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20 Abstract

21 Background

22 Epidemiological surveillance relies on microbia strain typing, which defines genomic
23 relatedness among isolates to identify case clusters and their potential sources. No consensus
24 exists on the choice of thresholds of genomic relatedness to define clusters. While a priori
25 defined thresholds are often applied, outbreak-specific features such as pathogen mutation

26  rate and duration of source contamination should be considered.
27  Methods

28 We developed a forward model of bacterial evolution to simulate mutation within a
29  population diversifying at a specific mutation rate, with specific outbreak duration and sample
30 isolation dates. Based on the resulting expected distribution of genetic distances we define a
31 threshold beyond which isolates are considered as not part of the outbreak. We additionally
32 embedded the model into a Markov Chain Monte Carlo inference framework to estimate,
33 from data including sampling dates or isolates genetic variation, the most credible mutation

34 rate or time since source contamination.
35 Findings

36 A simulation study validated the model over redlistic durations and mutation rates. When
37 applied to 16 published datasets describing foodborne outbreaks, our framework consistently
38 identified outliers. Appropriate thresholds for grouping cases were obtained for 14 outbreaks.
39  For the remaining two outbreaks, re-estimation of the duration of outbreak lead to updated
40 threshold values and was more likely, given our model, to result in the observed genetic

41  distances.
42 Interpretation

43 We propose an evolutionary approach to the ‘single strain’ conundrum by defining the genetic
44  threshold based on individual outbreak properties. The framework provides an informed
45 edtimation of the likelihood of a cluster given the samples epidemiological and
46 microbiological context. This forward model, applicable to foodborne or environmental-
47  source single point case clusters or outbreaks, will be useful for epidemiological surveillance

48  and to guide control measures.

49  Funding
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55

s6 Research in context

57  Evidence beforethis study

58 We searched PubMed for studies published between database inception and April 3, 2021,
59  with the term (threshold OR cut-off OR genetic relatedness) AND (outbreak) AND (cgMLST
60 ORwgMLST OR SNPs) AND (microbial OR bacteria OR bacterial OR pathogen). We found
61 222 related articles. Most studies define a fixed SNP threshold that relate outbreak strains
62 based on previous observations. One original study identifies outbreak clusters based on
63 transmission events. However, it relies on strong assumptions about molecular clock and

64  transmission Processes.
65 Added value of thisstudy

66  Our study describes a new method based on a forward Wright-Fisher model to find the most
67 credible genetic distance threshold. This method is fast and simple to use with only few
68 assumptions, informed by outbreak duration and pathogen mutation rate. By using SNP or
69 CcgMLST pairwise distances and sample collection dates of the outbreak of interest, the

70  algorithm provides context-based guidance to separate outbreak strains from outliers.
71 Implications of all the available evidence

72 The fast and easy method developed here enables to move away from a priori defined
73 thresholds. Defining clusters more accurately based on the specific features of outbreaks, and
74 the ability to estimate outbreak duration, will provide the needed precision for
75  epidemiological surveillance and should contribute to leverage molecular epidemiology data

76 more efficiently for the purpose of uncovering contamination sources.

77
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so Introduction

81  Outbreaks of infections caused by the exposure to a unique source are the particular focus of
82  surveillance and infection control strategies. The rapid identification of the source can lead to
83 immediate public health benefits and is therefore critical. In the smplest cases, asingle strain
84  of infectious agent contaminates the source and subsequently causes infections (referred to as
85 a ‘clona outbreak’). This is often the case for contaminated food, water or environmental
86  sources that are under strong regulatory measures and typically uncontaminated. Surveillance
87  systems were therefore put in place, e.g., for food-borne pathogens such as Salmonella or
88 Listeria monocytogenes, based on a collect-genotype-compare strategy [1,2]. This strategy,
89  dubbed ‘reverse epidemiology’ [3], forms the basis of surveillance systems for foodborne
90 pathogens, such as PulseNet [1]. Molecular surveillance (‘ genetic fingerprinting’) enables the
91 detection of nearly identical infectious agent isolates and may trigger epidemiological
92 invedtigations. These include the search for case-associated risk factors as well as
93  microbiological analyses of suspected sources, and may lead to infection control measures

94 that can prevent further infections.

95  Distinguishing case cluster isolates from sporadic ones has been the *Holy Grail’ of molecular
96 epidemiological surveillance. However, the identification of single-strain clusters of
97 infections is confounded by a background of sporadic cases caused by exposure to unrelated
98  sources. Defining ‘asingle strain’ typically involves the use of athreshold of genetic distance,
99  which discriminates between isolates that are related or not to the event. The literature is ripe
100 with attempts to define such thresholds [4]. In the whole-genome sequencing (WGS) era,
101  thresholds were refined compared to pre-genomic methods such as PFGE [5-10]. Usually,
102  threshold definition is based on the variability observed within previously well-characterised
103  outbreaks, an approach rooted in the epidemiological concordance principle [11]. However,

104  interpretation of molecular data for strain definition is far from being consensual [5,12,13].

105 From an evolutionary biology point of view, infectious agents that are present as
106  contaminants of an initialy sterile source can be considered as subpopulations of individuals
107  that have evolved from a single common ancestor (the original strain) since some time (the
108  duration of contamination). Major factors expected to influence the genetic distances among
109  sampled individuals (isolates) include: i) the duration of strain persistence in the contaminated
110  source prior to infections; ii) the evolutionary rate of the pathogen genomic markers; iii) the
111  sampling dates. On the other hand, the genetic distance to the closest observed isolate
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112 unrelated by source will be determined by which genomes were sampled outside the
113 contamination event. All these parameters considered, the quest for a unique threshold
114  applicable to all outbreaks is deemed to fail. Instead, using outbreak-specific thresholds
115  defined based on their context-informed expected diversity is likely to represent a more
116  successful strategy. Attempts to ground threshold definition in evolutionary biology are recent
117  and used the coalescent model [6], transmission models [14] and Bayesan MRCA models
118  [15,16].

119  The aim of this work was the development of a novel model to define the most credible
120  genetic distance cut-offs for single strain outbreaks from a contaminated source, by simulating

121 the accumulation of mutations using specific outbreak parameters.
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122 Methods

123 Evolutionary model and definition of the outbreak genetic distance threshold

124  We define an outbreak (or cluster of cases) as a group of infection cases caused by a single
125  strain (‘monoclona’), excluding co-occurring cases caused by genetically unrelated strains
126  (i.e, from other sources). In the case where two or more genetically unrelated strains co-
127  contaminate the source of the outbreak, they should be analysed separately with this

128  framework.

129  Our evolutionary formalization (Figure 1A) is based on a Wright-Fisher forward model of
130  haploid infectious agent evolution [17,18] with constant population size. The simulation is
131  initialised with a homogeneous population of an infectious agent characterised by five
132 properties: i) L, the genome length (base pairs, bp) or the average length of genes of
133 multilocus sequence typing [MLST] approaches; ii) g, the number of genes; iii) x, the number
134  of substitutions per site per year; iv) D, the duration (in days) of the outbreak, defined as the
135  time elapsed between the initial contamination of the source, and the sampling date of the last
136  isolate; and v) &, the set of sampling dates of isolates, which is defined either directly from
137  the source sampling dates or from the date of sampling of infections, in which case the
138 incubation time and within-patient evolution is neglected. Substitutions are introduced at each
139 time step in individuals sampled with replacement according to a uniform distribution
140  (Poisson distribution with parameter 1). A distribution of pairwise genetic distances is
141  generated on these sampled individuals, and the genetic threshold value is defined from this

142 distribution. Details of the model are provided in the Supplementary Appendix.
143
144  Analysisof published outbreak datasets

145  We reviewed available published outbreak datasets from the literature and analysed the 16
146  datasets listed in Table 1 [6,19-24] using our modelling framework. Inclusion criteriawere i)
147  foodborne outbreak; ii) the availability of whole genome sequence data and iii) availability of
148  collection dates of isolates. The 16 outbreaks are described in more details in the
149  supplementary appendix. We estimated D based on evidence provided in the original
150 publications on these outbreaks. We also used previously estimated ¢ and g for the
151  corresponding infectious agent from literature (Table 1). We labelled D and x values taken
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152 from the literature as Dyt and wit, whereas those derived from our Markov Chain Monte Carlo
153  (MCMC) estimation (see below) were labelled as Degimated 8Nd fesiimated.

154
155  Statistical analyses, simulation studies and statistical framework

156  Model assessment. To assess the capacity of the model to adequately tell apart outbreak
157  isolates from non-outbreak isolates, we used synthetic datasets generated with different
158  parameters values. We applied our framework to a series of 171 simulated outbreaks
159  generated with 19 different values of D each combined with 9 values of x and including
160  simulated sporadic isolates (Table Sl in the supplementary appendix). For each of them, we
161  assessed the global sensitivity (Se) and specificity (Sp) of the framework. Details are provided
162  inthe Supplementary Appendix.

163  Parameters estimation. Our model was embedded into a Bayesian inference statistical
164  framework to enable estimation of either the duration (D) or the substitution rate («) of
165  studied outbreaks (Figure 1B; Supplementary appendix). Simulated outbreaks were used to
166  assess the ability of the model to estimate D and u, and their impact on the genetic threshold
167  estimation. We used the Kolmogorov-Smirnoff test statistic (noted Dgs) to compare real
168  distributions with simulated distributions as a goodness of fit indicator. Details on the

169  inference framework are provided in the Supplementary Appendix.
170
171  Role of the funding source

172 Thefunding source did not have an involvement in either study design, collection, analysis, or
173 interpretation of the data.
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174 Results

175 Analysis of simulated outbreaks. accuracy of outbreak delineation and of parameters

176  estimation

177  To test the ability of the framework in distinguishing between outbreak and non-outbreak
178  cases, we generated synthetic outbreaks from different combinations of D and i (Table S1in
179  the supplementary appendix). Figure 2 shows the specificity S and sensitivity Se
180  according to u. Sp was poor with low x values, especially when Ry (the ratio of evolution
181  duration between outbreak and non-outbreak genomes) was small (Figure 2A). In contrast, Se
182  was aways high (more than 99%, Figure 2B), irrespective of the parameter’s combinations.
183  We observed that the higher Ry and x were, the lower this 95% Sp D-value threshold was
184  (Figure2C).

185 We next evaluated whether the model and framework could accurately estimate the
186  parameters D and x from outbreaks data. To do so, we simulated synthetic outbreaks for
187  which the D and p values were known, and attempted to estimate one or the other. Regarding
188 D estimation, all HPD include the true value, with higher values of D being associated with
189  smaller 95% HPD (Figure 3A). Similarly, ¢ was adequately estimated, with best estimates
190 being closer to the target value for higher u vaues (Figure 3B).
191  Because higher D and/or ¢ values lead in average to more SNPs, we indeed expected more

192  precision in HPDs estimates in these cases.

193 We aso investigated the impact of sampling density on estimation accuracy. Results suggest
194  that poor sampling densities (e.g., 5%), when associated to low values of D and u (therefore
195  resulting in alow genetic diversity among samples), resulted in biased estimations of D and ,
196  which were generally overestimated (Figure 4A and 4B). However, we show that sampling
197  densities >10% led to unbiased estimations.

198
199  Genetic threshold definition for published outbreak datasets

200 For each of the 16 published outbreaks, we applied our framework to estimate an expected
201  outbreak-specific genetic threshold value (Figure 5 provides the example of outbreak 11; see
202  Supplementary appendix figures Sl to S16 for all outbreaks). We found that, for 14 out of 16
203  outbreaks, the classification of isolates as being outbreak-related or sporadic is consistent with
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204  previously reported results. Four of these outbreaks included outliers (outbreaks 1, 4, 12 and
205  16), which are correctly classified beyond the threshold of exclusion by our model, except for
206 oneisolate of outbreak 4 (Table 1; Fig $4; note that outbreak 4 comprised three different co-
207  contaminating genetic clusters [20]; here the defined outbreak strain was ST528). Ten other
208  outbreaks (2, 3, 5, 6, 7, 9, 10, 13, 14 and 15) have no sporadic cases, and our framework
209  correctly clusters all suspected isolates as outbreak-related.

210  For two of the 16 outbreaks, our model leads to different conclusions compared with previous
211 results. In outbreak 8 (L. monocytogenes, beef), two isolates are classified as outliers by our
212 model, whereas they were initialy classified as outbreak-related [24]. In outbreak 11
213 (L. monocytogenes, ox tongue), two isolates came from food and two others from humans.
214 Our agorithm separates food samples in one cluster and human samples in another cluster,
215 whereas the isolates were initially grouped based on epidemiological and genetic evidence:
216 here, the threshold inferred by our model was smaller.

217  When evauating the influence of outliers on the inferred threshold by removing them from
218  the analysis we find that, in all cases, the outliers do not affect the outbreak threshold. For
219  outbreak 1, 4 and 16, this removal does not change the threshold value but improves the fit
220 between the pairwise SNP distance distribution of the data and the simulated one
221  (Supplementary Table S2).

222
223 Estimation of D and u valuesfrom real outbr eaks, and impact on outbreak definition

224 For each of the 16 above outbreaks, we used our framework to estimate outbreak duration D
225  and substitution rate ¢ (called Degimated 8N tesimated) SEParately, and used these values (instead
226 of Dy and wi; used above) for the inference of the genetic distance threshold. Results are
227  providedin Table 1.

228  For 11 of the 16 outbreaks, the estimated HPD intervals include Dyi.. For the 5 remaining, we
229  find higher Desimated Values compared with previously reported Dyi; (Figure S6 and Table 1).
230  Regarding y, for nine outbreaks HPD intervals include their corresponding 4it, whereas for
231 only one outbreak uesimated 1S lOwer than ;; (outbreak 2) and the six remaining outbreaks lead
232 to ahigher estimated pegimated COMpared with wic. 1t is important to note that the Degimated 95%
233 HPD is aso higher than D;; for these same 6 outbreaks (Table 1).

10
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234  After reanalysing the outbreaks using our Desimated @Nd pesimated Values, we observe that the
235  newly obtained thresholds do not affect the attribution of isolates to the outbreak or sporadic
236  categoriesin most cases, with three exceptions. First, for outbreak 4, using Degimated OF Lestimated
237  increases the threshold from 4 to 11 SNPs, leading to add the previously missing isolate but
238 till excluding the outliers. Second, for outbreak 15, a decreased genetic threshold (4 SNPs
239 instead of 5, in both independent estimations analyses for Degimated @Nd testimated) 1€2dS tO the
240 exclusion of one isolate. Third, for outbreak 11, the genetic threshold is increased from 4
241 SNPsto 7 and 10 SNPs (using Destimated @aNd (estimated F€Spectively), leading to group all isolates
242  from food and human samples (Figure 5). We also observe that in most cases, using the
243  edtimated values of D and ¢ improves the fit of the genetic distance distribution, with two
244 exceptions (Table S2 in the supplementary appendix).

11
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225  Discussion

246  Molecular surveillance contributes to identify common exposure to a specific source even
247  when dates and places of infections are distant [25-27]. Given the large differences existing
248  among outbreaks, it is being increasingly recognised that no single-species threshold can be
249  applied to distinguish between outbreak and non-outbreak isolates. To our knowledge,
250  Octavia and colleagues (2015) were the first to attempt to model the expected genetic distance
251 among food outbreak isolates. Although the authors incorporated mutation rate and outbreak
252 duration in their model, they did not use the actual sampling dates. Consequently, their
253  proposed thresholds depend on strong assumptions as to the actual duration of the outbreak
254  (referred to as the ex-vivo/in-vivo evolution time by these authors). Stimson et al. [14]
255  modelled the number of transmissions that separates infection cases, using a probabilistic
256 model that incorporates the transmission process in addition to mutation rate and timing of
257  infections. Because it models between-host transmission, this approach does not apply to
258  point-source food outbreaks. Lastly, Coll et al. [28] aimed at defining a SNP threshold above
259  which transmission of S aureus between humans can be ruled out, by incorporating the
260 timing of transmission and within-host diversity. This evolutionary modelling approach

261  provides arobust SNP cut-off applicable to this specific ecological situation.

262 We propose an original evolutionary approach to the ‘single strain’ threshold conundrum by
263 incorporating epidemiological and microbiological specifics of each outbreak. Our model is
264  supported by a high sensitivity (>90%) of isolates classification and by the results of analyses
265  of 16 real-life published datasets from foodborne outbreaks, which led to consistent resultsin

266  most cases and enabled to refine outbreak analysis in two cases.

267  The simulation study showed that our model performed well at grouping outbreak cases. We
268  also observed that as D and u increased, the estimated genetic threshold was more accurate:
269 the model specificity increased with genetic diversity. Thisis akin to higher resolution typing
270  methods being better at discriminating related and non-related cases. We aso found an impact
271 of the evolutionary distance between outbreak and sporadic isolates on model specificity,
272 consistent with the known uncertainty in ruling out sporadic cases for genetically
273 homogeneous pathogens. In addition, we found that the sampling density is important, as it
274  influences the number of observed genetic differences. outbreaks with low diversity will

275  require more samples to capture enough pairwise differences for estimation purposes.

12
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276 Our model assumes a constant population, to avoid increasing execution time with growing
277  bacterial populations. Because the population N remains constant over time, this number must
278  be chosen high enough to capture all the diversity through our sampling process. Indeed, we
279  simulated the sampling processes and did not analyse the whole N population. Because A, the
280  Poisson parameter, is defined as a function of N, a number of 500 or 1000 is usually enough
281 to capture all bacterial diversity, but higher values should be tested further when extreme

282  substitution rates or duration are explored.

283  In most outbreak investigations, the time since source contamination is unknown, and the
284  underestimation of D is a common risk given the possibility of cryptic transmission and
285  unreported cases having occurred prior to actual outbreak detection [29]. Prior knowledge of
286  u is also subjected to uncertainty: this parameter strongly depends on the species but also on
287  the strain [30] and on other conditions (e.g. temperature, cellular stress). We showed that,
288  although the estimates were largely consistent with epidemiological information, estimated D
289  and ux were often larger. As D and u both affect the expected genetic diversity in the same
290  direction, it isimpossible to decide whether it is the rate, or the duration, that was higher than
291 initially suspected. We suggest that, in the absence of evidence for higher u, fixing it and
292 estimating D may provide important clues regarding prior cryptic transmission. Considering
293 higher D values than suggested by case recognition is clearly relevant for epidemiological
294 investigations of outbreaks, as it widens the considered time window and may lead to identify

295 initially unsuspected sources of contamination.

296 Theanalysis of the 16 published outbreaks led to the definition of genetic thresholds that were
297 largely consistent with epidemiological evidence. For outbreaks 4 and 11, groupings were
298  discordant, as a lower threshold than initially used was inferred by our model. However, when
299  estimating the duration or substitution rate with our framework, higher values were observed
300 for both outbreaks, thus leading to group samples consistently with epidemiological evidence.
301  Outbreak 11 involved foodborne listeriosis with contaminated food where the two food
302 samples differed by 9 SNPs from the human samples, themselves separated by 2 SNPs. The
303 two food samples were isolated from two food outlets that had the same meat producer.
304 Because the incubation period of listeriosis is between 3 and 70 days and because intermittent
305 L. monocytogenes contamination during the production was observed [31], the duration of
306 contamination D might have been higher than initially defined, suggesting that the true
307 common ancestor of food and human isolates was in fact older than initially estimated from

308 the origina publication. This illustrates the value of our estimation framework to inform

13
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309 epidemiological investigations. Interestingly, when using model-estimated duration of
310 outbreak or substitution rate, we often observed an improved fit of the pairwise distance
311 distributions (Table S2).

312 For outbreak 8, low sequence data quality was observed for three genomes [24], including the
313 two genomes excluded from the outbreak by our model. Low quality data may have
314 artificialy inflated their genetic distinctness, which underlines the importance of input

315  sequence data quality.

316  Itisimportant to highlight the following limitations. First, all presented results were generated
317 by initidising the models with a fully homogeneous ancestral population. However, the
318  contaminating population may be slightly heterogeneous if it has a non-negligible population
319 size and had itself already evolved previously. In these cases, D might be interpreted as
320 incorporating the diversification time before source contamination. Second, we only modelled
321  mutation, neglecting other evolutionary processes such as recombination. Detection of
322 recombination among very closely related isolates is very challenging and its impact would be
323  limited. However, recombination with genetically distinct co-contaminants might occur and
324 recombined chromosomal regions should be removed from the analysis, especialy when
325 using SNP-based analyses (by design, MLST moderates the impact of homologous
326  recombination). Third, the model does not incorporate demographic events within the
327  contaminated source, including population bottlenecks, which are potentially common in food
328 processing chains but which would be challenging to infer and to model. Finaly, the
329 framework is designed for a single evolving population derived from a single bacteria
330  ancestor. When there is more than one contaminating genotype, our framework could be used

331  separately for each of these.
332  Conclusions

333  We describe an innovative approach to the ‘single strain’ definition using pathogen genomic
334 data by considering the most relevant features of specific outbreaks to define a credible
335  genetic distance threshold. This definition is grounded in evolutionary biology and aleviates
336 the need for a priori defined thresholds, which are not justified theoretically and may be
337 inappropriate in most cases. The inferred outbreak-tailored genetic thresholds provide a
338 reliable, non-arbitrary way to define epidemiologically related infection cases and to exclude
339 non-related sporadic strains. This approach is fast and easy to use. The additional ability to

340 edtimate outbreak duration should also prove useful for point-source disease outbreak studies,

14
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341 by providing a credible temporal window for epidemiological investigations aiming at

342  identifying and eliminating the sources of contaminations.
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343  Figurelegends
344
345 Figurel. Description of the framework.

346  A. Left, threshold computation inputs. genetic distance matrix M, duration of outbreak D, set
347  of sample dates &, number of substitutions per site per year u, and sequence length L (if based
348  on nucleotide sites) or number of genes g (if based on a gene-by-gene approach). Right,
349 model-based simulation: the algorithm is initialized with a homogenous population of
350 individuals. At each time step, substitutions are drawn from a Poisson distribution, until D is
351 reached. Samples are drawn randomly at the different observed sampling dates. A genetic
352 threshold is defined using e.g., the 99" percentile of the distribution, and clusters of isolates
353 arederived by single linkage clustering, leading to rule-out non-outbreak isolates.

354  B. Left, the same model is used to estimate D or # using MCMC, based on the following
355 inputs: the genetic distance matrix; the sampling dates; the sequence length; and either x or D
356  (depending on which one is estimated).

357

358 Figure 2. Assessment of the model’s ability to classify outbreak isolates from the

359 simulation study.

360 Specificity (A) and sensitivity (B) of isolates classification when x = 8e-08 (top) or 8e-07
361 (bottom) substitutions per site per year. Each point provides specificity or sensitivity computed
362 from 20 independent outbreaks simulated with the same input parameters, with D ranging from
363 50 to 1000 days (x-axis) and Ry (the ratio of evolution duration between non-outbreak and
364 outbreak genomes) varying between 4.5 and 150 (colours). (C) 95% specificity threshold value

365 of D asafunction of Ry (x-axis), computed for 9 values of x (colours).
366
367 Figure 3. Assessment of the quality of the estimation of D and u through simulation.

368  Precision of the estimation of D (A) and u (B) from simulated data generated using different
369 values of D and x. The sample size, defined as the number of observed samples and
370 associated dates, was set to 0.2xD. On each panel, the upper banner and red line indicate the
371  expected D (A) and x (B) values used to generate the simulated data. For each of the 240
372 synthetic outbreaks analysed, three independent MCMC chains were run, and the three
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373 corresponding best estimates are shown (points). Vertical bars represent the average values of
374  the minimum and maximum of the 95% credible interval of the 3 MCMC chains. Each colour

375  correspondsto distinct values of ¢ or D used in the simulations (see keys).
376
377  Figure4. Impact of sampling density on the precision of the estimation of D and .

378  The position of each symbol represents the difference between the expected and best estimates of D
379  (A) and u (B) for each of 2400 outbreaks smulated using combinations of 4 values of D (60, 100, 200
380  and 400 days, represented in rows) and 3 values of u (2E-07: blue diamonds, 4E-07: orange circles,
381 6E-07, red triangles, values in subgtitutions per site per year). Sampling density represents the
382  percentage of individuals sampled at each time step.

383

384  Figureb. Distance threshold derived from the modelling framework, and its effect on clustering:

385 exampleof outbreak 11.

386  Panels A and C show the cgMLST distance distributions: observed distribution (blue, panels A and C),
387 simulated distribution without estimation (Orange, panel A), and simulated distribution using the
388  edtimated duration of outbreak (red, panel C). Error bars represent the interval of prediction at 95% of
389 100 smulations. Blue vertical lines correspond to the derived distance threshold defined here as the
390 99" percentile of the distributions (A: from the observed distribution; C: from the simulated
391  didribution using the estimated duration of outbreak). Panels B and D show the single-linkage clusters
392  resulting from the derived distance threshold corresponding to panels A and C, respectively.

17


https://doi.org/10.1101/2022.02.15.480545
http://creativecommons.org/licenses/by-nc/4.0/

Table 1. Analysis of 16 outbreaks from literature. Genome length L is given in base pairs (bp), for outbreaks 5 and 8 to 16 the genome length was given

by the number of loci g multiply by the average gene length. Dyi; correspond to the duration of outbreak in days deduced from the published articles and it

is the number of mutations per site per year found in the published article related or found in the literature in general. For each w;; value, the reference used
iS shown. Destimated (in days) and pesimated Were estimated based on 3 MCMC chains; the associated 95% HPD for all the outbreaks as well asthe
corresponding genetic threshold is shown. Each threshold results from the 99™ percentile of a pairwise differences distribution from 100 outbreak

simulations.
Samplessize Cut-off
) . Genomic Ref. Using
Qutbreak Period Country  Bacteria Human/ Sour ce L (bp) Diit it Ref. wit Destimated Hestimated Using Using
) ood mar ker outbreak Dy and
Animal Destimated  Hesimated
Wit
1.01e-06
. 5 Chocolate 95.64
1 Nov. 2016  Austraia M 13 0 SNP [6] 4857450 120 12E10-7 [6] (4.83e-07- 8 7 7
mousse (68.73-120.41)
1.69e-06)
] 6.33¢-07
Jan-May ) 2 Chicken 20.51
2 Australia M 25 0 . . SNP [22] 4857450 20 12E10-7 [6] (2.18e-07- 1 1 1
2014 liver paté (20.01-54.7)
1.09e-06)
1.13e-06
Jan-May ) 2 Hot bread 44.92
3 Australia M 20 0 SNP [22] 4857450 38 12E10-7 [6] (2.78e-07- 2 2 2
2014 shop (38.8-54.83)
1.2e-06)
1.38¢-04
Oct-Nov ) Chicken 28.08
4 Australia cF 7 2 o SNP [20] 1343000 9  323E105 [32] (9.11e-05- 4 1 11
2013 liver paté (16.19-29.99)
0.000312)
3.53e-05
Dec 2002 - ) ) 73.07
5 Finland crF 212 2 Milk cgMLST [21] 1432000 65 323E10-5 [32] (2.19e-05- 16 19 18
Jan 2003 (66.26-95.73)
3.07e-04)
5.3%-06
May-July ~ Germany EC* 107.41
6 15 0 Sprouts SNP [19] 5437407 55  25E10-6  [33] (1.72e-06- 7 13 13
2011 &France  0104:H4 (70.33-180.02)
5.90e-06)
7 2011 UK EC* 0157 10 0 Unwashed SNP [23] 4122236 340 2.26E10-7  [34] 352. 3.21e-07 2 2 2
18

apeuw sl ] ‘Aunadiad ui uudaid ayy Aejdsip 01 asuadl| e AIxHoIq pajuelhb sey oym ‘1spunyioyine ayi si (mainal 19ad Aq paljiniad Jou sem Yyaiym)
undaud siyy Joy Japjoy ybuAdoos syl 'zzoz ‘ST Arenigs4 palsod uoisIaA SIU) :S¥S081°ST'20°2202/TOTT 0T/Bi0°10p//:sdny :1op Jundaid AxHolq


https://doi.org/10.1101/2022.02.15.480545
http://creativecommons.org/licenses/by-nc/4.0/

vegetables (340.07- (1.16e-07-
394.00) 5.26e-07)
494.49 2.09¢-06

8 2012-2013 B! LM® 5 10 Beef cgMLST [24] 1462000 466  4.3E10-7  [35] (466.09- (3.44e-07- 2 2 7
582.86) 3.78e-06)
2270.8 4.83¢-07

9 2007-2013 B! LM® 5 3 Crabmeat  cgMLST [24] 1732000 2200 4.3E10-7  [39] (2200.54- (2.75e-07- 12 12 13
2569.1) 9.93e-07)
47351 1.05¢-06

10 2013-2014 B! LMm® 5 4 Sandwiches cgMLST [24] 1698000 289  4.3E10-7  [39] (318.76- (3.78e-07- 2 4 5
499.83) 3.63e-06)
1559.36 1.17e-06

11 2013-2014 B* LM® 2 2 Oxtongue  cgMLST [24] 1464000 943 4.3E10-7  [39] (1025.81- (6.226-07- 4 7 10
1599.92) 4.10e-06)
805.65 2.46e-07

12 2009-2011 B! LM® 9 1 Unknown  cgMLST [24] 1685000 783  4.3E10-7  [35] (783.08- (1.4e-07- 6 6 4
888.25) 4,52¢-07)
186.32 5.47e-07

13 2013 T Lm® 4 1 Rakfisk ~ cgMLST [24] 1526000 180  4.3E10-7 [35] ) (8.25e-08- 1 1 1

(76.94-299.33)

2.98e-06)
492.69 2.91e-06

14 2013-2014 Xt LM® 13 6 Foiegras  cgMLST [24] 1686000 161  4.3E10-7  [35] (234.34- (1.1e-06- 2 5 8
499.94) 4.29¢-06)
384.79 3.54e-07

15 2012 Xt LM® 4 9 Cheese  cgMLST [24] 1698000 548  4.3E10-7  [39] (244.07- (1.53e-07- 5 4 4
558.99) 5.35¢-07)
20498 3.43e-06

16 2012 ct Lm® 25 0 Briecheese cgMLST [24] 1707000 150  4.3E10-7 [35] ) (1.81e-06- 2 3 9

(252.2-299.99)

4.3e-06)

! Country code from the reference article; 2 SM

monocytogenes

: Salmonella enterica serovar Typhimurium; ° CJ: Campylobacter jejuni; * EC: Escherichia coli; ° LM: Listeria
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