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Abstract:  

Mismatch repair deficient colorectal cancers have high mutation loads and many respond to 

immune checkpoint-inhibitors. We investigated how genetic and immune landscapes co-evolve in 

these tumors. All cases had high truncal mutation loads. Driver aberrations showed a clear hierarchy 

despite pervasive intratumor heterogeneity: Those in WNT/Catenin, mitogen-activated protein 

kinase and TGF receptor family genes were almost always truncal. Immune evasion drivers were 

predominantly subclonal and showed parallel evolution. Pan-tumor evolution, subclonal evolution, 

and evolutionary stasis of genetic immune evasion drivers defined three MMRd CRC subtypes with 

distinct T-cell infiltrates. These immune evasion drivers have been implicated in checkpoint-inhibitor 

resistance. Clonality and subtype assessments are hence critical for predictive immunotherapy 

biomarker development. Cancer cell PD-L1 expression was conditional on loss of the intestinal 

homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and 

likely contributes to the high recurrence risk of MMRd CRCs with impaired CDX2 expression.   
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INTRODUCTION 

DNA mismatch repair deficient (MMRd) colorectal cancers (CRCs) are molecularly and 

clinically distinct from MMR proficient (MMRp) CRCs (Germano et al., 2018). Loss of MMR protein 

expression (MLH1, PMS2, MSH2 or MSH6) in MMRd CRCs establishes a hypermutator phenotype and 

high mutation loads. The large number of mutation-encoded neoantigens, as well as activation of the 

cGAS-STING pathway in cases with MLH1 loss (Guan et al., 2021; Lu et al., 2021), make these cancers 

highly immunogenic. Following surgical resection, stage 1/2 MMRd CRCs have a lower recurrence risk 

compared to stage-matched MMRp CRCs, likely through better control by the immune system. 

However, the favorable prognostic impact of MMRd is lost in tumors with lymph node metastases 

(stage 3) (Domingo et al., 2016). To what extent the evolution of immune evasion (IE) mechanisms 

contributes to the transition from localized to metastatic disease remains unclear (Kloor et al., 2010). 

Furthermore, immunotherapy with PD1/PD-L1 checkpoint-inhibitors (CPIs) is ineffective in metastatic 

(stage 4) MMRp CRCs (Le et al., 2015) but has high response rates in MMRd CRCs (43.8%) (Andre et 

al., 2020), confirming an important role for the PD1/PD-L1 immune-checkpoint in IE. An early-phase 

trial showed even higher response rates of 69% with combined PD1 and CTLA4 CPIs in metastatic 

disease (Lenz et al., 2020) and of 100% in early-stage MMRd CRCs with 12 out of 19 tumours (63%) 

achieving a pathological complete response (Chalabi et al., 2020). However, combination 

immunotherapy is significantly more toxic. Thus, there is a major need to identify biomarkers to 

predict who benefits from single-agent CPI, who needs combination CPIs and to develop better 

therapies for those that do not respond to either approach.  

Biomarkers for CPIs in other tumor types include mutation loads, the number of insertions 

and deletions (indels) (Turajlic et al., 2017), as well as cytotoxic CD8 T-cell infiltrates and expression of 

PD-L1 (Havel et al., 2019). Neither of these correlated with immune infiltrates or CPI responses in 

MMRd CRC (Maby et al., 2015; Overman et al., 2017). Moreover, Inactivation of genes in the IFN 

signal transduction pathway or of important components of MHC class I antigen presentation, such as 

B2M, have been associated with resistance to CPI therapies in several tumour types (Gao et al., 2016; 

Sade-Feldman et al., 2017; Shin et al., 2017; Zaretsky et al., 2016). Data in MMRd CRCs are less clear 

as low expression of B2M was not associated with CPI resistance and murine tumours with B2M loss 

still responded to combined PD1 and CTLA4 inhibition (Germano et al., 2021). Importantly, the 

hypermutator phenotype distinguishes MMRd tumors from other CPI-sensitive cancers such as 

melanoma, lung or renal cancer which have low mutation rates during progression. We have shown 

in MMRd gastro-esophageal cancers that it promotes extreme intratumor heterogeneity (ITH) (von 

Loga et al., 2020). Although this complicates biomarker identification (Gerlinger et al., 2014; Gulati et 

al., 2014), ITH has not been systematically assessed in MMRd CRCs. Driver evolution can follow 

recurrent patterns (de Bruin et al., 2014; Gerlinger et al., 2014), suggesting some order despite 

evolution which is fuelled by randomly generated genetic aberrations. Biomarker development hence 

requires definition of which drivers are commonly truncal and can be assessed reliably from single 

samples, and which require assays competent to address ITH. Beyond clarifying suitable biomarker 

strategies to assess who should be treated with PD1 inhibition and who requires combined PD1 and 

CTLA4 therapy, interrogating subclonal driver evolution may furthermore provide a better 

understanding of progression to lethal disease and the identification of prognostic biomarkers. Here, 

we apply multi-region multi-omics and immunohistochemistry (IHC) analysis to reveal ITH of driver 

aberrations and immune infiltrates and how they co-evolve in MMRd CRCs.  
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RESULTS 

20 CRCs where immunohistochemistry (IHC) reported MMRd were analysed consecutively 

(Table 1). 55 primary tumor regions, 15 lymph nodes and one distant metastasis were sequenced with 

a panel of 194 genes which are recurrently mutated in MMRd or MMRp CRCs, or implicated in immune 

evasion and may confer CPI resistance (Supplementary table 1) (Cortes-Ciriano et al., 2017; Gao et al., 

2016; Giannakis et al., 2016; Grasso et al., 2018; von Loga et al., 2020; Zaretsky et al., 2016). Targeted 

sequencing enabled high sequencing depths (median: 2659x) which is critical to avoid ITH 

overestimation in samples with low cancer cell content such as lymph node metastases or tumor 

regions with high immune cell infiltrates.   

The median non-silent mutation load of individual tumor regions was 58 (range: 10-90, Fig.1A, 

see Supplementary table 2 for detailed patient characteristics and sequencing results). Using a linear 

regression model trained on 518 CRC exomes from the Cancer Genome Atlas (Bailey et al., 2018) 

(Supplementary figure 1) this extrapolated to a median of 2418 mutations across the whole exome in 

our series. 19 tumors had high mutation loads (28-90 mutations/region, estimated 1102-3822/exome) 

that were consistent with expectations for MMRd. T20 was an outlier with only 10 mutations 

(estimated 313/exome), suggesting this was an MMRp tumor. Histology review showed patchy rather 

than complete loss of MLH1/PMS2 which is a recognised feature that can cause misclassification as 

MMRd (Markow et al., 2017). This tumor was excluded from the analysis. A median of 44 mutations 

(range: 20-70) were ubiquitously present in all regions of individual tumors (extrapolated 1844 

mutations/exome, range: 752-2945). Thus, all MMRd CRCs had high truncal mutation loads.  

Intratumor heterogeneity and indels by subtype and stage 

ITH was identified in all cases (median: 16.1% heterogeneous mutations/region, Fig.1A). It was 

significantly higher in BRAF V600E (median 26.9%) versus V600 wild-type tumors (13.0%) and in 

tumors with MLH1/PMS2 loss (25.7%) compared to those with MSH2/MSH6 loss (12.1%, Fig.1B). ITH 

was similar in stage 1/2 and stage 3/4 tumors. Ubiquitous mutation loads did not significantly differ 

by BRAF mutation, MMR pattern or stage (Supplementary figure 2). 

A high proportion of indels is characteristic of MMRd and a median of 60.8% of non-silent 

mutations were indels (Fig.1C). The higher proportion of indels compared to previous reports in 

MMRd tumors (Turajlic et al., 2017) is likely due to the overrepresentation of microsatellite repeats 

among driver genes in our sequencing panel. Two tumors had noticeably lower indel fractions (T6: 

15.6%, T10: 31.5%) and both only showed isolated MSH6 loss. This can be explained by the 

predominant recognition of base-base mismatches by the MSH2/MSH6 heterodimer, whereas the 

MSH2/MSH3 and MLH1/PMS2 heterodimers are also important for recognition and repair of indels 

(Houlleberghs et al., 2017). A third tumor with isolated MSH6 loss had a high indel fraction (T8). 

Despite preserved MSH2 protein expression, this tumor harbored an early somatic stop-codon 

mutation in MSH2 (E28X) in all regions and loss of heterozygosity in R1. Lynch syndrome patients with 

MHS2 start-codon mutations and preserved MSH2 expression have been described, suggestive of a 

hypomorphic MSH2 isoform expressed from a downstream start codon (M67 in the canonical 

transcript) (Kets et al., 2009). Expression of this alternative isoform likely explains the high indel 

fraction despite preserved MSH2 protein expression in T8.  

Metastasis timing revealed by phylogenetic analysis  
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We next generated phylogenetic trees to assess how tumors had evolved (Fig.1D). All tumors 

showed branched evolution. Most strikingly, metastases diverged before detectable genetic 

diversification of the primary tumor in 6/8 cases (75%) where multiple primary tumor regions and at 

least one metastatic site were available for dissemination timing assessment. The ability to 

metastasize was hence likely acquired on the phylogenetic trunk, suggesting that most stage 3/4 

cancers were already ‘born bad’ (Sottoriva et al., 2015).  

Driver aberration evolution is characterized by a clear hierarchy 

The acquisition of new genetic drivers is arguably the most relevant consequence of cancer 

evolution. We identified drivers by cataloguing hotspot mutations in known oncogenes as well as 

disrupting aberrations (frameshift, splice-site, nonsense mutations, disruption of the signal peptide, 

and loss of heterozygosity) that were likely to confer biallelic inactivation of tumor suppressor (TS) 

genes or immune evasion (IE) driver genes (Fig.2A, driver genes assessed: Supplementary table 3, see 

methods for the algorithm used to identify likely drivers). A hotspot mutation (hm) in an oncogene or 

loss of heterozygosity (LOH) of a TS or IE gene combined with a disrupting mutation (dm) that is clonal 

in a sample reliably defines driver aberrations. Yet, many TS and IE genes harbored two dm in these 

hypermutated tumors. Even when clonal, two distinct dm can only inactivate a gene if they affect both 

alleles. Most detected dm were not in close enough proximity to assess in the short-read sequencing 

data whether they were present on different alleles or on the same allele. However, of 5 cases with 

multiple B2M mutations in the same sample, 3 harbored dm pairs within the span of paired-end 

sequencing reads. In all three, mutations were mutually exclusive, i.e. never detected together in a 

single read (Fig.2B). We therefore accepted two independent clonal dm in a TS or IE gene as a marker 

of likely biallelic inactivation. All identified driver aberrations (Fig.2A, Supplementary table 4) were 

mapped onto the phylogenetic trees (Fig.1D).  

Analysis of truncal and subclonal driver acquisition showed a clear hierarchy of driver 

evolution (Fig.2C). WNT/Catenin pathway (WNT) aberrations, activating mutations of receptor 

tyrosine kinases/mitogen activated protein kinase pathway (RTK-MAPK) and inactivation of TGF-

receptor family members (TGFBR) were almost always truncal (87.0%, 86.4% and 83.7%, respectively). 

Moreover, these pathways were altered on the trunk of 89.5%, 94.7% and 84.2% of tumors, 

respectively, demonstrating that they are critical for tumor initiation. Mutual exclusivity was observed 

for disrupting APC and RNF43 aberrations in the WNT-pathway. This allowed further validation of our 

algorithm for the identification of drivers in TS genes as AXIN2 RNA overexpression is an established 

marker of ligand-independent WNT activation (described to occur through APC inactivation or 

CTNNB1 hm) versus ligand dependent WNT activation (through RNF43 inactivation) (Kleeman and 

Leedham, 2020). Six tumors that harbored two truncal dm in APC showed significantly higher AXIN2 

expression than tumors with truncal RNF43 drivers (Fig.2D), and similar expression to those with 

truncal APC dm/LOH or CTNNB1 hm. Thus, the detection of two independent dm, even in a large TS 

gene such as APC, strongly indicates biallelic inactivation.  

Aberrations activating the PI3-kinase pathway (PIK3CA hm, inactivation of PTEN or of PIK3R1), 

inactivation of histone modifiers or of DNA damage response and repair (DDR) genes were truncal in 

36.4%-68.4% of occurrences. Inactivation of HLA class I antigen presentation or interferon gamma 

(IFN) signalling genes, previously shown to enable IE and resistance to checkpoint-inhibitor treatment 

(Gao et al., 2016; Sade-Feldman et al., 2017; Shin et al., 2017; Zaretsky et al., 2016), were 
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predominantly subclonal (71.4%). Thus, ITH impedes accurate assessment of these critical 

immunotherapy biomarkers.  

Disrupting mutation of individual HLA class I genes were infrequent (5 mutations in T1, T2, 

T18, T17; Fig.1D) in comparison to drivers in other antigen processing/presentation genes (16 

mutations). This suggests that disruption of genes with broad effects on antigen presentation is a more 

effective evolutionary path to immune evasion in tumors with such high neoantigen numbers.  

Parallel evolution predominates among IE driver genes   

We next assessed parallel evolution which is a strong indicator of Darwinian selection 

(Gerlinger et al., 2014; Gerlinger et al., 2012). This was defined by the presence of at least two distinct 

driver aberrations affecting genes with similar function on different phylogenetic branches. 8/19 

tumors (42.1%) showed 12 instances of parallel evolution in 9 different driver genes (Fig.1D). Parallel 

evolution was commonest for IE genes (6/9 genes), most frequently affecting B2M. Parallel evolution 

of KMT2D and ACVR2A inactivation was present in two tumors, each, and BLM, ARID1A and RNF43 in 

one. The most striking example was observed in T12 where NLRC5 (the master regulator of HLA class 

I expression) was inactivated in three and the antigen transporter TAP1 and the IFN-pathway 

signalling gene JAK1 each in two different ways, leading to pan-tumor inactivation of these three genes 

in all regions. Parallel evolution of IE occurred in 4/6 tumors that harbored any subclonal IE drivers, 

indicating that these tumors were under intense immune selection pressure. Subclonal IE drivers were 

absent in all 5 tumors with truncal IE drivers. Parallel evolution, and truncal and subclonal mutual 

exclusivity of IE drivers in a total of 11/19 tumors (57.9%) substantiates that these evolved through 

Darwinian selection. 

Driver heterogeneity between primary tumors and metastases 

We questioned whether specific drivers predominantly evolved in the 15 metastases (Fig.1D). 

Only KMT2D acquired driver aberrations more than once (3/15 metastases). IE drivers were acquired 

by 2 metastases; B2M in T15 and JAK1, NLRC5 as well as TAP1 in T12. PTEN was inactivated on the 

common branch of two metastases in T18. No new drivers had evolved on the branches leading to 

7/15 metastases. Thus, drivers can be unique to metastatic sites but we found no strong evidence for 

recurrent selection of specific drivers, consistent with our above observation that metastatic potential 

may be encoded on the trunk in most cases.  

 Heterogeneity of immune infiltrates 

T-cell infiltrates are biomarkers of cancer immunogenicity and checkpoint-inhibitor sensitivity 

(Havel et al., 2019). We assessed these by quantifying CD8 T-cells with IHC and computational image 

analysis (Supplementary table 2). Mean CD8 T-cell densities in primary tumor regions showed large 

variability between cases (1.9%-21.5% of nucleated cells), questioning how T-cell density is regulated. 

It did not significantly differ by BRAF status or MMR loss patterns, nor between stage 1/2 and stage 

3/4 tumors (Fig.3A). Correlating CD8 T-cells in the primary tumor with mutation loads, the percentage 

of heterogeneous mutations, ubiquitous mutation loads or ubiquitous indel loads showed no 

significant association (Supplementary table 5). This is perhaps unsurprising as all tumors had 

sufficient ubiquitous mutations to encode for multiple neoantigens, even when taking conservative 

estimates that only 0.5-1% of somatic mutations give rise to HLA-presented neoantigens (Newey et 
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al., 2019; Schumacher et al., 2019). However, the realized antigenicity may vary due to the impact of 

abundant IE drivers.  

 CD8 T-cell densities also varied within primary tumors (Fig 3B). Dichotomisation of tumors 

using the median value across primary tumor region CD8 T-cell fraction means, distinguished tumors 

with low (mean: 4.0%) from tumors with high, albeit frequently variable, CD8 T-cell infiltrates (mean: 

11.7%). This suggested a tumor-intrinsic setpoint which is however accompanied by marked variability 

in tumors with dense infiltrates. To further test this hypothesis, we correlated CD8 T-cells in the 

primary tumor versus metastases. T-cell densities were significantly higher in metastases than primary 

tumors (paired t-test: p=0.028, mean increase: 1.53-fold) but showed a significant correlation 

(r=0.678, Fig.3C). This indicated that T-cell densities are regulated by tumor specific characteristics 

and also influenced and augmented by the microenvironment in metastases.  

To obtain more granular insights, we computationally inferred 15 immune cell subtypes from 

RNA expression data (Immune cell abundances: Supplementary table 2). IHC-measured CD8 T-cells 

correlated most strongly with activated CD8 T-cells (r=0.525, q<0.001, Supplementary figure 3), 

confirming that inference from expression data worked reliably. Hierarchical clustering showed that 

all metastases except one lymph node and the distant metastasis clustered together (Fig 3D). This 

cluster (cluster 3) was significantly enriched for immune cells expected in the lymph node environment 

such as B-cells and activated dendritic cells, but also for multiple other immune cell types including 

activated CD8 and CD4 cells. Primary tumor regions from individual cancers co-segregated into one of 

the two other major clusters. The only significant differences between these were higher activated 

and memory B-cells in cluster 1 and enrichment of activated dendritic cells in cluster 2 (Fig 3D). 

Distinct mechanisms influence PD-L1 expression by stromal and cancer cells   

Expression of PD-L1 by cancer cells, stromal cells or both is a major non-genetic IE mechanism 

(Juneja et al., 2017; Kleinovink et al., 2017; Lau et al., 2017). We used IHC and categorized samples 

with accepted cut-offs (0: 0%; 1+: 1-4%; 2+: 5-49%; 3+: 50-100%) based on the percentage of PD-L1 

positive cancer or stromal cells (Supplementary table 2) (Moller et al., 2021). Stromal expression was 

common, with 97.1% of regions showing 1+ to 3+ staining (Fig.3E-F). Heterogeneity within tumors was 

modest. Only 4 tumors harbored PD-L1 expressing cancer cells (23.2% of all regions) and expression 

was detected in all regions of these. Cancer cell PD-L1 expression, which conferred more potent IE 

than stromal PD-L1 expression in murine CRC models (Kleinovink et al., 2017), can hence be a stable 

characteristic, similar to truncal IE through genetic mechanisms. Absent cancer cell PD-L1 expression 

in 15 cases was surprising in view of the abundant stromal PD-L1 positivity and the high mutation loads 

of all cases but this is consistent with previous reports in MMRd CRCs (Llosa et al., 2015).  

The mechanisms determining cancer cell PD-L1 expression remain unknown and we 

correlated PD-L1 expression with immune cell infiltrates to investigate this. Because of the systematic 

bias towards higher immune infiltrates in lymph nodes, we only analysed primary tumor regions. 

Stromal PD-L1 expression correlated significantly with CD8 T-cells assessed by IHC (r=0.355, Fig.3G). 

Comparison with 15 immune cell subtypes inferred from RNA expression showed an even stronger 

correlation of stromal PD-L1 with activated CD8 T-cells (r=0.507), and also with activated CD4 and 

activated dendritic cells (Fig.3H-I). Thus, an adaptive immune response predominated by cytotoxic 

and helper T-cells strongly associated with stromal PD-L1 expression. In contrast, cancer cell PD-L1 

expression did not significantly correlate with IHC quantified CD8 T-cells and only weakly with 
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activated CD8 T-cells inferred from RNA expression (Fig 3J). Thus, we hypothesized that PD-L1 

expression on cancer cells requires additional permissive factors.  

We investigated whether any genetic drivers were specific to tumors with PD-L1 expressing 

cancer cells. CD274, which encodes PD-L1, was not amplified (Supplementary table 2). Truncal FBXW7 

driver aberrations were present in all 4 tumors with PD-L1+ cancer cells but also in 3 (2 truncal, 1 

subclonal) that did not (Fig.1D). No other truncal drivers were enriched in tumors with PD-L1+ cancer 

cell. A previous report showed higher PD-L1 expression in CRCs with absent or low expression of the 

intestinal homeobox transcription factor CDX2 but this neither distinguished PD-L1 expression by 

stromal or cancer cells nor between MMRd and MMRp tumors (Inaguma et al., 2017). In our series, 

CDX2 RNA expression was significantly negatively correlated with PD-L1+ cancer cells (r=-0.683) but 

not with stromal PD-L1 (r=-0.269, Fig 3K). Remarkably, CDX2 expression was 24.7-fold lower in tumors 

with PD-L1+ cancer cells. We sought to validate this by IHC in an independent cohort of 23 MMRd 

CRCs (Supplementary table 6). Blinded to other data, a categorical scoring of CDX2 IHC staining 

intensity was performed as described (Dalerba et al., 2016). 17.4% of these tumors harbored PD-L1+ 

cancer cells. CDX2 staining was low (1+) or absent (0) in these whereas tumors without cancer cell PD-

L1 expression predominantly showed strong (3+) or moderate (2+) CDX2 staining. This was statistically 

significant (Fig.3L). Moreover, analysis of RNA expression data from 57 colorectal cancer cell lines 

(Ghandi et al., 2019) confirmed a significant negative correlation of CDX2 and PD-L1 expression 

(Fig.3M).   

Together, we found that stromal PD-L1 expression most strongly correlated with activated 

CD8 T-cells whereas expression by cancer cells was conditional on CDX2 expression loss.  

Co-evolution of genetic and immune landscapes 

We next investigated how genetic IE mechanisms and the immune landscape co-evolved. 

Patterns of genetic IE evolution in cases where at least 3 primary tumor regions had been analysed 

classified these into three groups: 1. Tumors without evolution of genetic IE drivers, which we refer to 

as IE evolution stasis (T1, T2, T6, T13, T17, T18), 2. Tumors with subclonal IE driver evolution in some 

but not all regions (T4, T5, T14, T15), and 3. Tumors with pan-tumor IE through truncal aberrations or 

parallel evolution in all tumor regions (T3, T7, T12, T16, T19). We assessed whether the immune 

landscapes of these groups differed.  

CD8 T-cell densities were significantly higher in group 2 (subclonal IE evolution) compared to 

groups 1 and 3 (Fig.4A). CD8 T-cell densities in group 1 (stasis) were similar to those in group 3 (pan-

tumor IE evolution). Consistently, immune cell abundance inferred from RNA expression showed 

higher activated and effector memory CD8 T-cells, activated CD4 T-cells and immature B-cells in group 

2 (Fig.4B-C). This was only significant if no multiple testing correction was applied, likely due to the 

small cohort size. Together, this indicates that the selection pressure from high CD8 T-cell infiltrates 

is the proximate cause for subclonal evolution in group 2. Conversely, the absence of this selection 

pressure likely explains the evolutionary stasis with respect to known IE mechanisms in group 1 

whereas pan-tumor IE is likely responsible for the low CD8 T-cell infiltrates in group 3. Moreover, these 

subtypes explained the inter- and intra-tumor variability of CD8 T-cell infiltrates (Fig.3B). 

We assessed why CD8 T-cell infiltrates were low in tumors with IE evolution stasis (group 1). 

This was not the consequence of lower mutation loads as they exceeded those in group 2 (median 
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group 1: 56, median group 2: 51). Group 3 had the highest mutation load (median: 69). Assessing CD8 

T-cell densities at the tumor margin by IHC (Supplementary table 2), we found that this was lowest in 

cases with evolutionary stasis (Fig.4D), suggesting that T-cell recruitment may be impaired. This was 

corroborated by a significantly lower mean expression of the CD8 T-cell chemo-attractants CXCL9-11 

compared to group 2 (Fig.4E). Moreover, immuno-suppressive cell types such as myeloid derived 

suppressor cells, macrophages or regulatory T-cells were not enriched in group 1 (Fig.4B). The mean 

stromal PD-L1 score was highest in group 2 (1.92) followed by group 3 (1.41) and lowest in group 1 

(1.25). Thus, PD-L1 induced T-cell apoptosis (Chiu et al., 2018) cannot explain low CD8 infiltrates in 

group 1. Activation of the cGAS-STING pathway may be necessary to promote immune recognition 

and CD8 T-cell infiltration in MMRd CRCs (Lu et al., 2021). Loss of STING expression occurs in CRCs (Xia 

et al., 2016) and may hinder immune recognition, yet we detected STING in all group 1 tumors (Fig 4F, 

Supplementary table 2). Overall our data show that impaired recruitment rather than intratumoral 

inactivation of CD8 T-cells explain the absence of IE evolution in group 1.   

We next assessed how the evolution of specific IE drivers influences immune infiltrates within 

tumors. We compared immune profiles of primary tumor regions that lost genes in the HLA class I 

antigen presentation pathway (n=7) with proficient regions (n=4) in the same tumors. B2M was the 

affected gene in all cases. Activated CD4 and activated CD8 T-cells were significantly less abundant 

whereas macrophages, immature B-cells, NK-cells and CD8 effector memory cells were significantly 

higher in regions with defective B2M (Fig.4G-H). Inactivation of the IFN signalling pathway through 

mutations in IFNGR1 or JAK1 was a second common genetic IE mechanism. Their impact could not be 

assessed within tumors as only one case contained both subclonal driver and wild type regions. We 

therefore compared immune infiltrates between all primary tumor regions with IFN pathway 

inactivation (n=7) to the remaining ones with defective B2M (n=15). This revealed no significant 

difference in activated CD4 or CD8 T-cells but lower infiltrates for most other immune cell subtypes, 

including NK cells, demonstrating broad depression of immune cell infiltrates (Fig.4I). The enrichment 

of NK cells is an expected consequence of B2M loss and suggests opportunities for NK-cell therapies 

(Sade-Feldman et al., 2017). In contrast, the sparse infiltrates of most immune cell subtypes in tumors 

with IFN signalling defects shows that distinct treatment strategies are necessary for these.  

IE and metastatic dissemination 

We finally explored whether IE mechanisms in cancer cells (including drivers in IE genes or 

cancer cell PD-L1 expression) associated with the presence of metastases. We found no difference 

between the three evolutionary subtypes (Fig.5A), and the proportion of tumors harboring any IE 

mechanism was similar between stage 1/2 tumors (50%) and stage 3/4 tumors (61.5%, Fig.5B). 

However, truncal IE were exclusively identified in stage 3/4 tumors (53.8%, Fig.5C), suggesting that 

early acquisition of these known IE mechanisms could increase the probability of metastasis 

development. This difference was statistically significant; nevertheless further studies are required to 

substantiate this in larger cohorts. 
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DISCUSSION 

MMRd CRCs have previously been subclassified by BRAF mutation status or MMR loss patterns 

but neither these nor mutation loads or heterogeneity metrics correlated with immune infiltrates in 

this cohort. Evolution analysis suggested a new taxonomy, with three subtypes, that provides an 

explanation for their distinct immune infiltrates: strong selection pressure from high CD8 T-cell 

infiltrates in tumors leads to subclonal IE; tumors that already established pan-tumor IE show low CD8 

T-cell infiltrates; and tumors showing IE evolution stasis show low CD8 T-cells. Sparse CD8 T-cells at 

the tumor margin and low expression of T-cell chemo-attractants support impaired T-cell recruitment 

as the mode of immune escape in the latter.  

All genetic IE evasion mechanisms analysed in these tumors have been associated with 

resistance to PD1 inhibitors (B2M, IFN pathway mutations) (Shin et al., 2017; Zaretsky et al., 2016) 

CTLA4 inhibitors (IFN pathway mutations) (Gao et al., 2016) or PD1/CTLA4 combination therapy 

(B2M) (Sade-Feldman et al., 2017) in lung cancers or melanoma. In contrast, a study in MMRd CRCs 

showed that some patients with reduced B2M protein expression did benefit from PD1/PD-L1 

inhibition and that murine MMRd models with B2M inactivation were still sensitive to combined 

PD1/PD-L1 and CTLA4 treatment (Germano et al., 2021).  ITH shown in our data is a major hindrance 

to accurately assess how AP or IFN pathway inactivation impacts immunotherapy responses in the 

clinic and if this differs depending on whether PD1 inhibition or combined PD1/CTLA4 blockade is 

used. ITH analysis of immune evasion drivers and subtype detection requires clonality analyses which 

are unlikely to be clinically feasible from tissue samples. However, circulating tumor DNA sequencing 

is effective in CRC and methods to determine driver aberration clonality have been developed (Knebel 

et al., 2020; Woolston et al., 2019). This can be readily implemented in clinical trials and may 

eventually allow stratification of patients to either PD1 inhibitors, more toxic CLTA4/PD1 combinations 

(e.g. for patients with B2M inactivation), or alternative therapies if neither of these are anticipated to 

be effective. Distinct IE drivers also had differing impact on immune infiltrates. Invigorating NK-cells 

could be a rational alternative treatment approach for tumors with truncal or subclonal inactivation 

of B2M (Sade-Feldman et al., 2017) whereas tumors with IFN signalling loss are unlikely to benefit 

based on our data. 

Expression of PD-L1 by cancer cells was strongly associated with CDX2 loss, suggesting a 

permissive effect for PD-L1 upregulation. CDX2 is physiologically expressed in bowel epithelium where 

it controls intestinal differentiation and gene expression programs (Kaimaktchiev et al., 2004). 

Impaired CDX2 expression in cancers of the large and small bowel confers an increased recurrence risk 

(Dalerba et al., 2016; Jun et al., 2014; Tomasello et al., 2018) which has been thought to be a 

consequence of differentiation loss and increased invasiveness (Hryniuk et al., 2014). Our data 

indicates that an increased ability to suppress T-cell function through PD-L1 upregulation may 

contribute. In addition, cancer cell PD-L1 expression confers higher susceptibility to CPI treatment in 

murine models (Kleinovink et al., 2017; Lau et al., 2017). Whether CDX2 loss identifies tumors that 

particularly benefit from adjuvant CPIs should hence be investigated in ongoing trials (e.g. ATOMIC, 

ClinicalTrials.gov ID: NCT02912559). CDX2 is not known to play a role in immune regulation and our 

observation also raises questions regarding its function in infection or autoimmunity in the intestinal 

tract. 

Finally, we revealed a hierarchy of driver aberration evolution in MMRd CRCs. This defines a 

model of MMRd CRC development where TGFBR family members, WNT and RTK/MAPK pathways are 
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critical for cancer initiation whereas PI3-kinase, histone modifier genes, DDR genes and IE genes 

promote cancer progression. Inhibiting BRAF in CRCs with V600E mutations is well established in 

clinical practice (Kopetz et al., 2019). Our observation of truncal ERBB2/ERBB3 driver mutations in 

some cases suggests opportunities to target these tumors with specific inhibitors.  
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METHODS 
 
Sample collection and preparation  
Fourteen stage 3 MMRd CRCs were obtained from the UK POLEM phase 3 clinical trial (clinicaltrials.gov 
ID NCT03827044, ethics approval: 18/LO/0165)(Lau et al., 2020). The trial randomised patients with 
resected stage 3 MMRd CRC to either adjuvant chemotherapy followed by the PD-L1 inhibitor 
avelumab or to adjuvant chemotherapy alone but closed early and no outcome data was available. 
Five stage 1/2 and one stage 4 MMRd CRCs were obtained from the University Clinical Hospital of 
Santiago de Compostela, Spain (Galician Research Ethics Committee reference 2015/405). FFPE tissue 
(1 tumor block per case) for the validation cohort were obtained from UK POLEM clinical trial, from 
the University Clinical Hospital of Santiago de Compostela and from Imperial College Healthcare NHS 
Trust (Research Ethics Committee reference 14/EE0024). A pathologist-reported loss of MLH1, PMS2, 
MSH2 or MSH6 by immunohistochemistry was required for inclusion into this study. All patients had 
provided written informed consent for the use of tissues in research. 
   
For multi-region analysis cases, FFPE blocks which represented the spatial extent of each resected 
tumor were selected (BRC or HL-I) and H&E stains were used by a pathologist (BRC) to identify tumor 

regions for manual macro-dissection from ten 10m thick FFPE tissue sections per region. DNA and 
RNA were extracted with the Qiagen FFPE AllPrep kit according to manufacturer’s instructions; 
quantified and quality controlled using Qubit (Invitrogen), Tapestation and Bioanalyser (Agilent). 
Germline DNA was extracted from blood (n=19) or tumor adjacent non-malignant tissue (n=1). 
 
Targeted DNA sequencing 
A targeted gene sequencing panel (Supplementary table 1)  was designed to include all driver genes 
which are recurrently mutated in MMRd or MMRp CRCs or implicated in IE, if identified in at least two 
publications (Cortes-Ciriano et al., 2017; Gao et al., 2016; Giannakis et al., 2016; Grasso et al., 2018; 
von Loga et al., 2020; Zaretsky et al., 2016). Genes involved in antigen presentation pathways were 
also included despite identification in a single publication (Grasso et al., 2018), as this was a major 
area for investigation.  
 
Sequencing libraries were prepared from tumor (target input 200 ng for DNA Integrity scores 3-8 or 
500 ng for <3) and matched germline DNA (100 ng) using unique molecular identifiers for error 
correction and pooled according to the manufacturer’s protocol (Nonacus Cell3 Target). Paired-end 
100 bp sequencing was performed by the Tumour Profiling Unit at the Institute of Cancer Research 
using an Illumina Novaseq with a target depth of 1000x in tumor regions and 100x in germline. 
Sequencing error correction and consensus BAM file preparation was performed using NonacusTools 
(v1.0). Samples were aligned to the ‘Homo_sapiens_assembly38’ reference files downloaded from the 
GATK resource bundle. 
 
Mutation calling 
Mutect2 (v.4.1.4.1) was used to call somatic mutations. All samples belonging to the same tumor were 
analyzed simultaneously. The ‘af-only-gnomad.hg38.vcf.gz’ file was used as germline resource and an 
interval padding of 5 was specified. Resulting calls were annotated using annovar (v.2019-10-24) with 
build version hg38 and refgene, Cosmic v92 specified as protocol options. Calls were finally filtered for 
exonic/splicing using the ‘Func.refGene’ annotation. The primary calls were filtered using the 
following criteria: by variant allele frequency (VAF) >=5% and at least 5x higher VAF in at least one 
tumor region compared to the matched germline sample. Four metastases had low cancer cell content 
(T8 L, T9 L, T10 L, T12 L1) despite macro-dissection, likely reflecting the abundance of immune cells in 
these lymph node metastases. For these samples, mutations were accepted as present if they had a 
VAF >=1%. Median VAFs of all ubiquitous mutations per case were calculated for each region and 2x 
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the median VAF of ubiquitous mutations was used to calculate the cancer cell content of each tumor 
region, which is a reliable estimate in near diploid tumors such as MMRd CRC.  
 
HLA mutation analysis 
The algorithms used in the HLA mutation calling pipeline have been developed for hg19 and so all 
samples were first realigned using NonacusTools and the ‘Homo_sapiens_assembly19’ reference from 
the GATK resource bundle. POLYSOLVER(Shukla et al., 2015) v4 was used for mutation detection in 
HLA genes. The docker image was converted to singularity format and run using the singularity 
container (v3.6.4). A minor adjustment was necessary to correct for a missing ‘SAMTOOLS_DIR’ 
definition in the primary scripts. HLA typing was run on all germline samples using the 
‘shell_call_hla_type’, with parameters race = Unknown, includeFreq = 1 and insertCalc = 0. Mutations 
in HLA genes were first identified using the ‘shell_call_hla_mutations_from_type’ script and were 
subsequently annotated using the ‘shell_annotate_hla_mutations’ script. HLA disrupting SNV and 
INDEL calls that met the criteria of VAF >5% were manually reviewed for confirmation of affected 
tumour regions using IGV(Robinson et al., 2011). 
 
DNA copy number analysis 
CNVkit (v.0.9.8) was used for DNA copy number analysis. The autobin function suggested an antitarget 
bin size of 225585 based on sample depth. CNVkit was then run in paired batch mode using the hybrid 
protocol, antitarget bin size 225585, minimum antitarget bin size of 500 and --drop-low-coverage set 
to active. Absolute gene level copy number estimates for genes on autosomes (excluding polymorphic 
HLAs) were then generated using the .cnr file. Log2 values were adjusted for tumor purity and a 
weighted mean calculated across bins corresponding to the same gene. This process was repeated for 
the .cns file to generate segmented absolute gene level estimates and values were rounded to integer 
copy number. The tumor content of five lymph node metastases was too low to generate accurate 
copy number data (median truncal VAF<10%). Copy number information from the available primary 
tumor sample (T8, T9, T10) and in case of T18 L1 from the LN metastasis had a higher tumor content 
(median truncal VAF>10%) and was located on the same clade (T18 L2) and for T12 L1 the copy number 
data from the most closely related primary tumor region (T12 R2) was used. This is appropriate for 
MMRd tumors as copy number variation is limited.  
 
Identification of likely driver aberrations 
Distinct criteria were used to define likely driver aberration in oncogenes vs. tumor suppressor and IE 
genes. The list of genes that were assessed in each group (Supplementary table 3) was selected based 
on evidence of driver function and classification as tumor suppressor, oncogene or relevance in IE in 
the COSMIC cancer gene census or in relevant publications. 
 
-Criteria for the identification of likely drivers in oncogenes: 
Any hotspot mutation, defined as mutations leading to amino acid changes that have been identified 

at least in 10 tumors in v92 of the COSMIC cancer mutation database, in an oncogene of interest was 

considered a likely driver. 

   

--Criteria for the identification of likely drivers in tumor suppressor genes and IE genes: 
These genes usually only have driver function when all alleles in the genome of the cancer cell are 
inactivated. We evaluated mutations that disrupt gene function (frameshift mutations, premature 
stop codons, splice-site mutations and mutations that disrupt the signaling peptide in B2M) as well as 
gene copy number to determine driver status. We used the copy number of each gene, the median 
ubiquitous VAF (as a measure of cancer cell content in a sample) and the VAF of disrupting mutations 
to calculate the number of gene copies carrying a mutation and then compared this to the number of 
total gene copies. This was done for each tumor region or metastasis individually. As indel mutations 
in MMRd tumors preferentially occur in repetitive DNA sequences which are unstable, more than one 
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nucleotide can be lost or gained in a sequential fashion. We therefore combined the VAF of multiallelic 
indel mutation calls if those can arise from sequential deletion or from sequential insertion events 
(e.g. T1 TGFBR2 chr3:30650379: VAFs of GAA>GA and GAA>G deletions were combined).  
 
The following formulas, derived from(Woolston et al., 2019), were used to calculate the number of 
copies mutated in each samples: 
 
Cancer cell content = 2 x median ubiquitous VAF 
 
Expected clonal mutation VAF if one of a total of n gene copies per cancer cell is mutated: 
 
Expected VAF for 1/n copies mutated = ((cancer cell content x n) / (cancer cell content x n + (1 - cancer 
cell content) x 2)) / n 
 
Simplified to: 
Expected VAF for 1/n copies mutated = (cancer cell content) / (cancer cell content x n + (1 – cancer 
cell content) x 2) 
 
In the final step we divide the observed VAF for each mutation by the expected VAF when one of n 
copies is mutated to obtain the number of DNA copies mutated: 
 
Number of copies mutated = (observed VAF) / (expected VAF for 1/n copies mutated) 
 
Biallelic inactivation can occur through one of the following: 
1. A disrupting mutation (dm) combined with loss of heterozygosity (LOH)/loss of wild type alleles. 
2. Two disrupting mutations (dm/dm) of which at least one is clonal in a tumor region so that the 
second disrupting mutation has to be nested within the same subclone. 
3. Loss of all copies of a gene, ie resulting in copy number 0. 
 
The following criteria that allowed up to 25% lower copy number of a mutation than the exact clonal 
estimate (to account for measurement inaccuracies) were used to define these instances: 
 
1. dm/LOH 
-gene copy number 1 and a disrupting mutation with any number of copies mutated 
-gene copy number 2 and 1.5 or more copies harboring a disrupting mutation 
-gene copy number 3 and 2.3 or more copies harboring a disrupting mutation 
If these criteria were fulfilled, additional disrupting mutations were ignored as functionally irrelevant 
because the gene was already inactivated through the first dm and LOH. The only exception were 
cases where a dm/LOH pattern was in conflict with the phylogenetic tree structure where we also 
tested whether dm/dm patterns showed a better fit and led to lower heterogeneity.  
 
2. dm/dm 
Two independent disrupting mutations can either be present together in the same cancer cell clone 
or segregate in different subclones. As only the former can lead to biallelic inactivation, we established 
the following criteria to identify this. These are based on the principle that if one mutation is clonal 
then the second mutations has to be nested within the same clone.  
-gene copy number 2 and at least 0.8 copies mutated by one disrupting mutation and any number of 
copies by the second one 
-gene copy number 3 and at least 1.5 copies mutated by one disrupting mutation and any number of 
copies by the second one 
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Importantly hotspot mutations in tumor suppressor or IE genes were considered equal to a disrupting 
mutation as recurrent acquisition indicates that they also likely impair gene function. As described in 
the results, we assessed whether two independent dm in B2M were present on different alleles which 
is a further requirement for inactivation. For this, BAM files were loaded into the Integrative Genomics 
Viewer IGV(Robinson et al., 2011), paired end reads were displayed and both mutations were 
visualized.  
 
-Exceptions to the above rules for specific genes 
Most hotspot mutations in TP53 have dominant negative effects. We therefore considered a single 
TP53 hotspot mutation without LOH as a likely driver. FBXW7 shows haploinsufficiency as 
heterozygous disrupting mutations or hotspot mutations can establish loss of function(Yeh et al., 
2018). Thus, a single disrupting or hotspot mutation even without LOH was considered a driver. Kinase 
dead mutation in the tumor suppressor gene PTEN have been shown to have a dominant negative 
effect and these were also considered drivers regardless of LOH(Leslie and Longy, 2016; Smith and 
Briggs, 2016). For B2M we also considered mutations of the signal peptide, which is required for 
import into the endoplasmic reticulum. The N-terminal signal peptide location in B2M was retrieved 
with SignalP-5.0 (http://www.cbs.dtu.dk/services/SignalP/, Supplementary figure 4). One tumor 
showed a mutation (L13R) establishing a positively charged arginine that disrupts the hydrophobic 
signal peptide, likely precluding ER import.  
 
-Exceptions made because of phylogenetic tree conflicts 
Out of 191 different driver aberrations that were identified, 2 exceptions were made from the above 
rules as the results generated phylogenetic conflicts that triggered a reassessment of VAF and copy 
number data which provided an alternative solution which was consistent with the trees. T6: APC was 
inactivated by copy number loss to one copy and one disrupting mutation in R1 and R3 but showed 
two copies and a disrupting mutation of one copy in R2. This would have required acquisition on two 
separate branches of the tree and was unusual as all other APC driver aberrations were truncal. We 
assessed copy number plots and found a narrow deletion at the APC position in all regions that was 
missed in T2 through under-segmentation. We therefore used unsegmented gene-level copy number 
data which showed one APC copy in R2. T13: CIC had 3 copies in L1 which, with only two mutated 
copies, would make this the only region without biallelic loss which is difficult to explain based on the 
phylogenetic tree. Identical to the approach above, we used unsegmented gene-level copy number 
data which showed two copies in L1, indicative of truncal acquisition.  
 
All likely drivers identified are summarized with the supporting evidence in Supplementary table 4.  
 
Pylogenetic tree reconstruction 
Mutation calls were transformed into a binary presence/absence matrix for all tumor regions per case. 
These were analysed with the PHYLIP Pars algorithm in the T-Rex online analysis suite(Boc et al., 2012) 
using a string of zeros to represent the germline as the outgroup and default settings. For Figure 1D 
phylogenetic trees were redrawn with branch lengths corresponding to the Pars output. Identified 
drivers were added to the tree at the branch where they had been acquired. Phylogenetic conflicts 
occurred for three driver aberrations whose regional distribution violated the tree structure. Each of 
these was considered to have occurred through multiple independent events (AIRD1A in T17, RNF43 
in T18, BLM in T7).  
 
Immunohistochemistry 

3m thick FFPE sections were stained for CD8 (1:20, C8/144B, Dako) on a Roche Ventana autostainer. 
Slides were scanned at 20x objective magnification and tumor regions correlating to the macro-
dissected regions were manually annotated by a pathologist (BRC) using Qupath 0.2.3. Areas of tissue 
damage, necrosis and the stromal area of the tumor margin were excluded, so that the viable intra-
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tumour cancer cell and stroma areas were represented. The CD8+ fraction was calculated as a 
percentage of all nuclei detected with Qupath 0.2.3 in the annotated region applying a Nucleus:DAB 
OD mean threshold of 0.3 to define CD8 positive cells: 

 
 Setting 

Setup parameters  

Detection image Haematoxylin OD 

Requested pixel size 0.5μm 

Nucleus parameters  

Background radius 15.0μm 

Median filter radium 0.0μm 

Sigma 1.5μm 

Minimum area 10.0μm2 

Maximum area 400.0μm2 

Threshold 0.065 

Maximum background intensity 2.0 

Split by shape Checked 

Exclude DAB (membrane staining) Unchecked 

Cell parameters  

Cell expansion 5μm 

Include cell nucleus Checked 

General parameters  

Smooth boundaries Checked 

Make measurements Checked 

Intensity threshold parameters  

Score compartment Nucleus: DAB OD mean 

Threshold 0.30 

 
The density of CD8+ immune cells at the stromal margin of the tumor was then assessed by a 
pathologist (BRC) and categorized as low (absent to infrequent CD8 positive cells), moderate 
(intermediate CD8 positive cell density) or high (marked CD8 positive cell density).  
 
STING (1:150, D2P2F, Cell Signaling Technology) and PD-L1 (1:100, E1L3N, Cell Signaling Technology) 
immunohistochemistry were performed on Leica Bond autostainer. Slides were scanned at x20 
objective magnification and the tumor region, as defined at the time of the CD8 IHC analysis, was 
manually scored by a pathologist (BRC) blinded to other data. PD-L1 staining could be identified within 
the cytoplasmic and membranous compartments of stromal and tumor cells. Complete membranous 
staining was defined as positive and the proportion of positive stromal cells and cancer cells were each 
categorized with accepted cut-offs: 0% (negative), 1-4% (1+ positive), 5-49% (2+ positive) and 50%+ 
(3+ positive) (Moller et al., 2021). STING staining was identifiable within the cytoplasmic compartment 
of all normal epithelial and stromal cell types of colonic tissue. Cancer cell STING staining intensity was 
categorized as absent (0), weak (1+), moderate (2+) and strong (3+).  
 
IHC for the validation cohort was performed on consecutive sections for each case. PD-L1 IHC was 
performed and the proportion of cancer cells positive was assessed as described above, blinded to 
other data. CDX2 IHC (1:100, EPR2764Y) was performed on a Leica Bond autostainer. CDX2 staining 
was identifiable within the nuclear compartment of normal colonic epithelial cells and on normal 
appendix epithelial cells which had been added as positive controls.  The cancer cell nuclear intensity 
of CDX2 staining was categorized into 4 groups, absent (0), weak (1+), moderate (2+) and strong (3+) 
as described previously in a large cohort of CRCs (Dalerba et al., 2016) and blinded to other data. 

 
3’-RNA sequencing 
3’-RNA sequencing libraries were generated from all 71 samples. Unique dual indexed sequencing 
libraries were prepared from 500ng of RNA using Lexogen QuantSeq 3’mRNA-Seq FWD library prep 
kit and pooled according to the manufacturer’s protocols. Single-end 100 bp sequencing was 
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performed by the Tumour Profiling Unit at the Institute of Cancer Research using an Illumina Novaseq. 
Resulting fastq were uploaded to the BlueBee Genomics platform for analysis. Briefly, this pipeline 
involves STAR alignment, HTSeq read counting and DESeq2 normalization. Nine samples failed QC due 
to fewer than 10000 genes detected, leaving 62 samples for analysis. 

 
Immune cell abundance analysis using ssGSEA  
ssGSEA was performed with the updated gene symbols from(Charoentong et al., 2017) for 15 immune 
cell types. Normalized RNA sequencing data from 60 tumor samples (excluding T20 which was 
identified as an MMRp tumor) was analysed with these signatures using the ssGSEA module on the 
GenePattern workbench (https://cloud.genepattern.org) with default settings. For each cell type, the 
median of all samples was subtracted from the abundance values of individual samples. 
 
Expression analysis of colorectal cancer cells lines 
mRNA expression data for PD-L1/CD274 and CDX2 were downloaded from the Cancer Cell Line 
Encyclopedia dataset (Ghandi et al., 2019) on the cBIO portal (www.cbioportal.org). Expression values 
were offset by 1 and log2 transformed for linear regression analysis.  
 
Statistical analyses 
Statistical analyses were performed with the GraphPad PRISM. All p-values are two tailed and p<0.05 

was considered significant. Where appropriate, multiple testing correction was performed with the 

False Discover Rate method by Benjamin, Krieger and Yekutieli and a q-value of <0.1 was considered 

significant. Hierarchical Euclidian clustering for the heatmap in Figure 3D was performed with the 

Morpheus clustering software (https://software.broadinstitute.org/morpheus/) and the inbuilt t-test 

and multiple testing correction were used. For the immune cell comparison of B2M loss within tumors, 

RNA sequencing data for only one region without B2M loss was available for 3 tumors (T3, T5, T14). 

This was used as the comparator for each of the regions with B2M loss and the paired t-test was 

applied. Normalized RNA expression values were offset by 1 and Log2 transformed before statistical 

significance analysis.  
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Table 1: Patient and pathological characteristics 

 

 

  

MMRd CRC Cohort 

(n=20)

Median age at resection (range) 61.2 (33.5-79.2)

Sex

Male 30% (6)

Female 70% (14)

Stage (AJCC/UICC 8th edition)

1 15% (3)

2 15% (3)

3 65% (13)

4 5% (1)

Predominant Differentiation

Well to moderate 45% (9)

Poor 25% (5)

Mucinous 30% (6)
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Figure legends 

Figure 1: Multi-region sequencing analysis of MMRd CRCs. A. Ubiquitous and heterogeneous 

mutations detected in 191 of 194 genes (excluding HLA-A/B/C) by tumor region/metastasis. Stage, 

BRAF V600E mutations and MMR protein expression are shown. The y-axis on the right shows the 

estimated mutation load in the exome which was extrapolated by linear regression. B. Fraction of 

heterogeneous mutations per region by BRAF mutation status, MMR protein loss and stage. The 

horizontal lines represent the median. Significance was assessed with the Mann-Whitney test. C. 

Fraction of indels among all called mutations by MMR protein loss. D: Phylogenetic trees generated 

from mutation calls with the Phylip parsimony algorithm Pars, grouped according to stage and 

metastatic dissemination timing. Driver aberrations in tumor suppressor genes or immune evasion 

genes were mapped on the branch where the second disrupting aberration had been acquired and in 

oncogenes on the branch where a hotspot mutation had been acquired. T: tumor, R: primary tumor 

region, L: lymph node metastasis, M: distant metastasis. 

Figure 2: Driver aberrations and heterogeneity. A. Heatmap of identified truncal or subclonal driver 

aberrations for each tumor. B. Confirmation that distinct B2M mutations were located on different 

paired-end reads but never together. Screenshots were obtained from the Integrated Genomics 

Viewer. C. Proportion of truncal and subclonal driver aberrations by functional group. D. Mean AXIN2 

expression in primary tumor regions by truncal driver aberrations in APC, RNF43 and CTNNB1. 

Horizontal lines represent the mean and significance was assessed with the t-test. 

Figure 3: Immune landscapes of MMRd CRCs. A. Fraction of CD8 T-cells (IHC) among all nucleated 

cells per primary tumor region by BRAF mutation status, MLH1 loss and stage.  B. CD8 T-cell fraction 

(IHC) in each primary tumor region and mean for each tumor where at least 3 primary tumor regions 

were available. C. Linear regression analysis of average CD8 T-cell fraction in the primary tumor and 

in matched lymph node metastases. The regression line (solid line) and 95% confidence intervals 

(dotted lines) are shown. D. Euclidian clustering of 15 immune cell subtype abundances inferred from 

RNA expression data with ssGSEA. q values were generated with Morpheus with the t-test and 

multiple testing correction. E. Proportion of PD-L1 positive stromal cells and cancer cells by IHC in each 

analysed sample. F. Examples of PD-L1 staining in stroma and cancer cells (S: stromal staining, C: 

cancer cell staining). G. CD8 T-cell fraction (IHC) in primary tumor regions by PD-L1 positivity in stromal 

cells. H. Correlation of immune cell subtype abundance assessed by ssGSEA with stromal PD-L1 

expression. I. Individual sample data of activated CD8 T-cell abundance (inferred from RNA expression) 

in primary tumor regions by PD-L1 positivity. J. CD8 T-cell fraction IHC (left) and activated CD8 T-cells 

from RNA expression (right) in primary tumor regions by PD-L1 positivity in cancer cells. K. CDX2 RNA 

expression in primary tumor regions by PD-L1 positivity in cancer cells. L: CDX2 staining intensity (0: 

absent, 1: weak, 2: moderate, 3: strong) by cancer cell PD-L1 expression in an independent validation 

cohort of 23 MMRd CRCs. M: Linear regression analysis of PD-L1/CD274 and CDX2 mRNA expression 

in 57 colorectal cancer cell lines from the Cancer Cell Line Encyclopedia. Horizontal bars show the 

medians in panel L and means elsewhere. p-values were calculated with the Mann Whitney test (L) 

and with the t-test for other panels. False discovery rate multiple testing correction was applied where 

q values are shown. p<0.05 and q<0.1 were considered significant. Correlation coefficients (r) were 

calculated with Pearson (C, M) and Spearman rank (G-K) tests. 
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Figure 4: Co-evolution of genetic and immune landscapes. A. CD8 T-cell fraction (IHC) measured in 
50 primary tumor regions from 15 MMRd CRCs that were classified into three groups based on IE 
driver evolution patterns. B. Abundance of 15 immune cell subtypes inferred from RNA expression 
data in the three evolution groups. C. Sample-level data and means (horizontal bars) for significant 
immune cell subtypes in panel B. D. CD8 T-cell density at the tumour margin by evolution group. E. 
Mean expression of the CD8 T-cell chemo-attractants CXCL9-CXCL11. F. Predominant staining intensity 
of STING (IHC) in cancer cells. G. Comparison of primary tumor regions with B2M defects (n=7) to all 
remaining primary tumor regions from the same cases (n=4). The heatmap shows the mean 
abundance in regions with B2M defects minus the mean abundance in regions without defects.  H. 
Abundance difference of immune cell subtypes that were significant in G, comparing tumour regions 
with B2M disruption (+) to regions without disruption (-). I. Comparison of immune cell abundances 

in all primary tumor regions with defects of IFN pathway genes (n=7) to all remaining primary tumor 

regions with B2M disruption (n=15). The heatmap shows the mean abundance in regions with IFN 
defects minus the mean abundance in regions with B2M disruption. All horizontal bars show means. 
Significance analyses were performed with the Chi-squared test in panel D, the paired t-test in panel 
G, and the t-test in other panels.  
 
Figure 5: Immune evasion mechanisms in tumors with and without metastases. A. Three IE evolution 
subtypes by stage. B. Presence of any IE mechanisms in cancer cells (clonal or subclonal IE driver 
aberrations from Fig.2A or cancer cell PD-L1 expression) by stage. C. Presence of truncal IE 
mechanisms in cancer cells by stage. Cancer cell PD-L1 expression was considered equivalent to a 
truncal genetic IE driver as it was detected in all tumor regions where present. Statistical analyses 
were performed with the Chi-squared test for panel A and the Fisher’s exact test for panels B and C.  
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