 91% true positives, 9 % false negatives, and 339 

only 1% false positives objects on the validation set (Table 8).  340 

However, increasing the training data size to 10 000 images did not significantly improve the 341 

handcrafted feature-based model results, which indicates that the learning curve reached the 342 

plateau (Table 7). In contrast, the CNN models gain from big data and larger training sets. By 343 

using the dataset with 10 000 images, the true positive rate increases by 3.3% to 89.1%, and the 344 

false-positive rate decreases to 0.0% (with the prediction accuracy score set to the maximum of 345 

1.0) (Table 8). Loosening the prediction accuracy score to 0.9 helped achieve a high-performance 346 

CNN model with over 98% true positive rate and below 3% false-positive rate. In direct 347 

comparison, the CNN model shows 10% better accuracy in predicting hyphal objects than the top 348 

handcrafted RF-model while keeping the false positive 7% lower (Table 8).  349 

Comparing our best CNN model with a 0.9 prediction score against the HyphArea software, our 350 

proposed software improved the true positive prediction by more than 70% and decreased the false 351 

positive rate by 10 % (Table 8). 352 

5.3.1 Run-time and parallel processing 353 

Considering the aim to do high-throughput microscopy image analysis, we invested in optimizing 354 

the algorithm for run-time per image. Besides other improvements, using numerical Python 355 

libraries, which allows efficient numerical calculations on multi-dimensional arrays, and 356 

parallelizing the processes with the joblib library (Python) led to a significant speed gain. As a 357 
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result, BluVision Micro performed up to 30 times faster than the previous HyphArea software in 358 

analyzing pyramid images of average size 30 000 x 25 000 pixels. On an Intel® Core™ i7-9700 359 

CPU 3.00 GHz with 64-Bit Windows 10 operating system and NVIDIA TITAN X GPU support, 360 

the software run time takes about 60 seconds per slide containing two images of size 30 000 x 25 361 

000 pixels, which is 3-5 faster than the image acquisition time, this allowing real-time analysis. 362 

5.3.2 Feature Visualization  363 

Visualizing the CNN predictions becomes crucial because of the increasing requirements for 364 

transparency of the artificial intelligence prediction models. However, the availability of 365 

visualization options was limited until recently, when several such tools were developed. To 366 

examine the BluVision Micro CNN model's prediction and facilitate debugging, we used Keras 367 

Visualization Toolkit (Zhou et al., 2015) to generate heatmap images to visualize the Class 368 

activation maps for the fungal structures. The resulting heatmaps correctly represented the area 369 

covered by the fungal microcolonies (Figure 5).  370 

 371 

Figure 5. Heatmap visualization of the class activation map for fungal structures. The left image 372 

represents the raw image data, and on the right are the regions of interest detected by the software 373 

(red border rectangle) with hyphae segmentation. The example clearly shows that the CNN model 374 

localizes the fungal colony with high probability (red colors), as the probability in the background 375 

drops significantly (blue colors). 376 

 377 

5.4 Application 378 

5.4.1 Genome-wide association scans (GWAS) 379 

The experiment design (Figure 1) allowed the quantification of multiple phenotypes (Table  1) 380 

from a single leaf. They cover the response to adapted and non-adapted pathogens on microscopic 381 
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and macroscopic levels. The precise phenotypic data was combined with the dense SNP data (949 382 

174 quality SNPs) for GWAS for resistance-associated markers.  383 

Since the study aims to provide proof of concept and application examples, the number of tested 384 

genotypes was 200, which is on the lower end to detect significant marker-trait associations (MTA) 385 

in genetically diverse materials. Nevertheless, we were able to identify eight loci containing MTAs 386 

with statistical significance above the suggestive threshold (−log10 P ≥ 6.0) and three loci with 387 

MTA above the significance threshold (−log10 P ≥ 8.0). Surprisingly, the novel nonhost resistance 388 

phenotypes achieved the highest association peaks leading, besides finding other MTAs, to the re-389 

discovering one of the very few published nonhost resistance QTL (Romero et al., 2018) (Figure 390 

6E). All discovered significant MTAs and the genes located in the underlying genomic region are 391 

listed in Supplemental Tables MTA_list_[phenotype] and Gene_list_[phenotype]. 392 

The macroscopic phenotyping (Bgh_168hai_area) (Figure 6) suffered from some barley 393 

genotypes' apparent tendency to accelerate senescence in detached leaf assay and formation of 394 

physiological necrotic flecks that prevent the spreading of the disease and compromise the 395 

phenotyping.  396 

 397 

Figure 6. Manhattan plot of the [-log10] transformed p-values of the genomic regions associated 398 

with the macroscopic phenotype of infected leaf area at 168 hai Bgh. Green dashed line – 399 

suggestive threshold, red dashed line – significance threshold. 400 

 401 

The colony size-based phenotypes (Bgh_48hai_size, Bgh_96hai_size) (Figure 7a and 7b) did not 402 

deliver significant MTAs (Figure 7). This is not unexpected because a natural resistance based on 403 

fungal growth retardation, to our best knowledge, is not yet described in the literature, not at last 404 

because of the lack of screening methods. However, such phenotypes likely exist, and a systematic 405 

screen of diverse plant genotypes may help discover them. 406 
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 407 

 408 

Figure 7. Manhattan plot of the [-log10] transformed p-values of the genomic regions associated 409 

with colony size-based phenotypes a) Bgh colony size at 48hai, b) Bgh colony size at 96hai. Green 410 

dashed line – suggestive threshold, red dashed line – significance threshold. 411 

 412 

Also, as expected, the colony counts delivered some significant MTAs (Figure 8), since the 413 

penetration resistance against powdery mildew fungus, which efficiently reduces the number of 414 

successful infection events, is widespread in barley. However, the MTA reached only the 415 

suggestive threshold, not the significance threshold, which is pretty high because of the large 416 

number of SNP included in the analysis (~1 000 000).  417 

 418 

Figure 8 Manhattan plot of the [-log10] transformed p-values of the genomic regions associated 419 

with normalized Bgh colony counts at 48 hai. Green dashed line – suggestive threshold, red dashed 420 

line – significance threshold. 421 

 422 
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The high sensitivity and performance of the system allowed approaching an exciting novel 423 

phenotype – quantifying the rare cryptic infection of non-adapted pathogens, which allowed the 424 

discovery of genes and loci associated with this most valuable type of resistance (Figure 9). 425 

 426 

Figure 9. Manhattan plot of the [-log10] transformed p-values of the genomic regions associated 427 

with normalized Bgt colony counts (a), and binarized susceptibility phenotype (b) at 96 hai. Green 428 

dashed line – suggestive threshold, red dashed line – significance threshold. 429 

 430 

Surprisingly, this novel phenotype delivered the most significant MTAs, indicating the 431 

involvement of major-effect genes. Furthermore, the MTA with the absolute most significant p-432 

value in the entire experiment pointed precisely to the peak marker position found by (Romero et 433 

al., 2018) and probably conferred by one or both of the Receptor-like kinases located in this region.    434 

 435 

5.4.2 Pathogen growth curves 436 

The BluVision Micro platform provides the possibility to measure precisely, and in high-437 

throughput, the area of the secondary hyphae of the powdery mildew colonies. This opens new 438 

phenotyping options, hardly possible with the previously existing manual tools. For instance, 439 

measuring the colony size at a specific time point after inoculation may reveal plant defense 440 

mechanisms that rely on retarding the pathogen growth, e.g., cutting the nutrient support for the 441 
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fungus or late activation of cell death mechanisms. Furthermore, acquiring colony size data on 442 

multiple time points will allow for building growth curves for the pathogen (Figure 10).  443 

 444 

 445 

Figure 10. Growth curve of two adapted powdery mildew species on wheat and barley, 446 

respectively. 447 

 448 

We used the median Bgh colony sizes at 48 and 96 hai on the 200 barley genotypes to build 449 

genotype-specific growth slopes and used them as a phenotype in GWAS. As for the direct colony 450 

size phenotypes, none of the MTAs reached even the suggestive threshold with the derivative one. 451 

Nevertheless, this novel phenotyping method may reveal plant resistance that works by retarding 452 

the pathogen growth. Also, it can be a valuable tool in comparing the fitness of different pathogen 453 

races. 454 

 455 

Figure 11. Manhattan plot of the [-log10] transformed p-values of the genomic regions associated 456 

with the slope of the growth curve of Bgh at 48-96 hai. Green dashed line – suggestive threshold, 457 

red dashed line – significance threshold. 458 
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 459 

6 Discussion 460 

The need for automated microscopic phenotyping of plant-pathogen interactions became apparent 461 

with increasing the available genetic and genomics resources and the pursuit of finding and 462 

validating the functions of the myriad of genes putatively involved in the complex disease 463 

resistance phenotype. HyphArea was the first software implementation to detect and quantify 464 

secondary hyphae of B. graminis on barley and wheat. The tool pioneered establishing a high-465 

throughput platform for plant-pathogen interaction phenotyping on a microscopic level allowed 466 

access to novel phenotypes such as quantification for the fungal hyphae area. However, the high 467 

sensitivity and specificity levels of the HyphArea Tool demonstrated in (Seiffert and Schweizer, 468 

2005; Baum et al., 2011) was often difficult to reach due to differences in the material quality and 469 

variations of the sample preparations. 470 

Besides the image analysis, the extended use of the HyphArea revealed issues with the handling 471 

and processing of the raw data. The acquired image data were exported as individual camera 472 

frames (tiles) and stored in separate TIFF files. This step simplifies the image data processing and 473 

avoids using proprietary file formats but results in a massive expansion of the file number (>106 474 

files for a large screen), thus approaching the limits of the used hardware and software. Finally, 475 

the high run time of the HyphArea renders it less appropriate for high-throughput phenotyping 476 

screenings. 477 

Benefiting from the accumulated experience and using newer high-throughput automated 478 

microscopy and software techniques, we have developed a completely new system for microscopy-479 

based phenotyping. We decided to opt for a modular, machine learning-based software that works 480 

directly with different image data types, including complex pyramid files and multimodal images, 481 

and it is easily adaptable and extendable with modules for additional phenotypes. 482 

Handcrafted features, if chosen correctly, can provide acceptable performance in cases where only 483 

small (< 5 000 images per class) training sets are available. However, using more training data for 484 

the handcrafted features approach does not further increase the performance, showing that we have 485 

reached the methods' limits in this case. For higher accuracy and larger training sets (> 5 000 486 

images per class), we recommend using a CNN, which is a major advantage is extracting the 487 

probability for each class and use it as a parameter for predictions. 488 
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The BluVision system can derive precise microscopy phenotypes for different large-scale studies, 489 

such as screening of Genebank material, crossing populations, mutant collections, breeding 490 

material, and others, at both host and pathogen sides. In this study, we have used the system to 491 

screen 200 highly genetically diverse barley genotypes for interaction phenotypes with adapted 492 

and non-adapted powdery mildew fungi. The system was confirmed to deliver accurate, sensitive, 493 

and reproducible results. We have used them to scan for marker-trait associations in the barley 494 

genome, discover several novel loci, and confirm already known. Noticeably, we were able to re-495 

discover one of the first published nonhost-resistance QTL, described by (Romero et al., 2018), 496 

which confirms the system's applicability for studies aiming to discover genes involved in this 497 

precious but hardly accessible trait – the nonhost resistance. Furthermore, the systems allow high-498 

throughput studies of previously extremely laborious phenotypes, such as precise colony area and 499 

scoring pre- and post-haustorial defense reactions. By using other (not yet published) dedicated 500 

modules, the BluVision platform can also detect the presence of fungal haustoria in reporter gene 501 

(GUS) expressing cells, thus enabling high-throughput transfection assays for disease resistance-502 

related genes. The open-source software system allows the development of specific modules for 503 

other microscopic phenotypes. The framework is hardware-independent and adaptable to different 504 

commercial imaging systems based on the Digital Imaging and Communications in Medicine 505 

(DICOM) standard, such as Zeiss Axionscan and Leica Aperio systems.  506 

Thus, we have developed an open-source, extendable, high-throughput automated microscopy 507 

system for analyzing microscopic phenotypes. Furthermore, we have validated the system's 508 

performance in disease resistance screens of genetically diverse barley material and demonstrated 509 

that the phenotypic data could be used for Genome-wide associations scans (GWAS), discovering 510 

several resistance-associated loci, including conferring nonhost resistance. 511 

 512 
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