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Abstract 20 

Recent advances in single-cell RNA sequencing technology provided unprecedented 21 
opportunities to simultaneously measure the gene expression profile and the 22 
transcriptional velocity of individual cells, enabling us to sample gene regulatory network 23 
dynamics along developmental trajectories. However, traditional methods have been 24 
challenged in offering a fundamental and quantitative explanation of the dynamics as 25 
differential equations due to the high dimensionality, sparsity, and complex gene 26 
interactions. Here, we present scDVF, a neural-network-based ordinary differential 27 
equation that can learn to model single-cell transcriptome dynamics and describe gene 28 
expression changes across time at a single-cell resolution. We applied scDVF on multiple 29 
published datasets from different technical platforms and demonstrate its utility to 1) 30 
formulate transcriptome dynamics of different timescales; 2) measure the instability of 31 
individual cell states; and 3) identify developmental driver genes upstream of the signaling 32 
cascade. Benchmarking with state-of-the-art vector-field learning methods shows that 33 
scDVF can improve representation accuracy by at least 50%. Further, our perturbation 34 
studies revealed that single-cell dynamical systems may exhibit properties similar to 35 
chaotic systems. In summary, scDVF allows for the data-driven discovery of differential 36 
equations that delineate single-cell transcriptome dynamics.  37 

Teaser 38 
Using neural networks to derive the ordinary differential equations behind single-cell 39 
transcriptome dynamics.  40 
 41 

MAIN TEXT 42 
 43 
Introduction 44 

Single-cell RNA-sequencing (scRNA-seq) captures a transcriptomic snapshot of a 45 
dynamic biological process. However, many current analysis methods view scRNA-seq as 46 
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a static dataset. For example, Monocle constructs minimum spanning trees in the cellular 47 
manifold as bifurcation trajectories (1). Palantir uses Markov transition matrices to model 48 
neighboring cell transitions (2). More generally, diffusion pseudotime simulates diffusion 49 
to create pseudo-temporal ordering of cells in the data manifold (3). Although these 50 
computational methods have been effective in highlighting the dynamics behind single-51 
cell transcriptomes, a fundamental question remains: can we derive quantitative equations 52 
that accurately explain the gene expression dynamics of transitioning single cells? 53 
Discovering these equations as a function of time could answer questions about the cell 54 
fates and the driving forces behind developmental trajectories. 55 

Recovering the dynamics from sparse and noisy scRNA-seq data is a difficult task because 56 
the cells are destroyed during data collection. With the development of RNA velocity, we 57 
can compute the time derivative of the expression state using the ratio of unspliced versus 58 
spliced transcripts (4). However, RNA velocity only predicts the future state of cells on 59 
the timescale of hours. We reasoned that it might be possible to extrapolate farther into the 60 
future by piecing together information from cells at different developmental times. 61 
Nevertheless, it is challenging to explicitly derive differential equations that model all 62 
gene interactions. Further, evaluating the generalizability of differential equations is still 63 
an open question. Previous approaches have relied on time-resolved scRNA-seq and linear 64 
ordinary differential equations (ODEs) to model the dynamics of regulatory networks (5, 65 
6). However, linear systems may fail to capture the non-linearity of single-cell dynamics. 66 
Moreover, single-cell dynamical systems have a high degrees-of-freedom due to the high 67 
dimensionality of the data, which could lead to errors in any dimension (7).  68 

Inspired by recent developments in neural ODEs and data-driven dynamical systems (8, 69 
9), we present a computational framework called scDVF that learns to formulate the 70 
dynamics underlying scRNA-seq experiments by modeling the gene expression changes 71 
of single cells across time. With a deep-learning architecture, our approach can model 72 
non-linear, high-dimensional gene interactions in single-cell dynamical systems. Further, 73 
we can perform in silico studies to explore the behavior of biological processes over time. 74 
In this regard, scDVF differs substantially from most single-cell methods, in that the 75 
objective of our framework is to derive neural-network-based differential equations 76 
describing single-cell gene expression dynamics. To illustrate the robustness and general 77 
validity of our approach, we performed analyses on developmental mouse neocortex and 78 
dentate gyrus, representing scRNA-seq experiments from different tissues, technical 79 
platforms, and developmental time scales (10, 11). With three additional data sources 80 
(mouse pancreatic endocrinogenesis, gastrulation, developing human forebrain), we 81 
demonstrate the ability for scDVF to deconvolve gene co-expression networks and 82 
benchmarked our method against a state-of-the-art vector-field learning approach (4, 12, 83 
13).  84 

 85 
Results  86 
 87 
Neural ODEs for Modeling Single-cell Transcriptome Dynamics 88 

In a gene regulatory network, the expression of certain genes can increase or decrease the 89 
expression of other genes. In a broader biological context, a cell transitioning along its 90 
developmental trajectory can signal a cascade of gene expression changes. These gene-to-91 
gene interactions can be formulated as a function of time using differential equations. 92 
More specifically, each cell represents an instance of the dynamics sampled from the 93 
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Fig. 1. Schematic for scDVF. a) Gene expression profiles and the corresponding 
transcriptional velocities can be derived from scRNA-seq data. After learning the 
mapping between gene expression and RNA velocity, the VAE is a neural differential 
equation that encapsulates the transcriptome dynamics. b) Given an initial condition 
and time, our framework can solve for the future gene expression state by integrating 
the VAE with any black-box ODE solver. c) Our approach can simulate trajectories to 
evaluate the instability of cell states in a dynamical system. d) scDVF can perform in 
silico perturbation studies to identify the developmental driver genes that determine 
the fate of cell bifurcations.  

 
single-cell dynamical system. If the gene expression state of a cell is the vector ��, then the 94 
increase or decrease in the gene expression with respect to time is the RNA velocity vector 95 
���

��
. Rather than deriving a system of linear ODEs 

���

��
� ��� with matrix �, we train a 96 

variational autoencoder (VAE) ����� to learn the mapping from the gene expression state 97 

�� to the RNA velocity 
���

��
 using data from each cell (Equation 1, Fig. 1a). Therefore, this 98 

VAE is a non-linear ODE and encapsulates the gene expression dynamics of individual 99 
cells in scRNA-seq. Then, given some initial gene expression state close to the data, we 100 
can numerically compute the future (or past) gene expression states with any black-box 101 

ODE solver. For example, given gene expression state ������� at time � � 0, we can use the 102 
Euler's method to find the gene expression state at ������, and iteratively for �������, … , �	����� 103 
(Equation 2, 3). 104 
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�

��
� ���������     (Equation 1) 105 

������������� � ������  ���



�

��
       (Equation 2) 106 

� ������  ���������           (Equation 3) 107 

By sequentially computing the next gene expression state, scDVF can outline the 108 
developmental trajectory of single cells through time. Further, with different initial 109 

conditions �������, our framework can derive detailed insights into the future (or past) of 110 
different cell states. Here, we explored three applications of scDVF. First, we simulated 111 
and denoised developmental trajectories by extrapolating the dynamics to out-of-sample 112 
cells (Fig. 1b). Second, we evaluated the instability of cell states by tracking gene 113 
expression changes along simulated trajectories (Fig. 1c). Third, we performed in silico 114 
perturbation studies to investigate how initial gene expression conditions impact the fate 115 
of cell bifurcations (Fig. 1d).  116 

Deriving the Neural Equations Underlying Mouse Neocortex Development  117 
To evaluate whether scDVF can uncover the dynamics from sparse and noisy scRNA-seq 118 
experiments, we considered a dataset of developing mouse neocortex with transcriptomes 119 
profiled at E15.5 with the Chromium Single-cell 3' Library from 10x Genomics (Fig. 2a) 120 
(12). Here, we show that summarizing the dynamics as neural ODEs can derive new 121 
insights from the data.  122 

First, we examined a hypothetical trajectory simulated from scDVF. After training the 123 
VAE on neocortex cell states and velocities, we generated an out-of-sample cell as the 124 
initial condition. The out-of-sample cell is simulated by adding noise to the gene 125 
expression state of an existing cell, thereby representing a cell state that did not previously 126 
exist in the data. Then, we incrementally solved for the future gene expression states of the 127 
out-of-sample cell using scDVF. The simulated developmental path shows that our 128 
predicted gene expression states moved along existing trajectories in the data manifold 129 
(Fig. 2b). In the mouse neocortex, the out-of-sample cell started as an intermediate 130 
progenitor, developed into a migrating neuron, and ultimately became a corticofugal 131 
neuron (CFN). Further, when the VAE is solved with evenly distributed time increments, 132 
the distances between intermediate states reflect the magnitude of the RNA velocity 133 
vectors. Faster rates of change in gene expression generated more separated intermediate 134 
states. Conversely, slower rates of change produced a denser collection of intermediate 135 
points along the manifold.  136 

When the VAE represents gene expression dynamics, we can visualize the latent layer 137 
embeddings to gain insights into the low-dimensional dynamic manifold. Similar to gene 138 
expression embeddings, the chronological and hierarchical order of developmental 139 
trajectories in the latent layer are properly encoded (Fig. 2b). In the neocortex, apical 140 
progenitors represent a major starting state, and CFNs represent a major terminal state. 141 
The simulated cell migrates along existing trajectories in the low-dimensional dynamic 142 
manifold.  143 

Characterizing Cell State Instability with the Cell Criticality Index 144 
Next, we aimed to characterize the stable and unstable fixed points of this single-cell 145 
dynamical system. By looking forward in time, we can numerically approximate the 146 
instability of single-cell states, which we call the cell criticality index (CCI). For a cell, the 147 
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Fig. 2. Developing Mouse Neocortex as a Dynamical System. a) Mouse neocortex single-
cell phase portraits projected in UMAP embeddings. Here, each cell is represented by 
a gene expression state vector and an RNA velocity vector. b) Simulating the 
trajectory (in viridis) of an out-of-sample cell (in red) forward in developmental time, 
visualized in UMAP embedding of the gene expression state (�), VAE latent layer (�). 
c) The CCI reveals unstable fixed points indicative of cell fate commitment. d) Genes 
that highly correlate with the CCI reveal driving forces behind neuron progenitor 
dynamics. Specifically, IGFBPL1, which positively correlates with the CCI, is a 
known neuronal growth factor, and Hmgb2, which negatively correlates with the CCI, 
has an important role in neural progenitor cell renewal. These genes support the CCI 
as a metric for the stability of single-cell states. 

 
CCI is defined as the cumulative information change, or the cumulative Kullback–Leibler 148 
(KL)-divergence, between gene expression distributions at each time step in the 149 
developmental trajectory. In order words, cell states that undergo large changes across 150 
time will have a high CCI, whereas cell states that only go through small changes will 151 
have a low CCI.  152 

For each cell, we used scDVF to compute a developmental path such that the cell arrived 153 
at a steady terminal state. Then, we calculated the CCI along each path (Fig. 2c). The 154 
resulting developmental topology is similar to the classical Waddington landscape (14). In 155 
particular, the CCI can reveal unique topological information in the developmental 156 
landscape not directly observed in latent or pseudo time. For example, the intermediate 157 
progenitor states exhibit a higher criticality, whereas the apical progenitors and 158 
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differentiated neuronal cell states experience a lower criticality. When progenitor cells are 159 
differentiating into neuronal cell types, the heightened criticality at intermediate 160 
progenitors represents fate commitment or a point of no return during development. In 161 
dynamical systems, this suggests that the cell states with low criticality are located at a 162 
stable fixed point, and the cell identity would remain stable even with small gene 163 
expression perturbations. More interestingly, the intermediate progenitors are located at an 164 
unstable fixed point with properties similar to a chaotic system in which a small 165 
perturbation may result in large downstream changes. The instability of cell states can be 166 
substantiated by examining the genes that best correlate with the CCI (Fig. 2d). For 167 
example, previous experiments have shown that IGFBPL1, which positively correlates 168 
with the CCI, is a known neuronal growth factor, and Hmgb2, which negatively correlates 169 
with the CCI, has an important role in neural progenitor cell renewal (15, 16). The 170 
expression of these genes supports the CCI as a metric for evaluating the instability of 171 
single-cell states. 172 

Conducting in Silico Perturbation Studies with scDVF 173 
Lastly, we investigated the behavior of this dynamical system with similar perturbation 174 
studies pioneered by (17). The goal of in silico perturbation studies is to computationally 175 
identify which initial gene expression conditions impact the fate of cell bifurcations. In 176 
short, we randomly sampled intermediate progenitors (� � 1,000) as the initial 177 
conditions. By allowing these simulated intermediate progenitors to naturally evolve 178 
according to the dynamics learned by scDVF, we observed a baseline 8:2 ratio of 179 
migrating neuron (MN) versus astrocyte cell states. The ratio of future cell states indicates 180 
that the MN cell state is a stronger attractive terminal state than the astrocyte cell state, 181 
which corroborates with previous conclusions (11). Then, we performed differential gene 182 
expression between initial conditions of different fates. The results suggest that early 183 
expression perturbations in key upstream genes correlate with the fate of developmental 184 
bifurcations (Fig. 3b). 185 

Further, we formulated a way to perform hypothesis testing and to infer causal 186 
relationships at developmental branching points (18). To investigate which developmental 187 
driver genes cause progenitor cells to prefer one trajectory over another, we strategically 188 
increased the expression of astrocyte-related developmental driver genes in another set of 189 
simulated intermediate progenitors. We hypothesized that this perturbation would lead to a 190 
larger proportion of astrocyte s as terminal cell states. Indeed, we observed a statistically 191 
significant increase in the proportion of astrocytes (53%) compared with the baseline 192 
(16.5%; binomial test � � 10�) under the dynamics learned by scDVF. Thus, in silico 193 
perturbation studies can be used to efficiently and comprehensively identify 194 
developmental driver genes upstream of the signaling cascade. More interestingly, 195 
simulation results suggest that mouse neocortex development exhibits properties similar to 196 
chaotic systems, where small perturbations in key upstream genes determine the fate of 197 
cell bifurcations. In other words, small variations in the initial conditions of a cell may 198 
result in large downstream changes. 199 

Exploring the Neural Equations Behind the Developing Mouse Dentate Gyrus 200 
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Fig. 3. Developing Mouse Neocortex Co-expression Networks and Perturbation Studies. 
a) Simulating dynamic trajectories can effectively denoise gene co-expression 
networks in sparse and noisy scRNA-seq experiments, especially when compared to 
the static intratelencephalic neurons in developing mouse neocortex. b) Differential 
gene expression analysis on the simulated intermediate progenitor cells reveals key 
putative genes that correlate with the fate of transforming into a MN versus an 
astrocyte. Early perturbation of the top differentially expressed genes associated with 
an astrocyte fate resulted in a higher proportion of astrocytes from the perturbed 
intermediate progenitors, suggesting a causal relationship through in silico studies. 

Further, we evaluated whether scDVF can uncover the dynamics of a dataset from a 201 
different tissue, developmental timescale, and technical platform. We considered an 202 
scRNA-seq experiment of the developing mouse dentate gyrus with transcriptomes 203 
profiled using droplet-based scRNA-seq (Fig. 4a) (10). After obtaining a neural network 204 
representation of the dentate gyrus dynamics, an out-of-sample cell was simulated by 205 
perturbing the gene expression state of an Nbl2 cell. With the out-of-sample cell as the 206 
initial condition, we used scDVF to simulate an out-of-sample cell trajectory, which 207 
moved along the existing granule cell trajectory in the data (Fig. 4b). Further, the VAE 208 
embeddings properly encoded the developmental hierarchy of cell types in the low-209 
dimensional dynamic manifold (Fig. 4c).  210 

When examining critical cell states in the dentate gyrus, we observed an abrupt gene 211 
expression change in the developmental manifold, which can be visualized when ordering 212 
cells in latent time (Fig. 4d). Specifically, the abrupt change in gene expression marks the 213 
transition from nIPC to Nbl1 cells and suggests fate commitment during the transition. 214 
After calculating the CCI, we found that cells experiencing this abrupt change also have a 215 
high criticality, which substantiates the CCI as a metric for quantifying the instability of 216 
cell states. The robustness of the CCI as an instability measure is also highlighted by its 217 
most strongly correlated genes in the dentate gyrus. For example, IGFBPL-1, which most 218 
positively correlates with the CCI, drives neuron differentiation in progenitor cells, and 219 
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GRM5, which most negatively correlates with the CCI, encodes glutamate receptors in 220 
stable and differentiated neurons (Fig. 4e) (19, 20).  221 
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Fig. 4. Dentate Gyrus as a Dynamical System. a) Dentate gyrus phase portraits projected in 
UMAP embeddings. Here, each cell is represented by a gene expression state vector 
and an RNA velocity vector. b) Simulating the trajectory (in viridis) of an out-of-
sample cell (in red) forward in developmental time, visualized in UMAP embeddings. 
c) Visualizing the VAE embedded low-dimensional manifold with the out-of-sample 
cell (in red) and the simulated trajectory (in viridis). d) The CCI reveals unstable fixed 
points indicative of cell fate commitment. e) Genes that highly correlate with the CCI 
reveal driving forces behind dentate gyrus dynamics. Specifically, IGFBPL-1, which 
positively correlates with the CCI, regulates neurodevelopment, and GRM5, which 
negatively correlates with the CCI, encodes glutamate receptors in stable and 
stationary neurons. These genes further substantiate the CCI as a metric for the 
stability of single-cell states. 

Lastly, we conducted in silico perturbation studies to determine the genetic drivers behind 222 

dentate gyrus cell fate decisions. We randomly sampled upstream Nbl2 cells (� � 1,000) 223 
as the initial conditions and allowed the simulated Nbl2 cells to naturally evolve according 224 
to the dynamics captured by scDVF, which resulted in either terminal granule or 225 
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Fig. 5. Dentate Gyrus Co-expression Networks and Perturbation Studies. a) Simulating 
dynamic trajectories can effectively denoise gene co-expression networks in sparse 
and noisy scRNA-seq experiments, especially when compared to the static cells in 
dentate gyrus. b) Differential gene expression analysis on the simulated Nbl2 cells 
reveals key putative genes that correlate with the fate of transforming into a pyramidal 
versus granule cells. Early perturbation of the top differentially expressed genes 
associated with a pyramidal cell fate resulted in a higher proportion of pyramidal cells 
from the perturbed Nbl2 cells, suggesting a causal relationship through in silico 
studies. 

pyramidal cell states. Then, we performed differential expression analysis on the initial 226 
conditions (i.e., the simulated Nbl2 cell states) of different fates (Fig. 5b). The top 227 
differentially expressed gene associated with a granule cell fate was Prox1. This gene has 228 
also been previous identified by RNA velocity and experimentally validated as being 229 
necessary for granule cell formation; moreover, the deletion of Prox1 leads to the adoption 230 
of the pyramidal neuron fate (19).  In addition, scDVF identified the top pyramidal neuron 231 
developmental driver gene as Runx1t1, which was recently shown to induce pyramidal 232 
neuron formation, with its deletion resulting in reduced neuron differentiation in vitro 233 
(21). As further validation, we increased the expression of pyramidal neuron 234 
developmental driver genes in simulated Nbl2 cells and observed an elevated proportion 235 

of pyramidal neurons as terminal states (from 10% to 30%; binomial test � � 10��) under 236 
the dynamics captured by scDVF. In summary, in silico perturbation studies can be a low-237 
cost alternative for identifying developmental driver genes. Further, the results show that 238 
scDVF is robust on scRNA-seq from different tissues, developmental timescales, and 239 
technical platforms. 240 

Comparing scDVF with Existing Methods 241 
RNA velocity predicts gene expression change of individual cells in the timescale of 242 
hours. Previous simulations in this study used hypothetical progenitor cells as the initial 243 
conditions and computed trajectories into the future resulting in differentiated cells as 244 
terminal states. Conversely, we can use differentiated (or terminal) cells as the initial 245 
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conditions and rewind time with scDVF. Then, the retrograde developmental trajectory 246 
represents the gene dynamics that would have resulted in the terminal cell types.  247 

Due to sparse and noisy measurements, it is often challenging to detect strong correlation 248 
between genes in scRNA-seq, thereby making it difficult to find coherent functional 249 
modules in gene co-expression networks (22–24). However, denoising VAEs in scDVF 250 
can reduce the variability along a developmental trajectory due to the sparsity and noise 251 
associated with scRNA-seq (Fig. 6a). We hypothesize that cells in denoised trajectories 252 
simulated from scDVF (with a representative initial condition) could amplify the 253 
correlations within functional gene modules (Fig. 6b). Indeed, the gene co-expression 254 
network of cells in retrograde trajectories has more significant gene correlations compared 255 
to co-expression networks from static cells (Fig. 3a, Fig. 5a). Further, we biclustered the 256 
co-expression matrix into gene clusters. By benchmarking our approach on four datasets, 257 
we demonstrate that the gene clusters discovered from our method are more coherent by 258 
comparing the gene ontology (GO) enrichments. The benchmarks show that functional 259 
gene modules found from denoised and dynamic cells in retrograde trajectories have at 260 
least two orders of magnitude higher enrichment for cell-type-specific GO terms 261 
compared to static cell clusters (Fig. 6c). Therefore, the retrograde trajectories computed 262 
by scDVF can effectively disentangle trajectory-specific gene regulatory networks and 263 
serve as a computational solution for boosting signal-to-noise ratios in single-cell gene co-264 
expression networks. 265 

Further, scDVF qualitatively differs from existing ODE-based regulatory networks (25). 266 
First, explicitly deriving differential equations for biological processes is only feasible for 267 
examining small-scale systems (26–29). In contrast, scDVF can capture high-dimensional 268 
interactions and can scale to a large number of variables. Second, scDVF uses a neural 269 
network to learn potentially non-linear gene interactions, which is more suitable for 270 
modeling complex biological processes compared to linear ODEs and other kernel-based 271 
sparse approximation methods (30, 31). In particular, we compared scDVF with state-of-272 
the-art vector field learning approach SparseVFC (6). Benchmarking results show that our 273 
method has at least 50% reduction in out-of-sample velocity prediction loss across all 274 
datasets, indicating that scDVF can learn a more accurate representation of the velocity 275 
vector fields and can compute future cell states with better numerical precision (Fig. 6d). 276 
Lastly, many previous ODE-based methods used pseudo-time as a substitute for time. In 277 
comparison, scDVF uses RNA velocity, which reflects developmental time  (5).  278 

Discussion  279 

Although many effective tools have been developed to illuminate the dynamics of single-280 
cell data, existing methods have mostly viewed single-cell datasets as a static manifold 281 
(e.g., minimum spanning trees, Markov matrices, diffusion etc.). In reality, many 282 
underlying biological processes captured by single-cell sequencing are dynamical systems, 283 
where individual cells are transitioning from one state to another. Hence, deriving accurate 284 
differential equations that quantify gene expression dynamics of single cells can answer 285 
many questions about the cell fates and the genetic drivers behind developmental 286 
trajectories.  287 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480564doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480564
http://creativecommons.org/licenses/by/4.0/


Science Advances                                               Manuscript Template                                                                           Page 12 of 20 
 

 

Fig. 6. Disentangling trajectory-specific gene co-expression networks. a) Schematic for 
reducing variability along a developmental trajectory due to sparsity and noise in 
scRNA-seq experiments with denoising VAEs in scDVF. b) We used a representative 
initial condition (e.g., the median expression profile for a cluster of cells) to simulate 
denoised cell trajectories according to the dynamics learned by scDVF. Compared to 
static cell clusters, the dynamic cells in denoised trajectories have stronger correlation 
between genes, which leads to better coherence between functional gene modules. c) 
GO enrichment on cell-type-specific terms from the most significant functional gene 
module. Our method improves upon existing gene co-expression network approaches 
on cell-type-specific GO term enrichment by at least two orders of magnitude. d) 
Benchmarking with state-of-the-art vector field learning method SparseVFC shows 
that scDVF can improve out-of-sample velocity vector prediction accuracy by at least 
50%.  

Explicitly deriving differential equations for all gene interactions is a challenging task. 288 
Therefore, we tackled the problem with a data-driven approach. We considered each cell 289 
in scRNA-seq as an instance sampled from a dynamic system, composed of a state vector 290 
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(gene expression, ��) and a velocity vector (RNA velocity, 
���

��
). Then, we trained a neural 291 

network ����� to learn potentially non-linear mappings from the state �� to the velocity 
���

��
 292 

of each cell. With a trained VAE ����� that takes part in the differential equation 
���

��
�293 

�����, we can integrate the VAE with any black box ODE solver to compute the future (or 294 
past) gene expression states.  295 

Overall, our scDVF framework allows hypothetical cells to evolve according to the 296 
dynamics learned from existing cells in the data. Using the ability to simulate future gene 297 
expression trajectories, we devised a metric to quantify the instability of individual cells 298 
called the CCI. Through perturbing cell states with high criticality, in silico gene 299 
perturbation studies can computationally identify key upstream driver genes that 300 
determine the fate of cell bifurcations. Lastly, by rewinding the developmental time of 301 
differentiated cells, retrograde trajectories can deconvolute trajectory-specific gene co-302 
expression networks and discover more coherent cell-type-specific gene modules.  303 

Previous approaches utilize pseudo-time to construct a temporal-ordering of cells and 304 
pluripotency metrics to measure the differentiation potential of a cell, similar to 305 
quantifying the “potential energy” of Waddington landscapes. However, these “potential 306 
energy” metrics are limited in describing dynamical systems. Theoretically, the potential 307 
energy is converted into conservative forces, where the total work done by a cell becomes 308 
independent of the developmental path taken. In order to more accurately capture the 309 
expression changes along specific developmental trajectories, we designed a new metric 310 
called the CCI, analogous to the “kinetic energy” of Waddington landscapes. In our 311 
analysis, we demonstrated that this metric could highlight fixed points in single-cell 312 
dynamical systems. Moreover, previous studies have formulated cell fate decisions as 313 
high-dimensional critical state transitions (32, 33). Therefore, we further bring awareness 314 
to the dynamical perspective of single-cell data and advocate for new metrics that quantify 315 
the kinetics of single-cell experiments.  316 

More interestingly, single-cell processes have long been hypothesized to exhibit properties 317 
similar to chaotic systems (7, 34, 35). By recovering single-cell gene expression dynamics 318 
with scDVF, we observed chaotic behaviors in the in silico gene perturbation studies, 319 
where a small change in the initial gene expression state may result in a large difference in 320 
the future states, also known as the butterfly effect. Specifically, small perturbations in 321 
developmental driver genes of progenitor cells can alter the cell fate at developmental 322 
branching points both in vitro and in silico. If single-cell dynamics exhibit chaotic 323 
properties, under the right biological conditions, the chaos can spontaneously evolve into 324 
lockstep patterns according to the Kuramoto model of synchronization (36). Hence, 325 
synchronization models could be a possible explanation for emergent tissue-level 326 
behaviors from single cells. These effects could be explored by incorporating the gene 327 
interaction dynamics between cells. Currently, scDVF only models the gene expression 328 
dynamics within a single cell. A future direction could expand the state space of scDVF 329 
and incorporate gene interactions between spatially neighboring cells with spatial 330 
transcriptomics (37). Another future direction includes incorporating concurrently 331 
resolved protein and chromatin accessibilities and their velocities into the dynamical 332 
model as a multi-modal representation of the cell state (38, 39). 333 

 334 
Materials and Methods 335 
 336 
Data Collection and Preprocessing 337 
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scRNA-seq data (pancreatic endocrinogenesis, dentate gyrus, mouse gastrulation, and 338 
human forebrain) were downloaded. After computing the gene expression count matrix. 339 
The top 3,000 variable genes and cells with a minimum of 20 transcripts were selected. 340 
Velocity genes were found using log-transformed data, and the moments were estimated 341 
using the top 30 principal components and the top 30 nearest neighbors. Dynamical 342 
velocity vectors were computed using the raw counts.  343 
 344 

Variational Autoencoder Architecture 345 
High-dimensional single-cell dynamical systems are difficult to model due to high degrees 346 
of freedom. For example, the number of features can sometimes be larger than the number 347 
of data points. Consequently, gene expression would only vary in a small portion of 348 
dimensions. Therefore, modeling the gene expression dynamics of a low-dimensional 349 
manifold embedded in high-dimensional data is a challenging task. Fortunately, 350 
autoencoders can reduce the dimensionality of the data by introducing an information 351 
bottleneck. Accordingly, when used to represent dynamical systems, autoencoders can 352 
restrict cell transitions to only movements along the low-dimensional manifold.  353 
 354 
A variational autoencoder with four dense layers (size 64 as the intermediate layer and 355 
size 16 as the latent layer) was constructed using the Tensorflow and Keras packages (40, 356 
41). The VAE takes the gene expression state as input, and outputs the RNA velocity. In 357 

the VAE, the encoder layers with weights �� and biases �� produces the hidden layer 358 ����, which parametrizes the location and scale of � gaussian distributions. Then, a sample 359 
from each reparametrized gaussian distribution ��  is used as input for the decoder layer 360 
with weights �� and biases ��. The architecture can be expressed as: 361 
 362 ��������������� � ����     (Equation 4) 363 �  �!"���  �� # ��         (Equation 5) 364 $���� �  ������������������     (Equation 6) 365 &�

���� �  ������������������      (Equation 7) 366 '�  ~ )�0, *�     (Equation 8) 367 

 ��~ $�������  '� # &�
�  ������   (Equation 9) 368 

+��������������� �  �!"���  �� # ���    (Equation 10) 369 
 370 

where the  �!"(z) activation function is: 371 
 372  �!"��� � ,���0, ��          (Equation 11) 373 

 374 
We used the mean squared error reconstruction loss with the Adam optimizer. To prevent 375 
overfitting and encourage a sparse representation of latent embeddings, L1 regularization 376 
was added to all layers. The evidence lower bound loss function with L1 regularization 377 

where - � 1 . 10��, /��| ��
��

�  �  )�$�������, ���1�&�
���������  ����  �  )�0, *�, can be 378 

described as: 379 
 380 

� 23�
3� , 3�

3�
45 � 6� 7 +�8��1����    ����9��"����� ��99   �1"!��������� 

(Equation 12) 381 
 382 

� 6��/ :�; ��
��

< || ����� 7 ∑ :��
��

7 ��

��

> <��
���  - ∑ |��|�

���  - ∑ |��|�
���   383 
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 384 
(Equation 13) 385 

 386 
Because the input and output vectors are sparse, a small learning rate of 0.00001 was used. 387 
Early stopping was added once the validation loss did not improve for three consecutive 388 
epochs.  389 
 390 

Initial Value Problems and ODE Solvers for Integration 391 
Our framework can be used to predict gene expression profiles across time. Given �� and 392 ���0� � ��, this is an initial value problem with the goal of solving ����� � ������ for any �:  393 
 394 

������

��
� ?@�, �����A    (Equation 14) 395 

 396 

Here, ? is only a function of the state ������ such that ? � ���������. Then the equation becomes: 397 
 398 

���



�

��
� ���������           (Equation 15) 399 

 400 

The first-order Euler's method for finding the state ������������� is: 401 
 402 

������������� � ������  ���



�

��
    (Equation 16) 403 

� ������  ���������       (Equation 17) 404 
 405 
However, we can utilize higher-order ODE solvers from the SciPy package to find a more 406 
accurate solution (42). The explicit Runge-Kutta method of order 8 (DOP853) was used to 407 
obtain the most accurate solutions, but it has a slow runtime. Explicit Runge-Kutta method 408 
of order 5 (RK53) can be used to trade off accuracy for a faster runtime. In practice, cells 409 
in this study were integrated to a maximum of 35 discrete steps (each with 5 intermediate 410 
steps) forward in time, which should be experimentally derived for each dataset. 411 
 412 

Addressing Drift Effects  413 
In control theory, using only the previous state and the velocity vectors to predict the next 414 
state can result in a phenomenon called “dead reckoning,” where the errors accumulate 415 
after each step (43). To mitigate this effect, we employed two strategies: 416 

1. Instead of a traditional VAE, we trained a denoising VAE to reduce the variance of 417 
predicted RNA velocity. By adding a small Gaussian noise B to the gene expression 418 
input during training, we could increase the generalizability of the input space and 419 
improve extrapolations to out-of-sample cells. 420 

���

��
� ����  '�    (Equation 18) 421 

2. As we integrated the VAE over time, we found reference cells in the data manifold 422 
every few steps and continued integration from the reference cell, as a form of high-423 
gain Kalman filter. We designated the intermediate step size as a hyperparameter 424 
relative to the step size. For example, after integrating for five intermediate steps, we 425 
projected the predicted (or extrapolated) gene expression state to the original dataset 426 
using the top 30 principal components. Then, we identified the K-nearest neighbors 427 

(6 � 30) within the PCA embeddings. The reference cell is defined as the median 428 
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expression profile among those K-nearest neighbor cells from the dataset, and ODE 429 
integration continued from this reference cell. This allowed our prediction to adhere 430 
closely to the data manifold and reduced the degree-of-freedom due to numerical 431 
errors. Further, finding reference cells in the data also constructed boundary conditions 432 
when integrating a dynamical system. For example, once the extrapolated state went 433 
beyond the cellular manifold, there were no cells in the data to serve as a reference, 434 
but the nearest neighboring cells from the dataset could still construct a reference cell 435 
from where integration could continue. 436 

Measuring Instability with the Cell Criticality Index 437 
By solving for the developmental path of a single cell, we can measure the amount of gene 438 
expression change along a trajectory, rather than comparing only the difference between 439 
the start and end states. Previously, StemID used the entropy of the gene expression 440 
distribution to heuristically identify stems cells in single-cell transcriptome data, where 441 
pluripotent cells tend to have a more uniform gene expression distribution with a higher 442 

entropy and differentiated cells tend to have a lower entropy (44). If ������� denotes the 443 

expression state of the genes 1, then the StemID of the gene expression state is defined as: 444 
 445 

StemID���� � 7 ∑ ��!�1 :��
��

<���    (Equation 19) 446 

 447 
We reasoned that a change in the gene expression distribution (e.g., from high to low 448 
entropy) can be captured using the relative entropy (or the KL-divergence). Based on this 449 
idea, we devised a measure to quantify the capacity for any cell to undergo gene 450 
expression change in the dynamical system. The CCI is calculated as the cumulative 451 
information change, or the cumulative KL-divergence, between gene expression 452 
distributions at each step in the developmental trajectory. Different from StemID, the CCI 453 
can quantify the gene expression change of a cell regardless of the pluripotency. As an 454 
analogy, StemID measures the “potential energy” of a cell's ability to differentiate, 455 

whereas the CCI measures the “kinetic energy” of a cell's ability to change. If �������� denotes 456 

the expression state of the genes 1 at time �, then the cumulative KL-divergence for 457 J �  35 steps can be defined as: 458 
 459 

LL*���� � ∑ 6���������������� || ����������
���     (Equation 20) 460 

� ∑ ∑ ����� !�1 M�����

�
�
�

N���
�
���    (Equation 21) 461 

 462 
In Silico Perturbation Studies 463 

We divide an in silico perturbation study into three steps: 464 

1. A sample of initial gene expression states (� � 1,000) was randomly generated. First, 465 
we solved the random initial gene expression states over time to establish a 466 
developmental baseline. Specifically, we aimed to observe the natural proportion of 467 
terminal cell types that could arise from the dynamical system without any 468 
intervention. 469 

2. Then, we identified differentially expressed genes in the initial gene expression states 470 
that correlate with development into a particular terminal cell type later in time. 471 
Differential gene expression was performed using the scanpy package with Wilcoxon 472 
test and Bonferroni corrections (45). 473 
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3. Lastly, we perturbed only the differentially expressed genes in another set of randomly 474 
sampled initial gene expression states to test whether the perturbation increases the 475 
proportion of cells for the terminal cell type. 476 

 477 
To sample initial gene expression states, we computed the median expression profile of 478 
progenitor cells and added Laplace distributed noise using the variance of those genes in 479 
progenitor cells to randomly increase or decrease gene expression. For the perturbation, 480 
exponentially distributed noise was added only to the top 100 differentially expressed 481 
genes for the randomly sampled cells to specifically increase the expression of the top 482 
differentially expressed genes. Terminal cell identity was determined by projecting the 483 
data onto the top 30 principal components and by using K-nearest neighbor classification 484 
(with 6 � 30). With the scVelo package, the dynamical mode estimates a variance for 485 
each gene over all cells, whereas the stochastic mode estimates a variance for each cell. 486 
Note that to model stochasticity in the stochastic mode, our framework could be easily 487 
adapted to also learn the variance of the velocity vectors (as neural stochastic ODEs). All 488 
initial gene expression states were integrated for 35 timesteps each with 5 intermediate 489 
steps.  490 
 491 

Retrograde Trajectory Simulation 492 
Similar to in silico perturbation studies, we computed the median expression profile of a 493 
terminal cell type (beta cells, granule cells, glutamatergic neurons, and erythroid) in each 494 
scRNA-seq experiment (mouse pancreatic endocrinogenesis, dentate gyrus, human 495 
forebrain, and mouse gastrulation) as the representative initial condition. A set of cells 496 
(� � 50) were sampled from each representative initial condition by adding Laplace 497 
distributed noise using the variance of the terminal cell type gene expression. The 498 
retrograde trajectory for each cell was simulated by subtracting the predicted RNA 499 
velocities from the gene expression state during integration: 500 
 501 

������������� � ������ 7 ���



�

��
    (Equation 22) 502 

� ������ 7 ���������       (Equation 23) 503 
 504 

After integrating for 15 discrete steps each with 5 intermediate steps, a gene correlation 505 
matrix of the cells in retrograde trajectories was calculated. 506 
 507 

Gene Ontology Enrichment Analysis 508 
Hierarchical biclustering was performed on the co-expression matrices, and three gene 509 
clusters were identified from each co-expression matrix, representing three functional 510 
modules. We performed GO enrichment analysis on each functional module using 511 
GOATOOLS with Fisher's exact test (46). Further, we calculated the Benjamin-Hochberg 512 
false discovery rates to correct for multiple testing. To compare between two co-513 
expression matrices, we considered the most significant enrichment out of the three 514 
clusters for each GO term. In Fig. 3a and Fig. 5a, the most significantly enriched GO 515 
terms associated with biological processes are listed next to each gene cluster. 516 
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