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Abstract 20 

Background 21 

Epidemiological surveillance relies on microbial strain typing, which defines genomic 22 

relatedness among isolates to identify case clusters and their potential sources. No consensus 23 

exists on the choice of thresholds of genomic relatedness to define clusters. While a priori 24 

defined thresholds are often applied, outbreak-specific features such as pathogen mutation 25 

rate and duration of source contamination should be considered. 26 

Methods 27 

We developed a forward model of bacterial evolution to simulate mutation within a 28 

population diversifying at a specific mutation rate, with specific outbreak duration and sample 29 

isolation dates. Based on the resulting expected distribution of genetic distances we define a 30 

threshold beyond which isolates are considered as not part of the outbreak. We additionally 31 

embedded the model into a Markov Chain Monte Carlo inference framework to estimate, 32 

from data including sampling dates or isolates genetic variation, the most credible mutation 33 

rate or time since source contamination. 34 

Findings 35 

A simulation study validated the model over realistic durations and mutation rates. When 36 

applied to 16 published datasets describing foodborne outbreaks, our framework consistently 37 

identified outliers. Appropriate thresholds for grouping cases were obtained for 14 outbreaks. 38 

For the remaining two outbreaks, re-estimation of the duration of outbreak lead to updated 39 

threshold values and was more likely, given our model, to result in the observed genetic 40 

distances.   41 

Interpretation 42 

We propose an evolutionary approach to the ‘single strain’ conundrum by defining the genetic 43 

threshold based on individual outbreak properties. The framework provides an informed 44 

estimation of the likelihood of a cluster given the samples epidemiological and 45 

microbiological context. This forward model, applicable to foodborne or environmental-46 

source single point case clusters or outbreaks, will be useful for epidemiological surveillance 47 

and to guide control measures. 48 

Funding  49 
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 55 

Research in context 56 

Evidence before this study 57 

We searched PubMed for studies published between database inception and April 3, 2021, 58 

with the term (threshold OR cut-off OR genetic relatedness) AND (outbreak) AND (cgMLST 59 

OR wgMLST OR SNPs) AND (microbial OR bacteria OR bacterial OR pathogen). We found 60 

222 related articles. Most studies define a fixed SNP threshold that relate outbreak strains 61 

based on previous observations. One original study identifies outbreak clusters based on 62 

transmission events. However, it relies on strong assumptions about molecular clock and 63 

transmission processes.  64 

Added value of this study 65 

Our study describes a new method based on a forward Wright-Fisher model to find the most 66 

credible genetic distance threshold. This method is fast and simple to use with only few 67 

assumptions, informed by outbreak duration and pathogen mutation rate. By using SNP or 68 

cgMLST pairwise distances and sample collection dates of the outbreak of interest, the 69 

algorithm provides context-based guidance to separate outbreak strains from outliers. 70 

Implications of all the available evidence 71 

The fast and easy method developed here enables to move away from a priori defined 72 

thresholds. Defining clusters more accurately based on the specific features of outbreaks, and 73 

the ability to estimate outbreak duration, will provide the needed precision for 74 

epidemiological surveillance and should contribute to leverage molecular epidemiology data 75 

more efficiently for the purpose of uncovering contamination sources. 76 

 77 

Data Availability Statement 78 
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All data and code used for this manuscript is available online at https://gitlab.pasteur.fr/BEBP. 79 
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Introduction 80 

Outbreaks of infections caused by the exposure to a unique source are the particular focus of 81 

surveillance and infection control strategies. The rapid identification of the source can lead to 82 

immediate public health benefits and is therefore critical. In the simplest cases, a single strain 83 

of infectious agent contaminates the source and subsequently causes infections (referred to as 84 

a ‘clonal outbreak’). This is often the case for contaminated food, water or environmental 85 

sources that are under strong regulatory measures and typically uncontaminated. Surveillance 86 

systems were therefore put in place, e.g., for food-borne pathogens such as Salmonella or 87 

Listeria monocytogenes, based on a collect-genotype-compare strategy [1,2]. This strategy, 88 

dubbed ‘reverse epidemiology’ [3], forms the basis of surveillance systems for foodborne 89 

pathogens, such as PulseNet [1]. Molecular surveillance (‘genetic fingerprinting’) enables the 90 

detection of nearly identical infectious agent isolates and may trigger epidemiological 91 

investigations. These include the search for case-associated risk factors as well as 92 

microbiological analyses of suspected sources, and may lead to infection control measures 93 

that can prevent further infections.  94 

Distinguishing case cluster isolates from sporadic ones has been the ‘Holy Grail’ of molecular 95 

epidemiological surveillance. However, the identification of single-strain clusters of 96 

infections is confounded by a background of sporadic cases caused by exposure to unrelated 97 

sources. Defining ‘a single strain’ typically involves the use of a threshold of genetic distance, 98 

which discriminates between isolates that are related or not to the event. The literature is ripe 99 

with attempts to define such thresholds [4]. In the whole-genome sequencing (WGS) era, 100 

thresholds were refined compared to pre-genomic methods such as PFGE [5–10]. Usually, 101 

threshold definition is based on the variability observed within previously well-characterised 102 

outbreaks, an approach rooted in the epidemiological concordance principle [11]. However, 103 

interpretation of molecular data for strain definition is far from being consensual [5,12,13]. 104 

From an evolutionary biology point of view, infectious agents that are present as 105 

contaminants of an initially sterile source can be considered as subpopulations of individuals 106 

that have evolved from a single common ancestor (the original strain) since some time (the 107 

duration of contamination). Major factors expected to influence the genetic distances among 108 

sampled individuals (isolates) include: i) the duration of strain persistence in the contaminated 109 

source prior to infections; ii) the evolutionary rate of the pathogen genomic markers; iii) the 110 

sampling dates. On the other hand, the genetic distance to the closest observed isolate 111 
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unrelated by source will be determined by which genomes were sampled outside the 112 

contamination event. All these parameters considered, the quest for a unique threshold 113 

applicable to all outbreaks is deemed to fail. Instead, using outbreak-specific thresholds 114 

defined based on their context-informed expected diversity is likely to represent a more 115 

successful strategy. Attempts to ground threshold definition in evolutionary biology are recent 116 

and used the coalescent model [6], transmission models [14] and Bayesian MRCA models 117 

[15,16].  118 

The aim of this work was the development of a novel model to define the most credible 119 

genetic distance cut-offs for single strain outbreaks from a contaminated source, by simulating 120 

the accumulation of mutations using specific outbreak parameters.  121 
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Methods 122 

Evolutionary model and definition of the outbreak genetic distance threshold 123 

We define an outbreak (or cluster of cases) as a group of infection cases caused by a single 124 

strain (‘monoclonal’), excluding co-occurring cases caused by genetically unrelated strains 125 

(i.e., from other sources). In the case where two or more genetically unrelated strains co-126 

contaminate the source of the outbreak, they should be analysed separately with this 127 

framework. 128 

Our evolutionary formalization (Figure 1A) is based on a Wright-Fisher forward model of 129 

haploid infectious agent evolution [17,18] with constant population size. The simulation is 130 

initialised with a homogeneous population of an infectious agent characterised by five 131 

properties: i) L, the genome length (base pairs, bp) or the average length of genes of 132 

multilocus sequence typing [MLST] approaches; ii) g, the number of genes; iii) μ, the number 133 

of substitutions per site per year; iv) D, the duration (in days) of the outbreak, defined as the 134 

time elapsed between the initial contamination of the source, and the sampling date of the last 135 

isolate; and v) Sd, the set of sampling dates of isolates, which is defined either directly from 136 

the source sampling dates or from the date of sampling of infections, in which case the 137 

incubation time and within-patient evolution is neglected. Substitutions are introduced at each 138 

time step in individuals sampled with replacement according to a uniform distribution 139 

(Poisson distribution with parameter ��. A distribution of pairwise genetic distances is 140 

generated on these sampled individuals, and the genetic threshold value is defined from this 141 

distribution. Details of the model are provided in the Supplementary Appendix. 142 

 143 

Analysis of published outbreak datasets 144 

We reviewed available published outbreak datasets from the literature and analysed the 16 145 

datasets listed in Table 1 [6,19–24] using our modelling framework. Inclusion criteria were i) 146 

foodborne outbreak; ii) the availability of whole genome sequence data and iii) availability of 147 

collection dates of isolates. The 16 outbreaks are described in more details in the 148 

supplementary appendix. We estimated D based on evidence provided in the original 149 

publications on these outbreaks. We also used previously estimated μ and g for the 150 

corresponding infectious agent from literature (Table 1). We labelled D and μ values taken 151 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.15.480545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480545
http://creativecommons.org/licenses/by-nc/4.0/


 

 

8 

 

from the literature as Dlit and μlit, whereas those derived from our Markov Chain Monte Carlo 152 

(MCMC) estimation (see below) were labelled as Destimated and μestimated.  153 

 154 

Statistical analyses, simulation studies and statistical framework  155 

Model assessment. To assess the capacity of the model to adequately tell apart outbreak 156 

isolates from non-outbreak isolates, we used synthetic datasets generated with different 157 

parameters values. We applied our framework to a series of 171 simulated outbreaks 158 

generated with 19 different values of D each combined with 9 values of μ and including 159 

simulated sporadic isolates (Table S1 in the supplementary appendix). For each of them, we 160 

assessed the global sensitivity (Se) and specificity (Sp) of the framework. Details are provided 161 

in the Supplementary Appendix. 162 

Parameters estimation. Our model was embedded into a Bayesian inference statistical 163 

framework to enable estimation of either the duration (D) or the substitution rate (μ) of 164 

studied outbreaks (Figure 1B; Supplementary appendix). Simulated outbreaks were used to 165 

assess the ability of the model to estimate D and μ, and their impact on the genetic threshold 166 

estimation. We used the Kolmogorov-Smirnoff test statistic (noted DKS) to compare real 167 

distributions with simulated distributions as a goodness of fit indicator. Details on the 168 

inference framework are provided in the Supplementary Appendix.  169 

 170 

Role of the funding source 171 

The funding source did not have an involvement in either study design, collection, analysis, or 172 

interpretation of the data.  173 
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Results 174 

Analysis of simulated outbreaks: accuracy of outbreak delineation and of parameters 175 

estimation   176 

To test the ability of the framework in distinguishing between outbreak and non-outbreak 177 

cases, we generated synthetic outbreaks from different combinations of D and μ (Table S1 in 178 

the supplementary appendix).  Figure 2 shows the specificity Sp and sensitivity Se 179 

according to μ. Sp was poor with low μ values, especially when Rd (the ratio of evolution 180 

duration between outbreak and non-outbreak genomes) was small (Figure 2A). In contrast, Se 181 

was always high (more than 99%, Figure 2B), irrespective of the parameter’s combinations. 182 

We observed that the higher Rd and μ were, the lower this 95% Sp D-value threshold was 183 

(Figure 2C).  184 

We next evaluated whether the model and framework could accurately estimate the 185 

parameters D and μ from outbreaks data. To do so, we simulated synthetic outbreaks for 186 

which the D and µ values were known, and attempted to estimate one or the other. Regarding 187 

D estimation, all HPD include the true value, with higher values of D being associated with 188 

smaller 95% HPD (Figure 3A). Similarly, μ was adequately estimated, with best estimates 189 

being closer to the target value for higher μ values (Figure 3B). 190 

Because higher D and/or μ values lead in average to more SNPs, we indeed expected more 191 

precision in HPDs estimates in these cases. 192 

We also investigated the impact of sampling density on estimation accuracy. Results suggest 193 

that poor sampling densities (e.g., 5%), when associated to low values of D and μ (therefore 194 

resulting in a low genetic diversity among samples), resulted in biased estimations of D and μ, 195 

which were generally overestimated (Figure 4A and 4B). However, we show that sampling 196 

densities >10% led to unbiased estimations.  197 

 198 

Genetic threshold definition for published outbreak datasets  199 

For each of the 16 published outbreaks, we applied our framework to estimate an expected 200 

outbreak-specific genetic threshold value (Figure 5 provides the example of outbreak 11; see 201 

Supplementary appendix figures S1 to S16 for all outbreaks). We found that, for 14 out of 16 202 

outbreaks, the classification of isolates as being outbreak-related or sporadic is consistent with 203 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.15.480545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480545
http://creativecommons.org/licenses/by-nc/4.0/


 

 

10 

 

previously reported results. Four of these outbreaks included outliers (outbreaks 1, 4, 12 and 204 

16), which are correctly classified beyond the threshold of exclusion by our model, except for 205 

one isolate of outbreak 4 (Table 1; Fig S4; note that outbreak 4 comprised three different co-206 

contaminating genetic clusters [20]; here the defined outbreak strain was ST528). Ten other 207 

outbreaks (2, 3, 5, 6, 7, 9, 10, 13, 14 and 15) have no sporadic cases, and our framework 208 

correctly clusters all suspected isolates as outbreak-related.  209 

For two of the 16 outbreaks, our model leads to different conclusions compared with previous 210 

results. In outbreak 8 (L. monocytogenes, beef), two isolates are classified as outliers by our 211 

model, whereas they were initially classified as outbreak-related [24]. In outbreak 11 212 

(L. monocytogenes, ox tongue), two isolates came from food and two others from humans. 213 

Our algorithm separates food samples in one cluster and human samples in another cluster, 214 

whereas the isolates were initially grouped based on epidemiological and genetic evidence: 215 

here, the threshold inferred by our model was smaller. 216 

When evaluating the influence of outliers on the inferred threshold by removing them from 217 

the analysis we find that, in all cases, the outliers do not affect the outbreak threshold. For 218 

outbreak 1, 4 and 16, this removal does not change the threshold value but improves the fit 219 

between the pairwise SNP distance distribution of the data and the simulated one 220 

(Supplementary Table S2). 221 

 222 

Estimation of D and μ values from real outbreaks, and impact on outbreak definition 223 

For each of the 16 above outbreaks, we used our framework to estimate outbreak duration D 224 

and substitution rate μ (called Destimated and μestimated) separately, and used these values (instead 225 

of Dlit and μlit used above) for the inference of the genetic distance threshold. Results are 226 

provided in Table 1. 227 

For 11 of the 16 outbreaks, the estimated HPD intervals include Dlit. For the 5 remaining, we 228 

find higher Destimated values compared with previously reported Dlit (Figure S6 and Table 1). 229 

Regarding μ, for nine outbreaks HPD intervals include their corresponding μlit, whereas for 230 

only one outbreak μestimated is lower than µ lit (outbreak 2) and the six remaining outbreaks lead 231 

to a higher estimated μestimated compared with μlit. It is important to note that the Destimated 95% 232 

HPD is also higher than Dlit for these same 6 outbreaks (Table 1).  233 
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After reanalysing the outbreaks using our Destimated and μestimated values, we observe that the 234 

newly obtained thresholds do not affect the attribution of isolates to the outbreak or sporadic 235 

categories in most cases, with three exceptions. First, for outbreak 4, using Destimated or μestimated 236 

increases the threshold from 4 to 11 SNPs, leading to add the previously missing isolate but 237 

still excluding the outliers. Second, for outbreak 15, a decreased genetic threshold (4 SNPs 238 

instead of 5, in both independent estimations analyses for Destimated and μestimated) leads to the 239 

exclusion of one isolate. Third, for outbreak 11, the genetic threshold is increased from 4 240 

SNPs to 7 and 10 SNPs (using Destimated and μestimated respectively), leading to group all isolates 241 

from food and human samples (Figure 5). We also observe that in most cases, using the 242 

estimated values of D and μ improves the fit of the genetic distance distribution, with two 243 

exceptions (Table S2 in the supplementary appendix).  244 
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Discussion 245 

Molecular surveillance contributes to identify common exposure to a specific source even 246 

when dates and places of infections are distant [25–27]. Given the large differences existing 247 

among outbreaks, it is being increasingly recognised that no single-species threshold can be 248 

applied to distinguish between outbreak and non-outbreak isolates. To our knowledge, 249 

Octavia and colleagues (2015) were the first to attempt to model the expected genetic distance 250 

among food outbreak isolates. Although the authors incorporated mutation rate and outbreak 251 

duration in their model, they did not use the actual sampling dates. Consequently, their 252 

proposed thresholds depend on strong assumptions as to the actual duration of the outbreak 253 

(referred to as the ex-vivo/in-vivo evolution time by these authors). Stimson et al. [14] 254 

modelled the number of transmissions that separates infection cases, using a probabilistic 255 

model that incorporates the transmission process in addition to mutation rate and timing of 256 

infections. Because it models between-host transmission, this approach does not apply to 257 

point-source food outbreaks. Lastly, Coll et al. [28] aimed at defining a SNP threshold above 258 

which transmission of S. aureus between humans can be ruled out, by incorporating the 259 

timing of transmission and within-host diversity. This evolutionary modelling approach 260 

provides a robust SNP cut-off applicable to this specific ecological situation. 261 

We propose an original evolutionary approach to the ‘single strain’ threshold conundrum by 262 

incorporating epidemiological and microbiological specifics of each outbreak. Our model is 263 

supported by a high sensitivity (>90%) of isolates classification and by the results of analyses 264 

of 16 real-life published datasets from foodborne outbreaks, which led to consistent results in 265 

most cases and enabled to refine outbreak analysis in two cases. 266 

The simulation study showed that our model performed well at grouping outbreak cases. We 267 

also observed that as D and μ increased, the estimated genetic threshold was more accurate: 268 

the model specificity increased with genetic diversity. This is akin to higher resolution typing 269 

methods being better at discriminating related and non-related cases. We also found an impact 270 

of the evolutionary distance between outbreak and sporadic isolates on model specificity, 271 

consistent with the known uncertainty in ruling out sporadic cases for genetically 272 

homogeneous pathogens. In addition, we found that the sampling density is important, as it 273 

influences the number of observed genetic differences: outbreaks with low diversity will 274 

require more samples to capture enough pairwise differences for estimation purposes. 275 
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Our model assumes a constant population, to avoid increasing execution time with growing 276 

bacterial populations. Because the population N remains constant over time, this number must 277 

be chosen high enough to capture all the diversity through our sampling process. Indeed, we 278 

simulated the sampling processes and did not analyse the whole N population. Because λ, the 279 

Poisson parameter, is defined as a function of N, a number of 500 or 1000 is usually enough 280 

to capture all bacterial diversity, but higher values should be tested further when extreme 281 

substitution rates or duration are explored.  282 

In most outbreak investigations, the time since source contamination is unknown, and the 283 

underestimation of D is a common risk given the possibility of cryptic transmission and 284 

unreported cases having occurred prior to actual outbreak detection [29]. Prior knowledge of 285 

μ is also subjected to uncertainty: this parameter strongly depends on the species but also on 286 

the strain [30] and on other conditions (e.g. temperature, cellular stress). We showed that, 287 

although the estimates were largely consistent with epidemiological information, estimated D 288 

and μ were often larger. As D and μ both affect the expected genetic diversity in the same 289 

direction, it is impossible to decide whether it is the rate, or the duration, that was higher than 290 

initially suspected. We suggest that, in the absence of evidence for higher μ, fixing it and 291 

estimating D may provide important clues regarding prior cryptic transmission. Considering 292 

higher D values than suggested by case recognition is clearly relevant for epidemiological 293 

investigations of outbreaks, as it widens the considered time window and may lead to identify 294 

initially unsuspected sources of contamination. 295 

The analysis of the 16 published outbreaks led to the definition of genetic thresholds that were 296 

largely consistent with epidemiological evidence. For outbreaks 4 and 11, groupings were 297 

discordant, as a lower threshold than initially used was inferred by our model. However, when 298 

estimating the duration or substitution rate with our framework, higher values were observed 299 

for both outbreaks, thus leading to group samples consistently with epidemiological evidence. 300 

Outbreak 11 involved foodborne listeriosis with contaminated food where the two food 301 

samples differed by 9 SNPs from the human samples, themselves separated by 2 SNPs. The 302 

two food samples were isolated from two food outlets that had the same meat producer. 303 

Because the incubation period of listeriosis is between 3 and 70 days and because intermittent 304 

L. monocytogenes contamination during the production was observed [31], the duration of 305 

contamination D might have been higher than initially defined, suggesting that the true 306 

common ancestor of food and human isolates was in fact older than initially estimated from 307 

the original publication. This illustrates the value of our estimation framework to inform 308 
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epidemiological investigations. Interestingly, when using model-estimated duration of 309 

outbreak or substitution rate, we often observed an improved fit of the pairwise distance 310 

distributions (Table S2).  311 

For outbreak 8, low sequence data quality was observed for three genomes [24], including the 312 

two genomes excluded from the outbreak by our model. Low quality data may have 313 

artificially inflated their genetic distinctness, which underlines the importance of input 314 

sequence data quality.  315 

It is important to highlight the following limitations. First, all presented results were generated 316 

by initialising the models with a fully homogeneous ancestral population. However, the 317 

contaminating population may be slightly heterogeneous if it has a non-negligible population 318 

size and had itself already evolved previously. In these cases, D might be interpreted as 319 

incorporating the diversification time before source contamination. Second, we only modelled 320 

mutation, neglecting other evolutionary processes such as recombination. Detection of 321 

recombination among very closely related isolates is very challenging and its impact would be 322 

limited. However, recombination with genetically distinct co-contaminants might occur and 323 

recombined chromosomal regions should be removed from the analysis, especially when 324 

using SNP-based analyses (by design, MLST moderates the impact of homologous 325 

recombination). Third, the model does not incorporate demographic events within the 326 

contaminated source, including population bottlenecks, which are potentially common in food 327 

processing chains but which would be challenging to infer and to model. Finally, the 328 

framework is designed for a single evolving population derived from a single bacterial 329 

ancestor. When there is more than one contaminating genotype, our framework could be used 330 

separately for each of these. 331 

Conclusions 332 

We describe an innovative approach to the ‘single strain’ definition using pathogen genomic 333 

data by considering the most relevant features of specific outbreaks to define a credible 334 

genetic distance threshold. This definition is grounded in evolutionary biology and alleviates 335 

the need for a priori defined thresholds, which are not justified theoretically and may be 336 

inappropriate in most cases. The inferred outbreak-tailored genetic thresholds provide a 337 

reliable, non-arbitrary way to define epidemiologically related infection cases and to exclude 338 

non-related sporadic strains. This approach is fast and easy to use. The additional ability to 339 

estimate outbreak duration should also prove useful for point-source disease outbreak studies, 340 
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by providing a credible temporal window for epidemiological investigations aiming at 341 

identifying and eliminating the sources of contaminations.  342 
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Figure legends 343 

 344 

Figure 1. Description of the framework.  345 

A. Left, threshold computation inputs: genetic distance matrix M, duration of outbreak D, set 346 

of sample dates Sd, number of substitutions per site per year μ, and sequence length L (if based 347 

on nucleotide sites) or number of genes g (if based on a gene-by-gene approach). Right, 348 

model-based simulation: the algorithm is initialized with a homogenous population of 349 

individuals. At each time step, substitutions are drawn from a Poisson distribution, until D is 350 

reached. Samples are drawn randomly at the different observed sampling dates. A genetic 351 

threshold is defined using e.g., the 99th percentile of the distribution, and clusters of isolates 352 

are derived by single linkage clustering, leading to rule-out non-outbreak isolates. 353 

B. Left, the same model is used to estimate D or μ using MCMC, based on the following 354 

inputs: the genetic distance matrix; the sampling dates; the sequence length; and either μ or D 355 

(depending on which one is estimated).  356 

 357 

Figure 2. Assessment of the model’s ability to classify outbreak isolates from the 358 

simulation study.  359 

Specificity (A) and sensitivity (B) of isolates classification when μ = 8e-08 (top) or 8e-07 360 

(bottom) substitutions per site per year. Each point provides specificity or sensitivity computed 361 

from 20 independent outbreaks simulated with the same input parameters, with D ranging from 362 

50 to 1000 days (x-axis) and Rd (the ratio of evolution duration between non-outbreak and 363 

outbreak genomes) varying between 4.5 and 150 (colours). (C) 95% specificity threshold value 364 

of D as a function of Rd (x-axis), computed for 9 values of μ (colours). 365 

 366 

Figure 3. Assessment of the quality of the estimation of D and μ through simulation.  367 

Precision of the estimation of D (A) and μ (B) from simulated data generated using different 368 

values of D and μ. The sample size, defined as the number of observed samples and 369 

associated dates, was set to 0.2xD. On each panel, the upper banner and red line indicate the 370 

expected D (A) and μ (B) values used to generate the simulated data. For each of the 240 371 

synthetic outbreaks analysed, three independent MCMC chains were run, and the three 372 
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corresponding best estimates are shown (points). Vertical bars represent the average values of 373 

the minimum and maximum of the 95% credible interval of the 3 MCMC chains. Each colour 374 

corresponds to distinct values of μ or D used in the simulations (see keys). 375 

 376 

Figure 4. Impact of sampling density on the precision of the estimation of D and μ.  377 

The position of each symbol represents the difference between the expected and best estimates of D 378 

(A) and μ (B) for each of 2400 outbreaks simulated using combinations of 4 values of D (60, 100, 200 379 

and 400 days; represented in rows) and 3 values of μ (2E-07: blue diamonds, 4E-07: orange circles, 380 

6E-07, red triangles; values in substitutions per site per year). Sampling density represents the 381 

percentage of individuals sampled at each time step.  382 

 383 

Figure 5. Distance threshold derived from the modelling framework, and its effect on clustering: 384 

example of outbreak 11.  385 

Panels A and C show the cgMLST distance distributions: observed distribution (blue, panels A and C), 386 

simulated distribution without estimation (Orange, panel A), and simulated distribution using the 387 

estimated duration of outbreak (red, panel C). Error bars represent the interval of prediction at 95% of 388 

100 simulations. Blue vertical lines correspond to the derived distance threshold defined here as the 389 

99th percentile of the distributions (A: from the observed distribution; C: from the simulated 390 

distribution using the estimated duration of outbreak). Panels B and D show the single-linkage clusters 391 

resulting from the derived distance threshold corresponding to panels A and C, respectively.392 
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Table 1. Analysis of 16 outbreaks from literature. Genome length L is given in base pairs (bp), for outbreaks 5 and 8 to 16 the genome length was given 

by the number of loci g multiply by the average gene length. Dlit correspond to the duration of outbreak in days deduced from the published articles and μlit 

is the number of mutations per site per year found in the published article related or found in the literature in general. For each μlit value, the reference used 

is shown. Destimated (in days) and μestimated
 were estimated based on 3 MCMC chains; the associated 95% HPD for all the outbreaks as well as the 

corresponding genetic threshold is shown. Each threshold results from the 99th percentile of a pairwise differences distribution from 100 outbreak 

simulations. 

Outbreak Period Country Bacteria 

Samples size 

Source 
Genomic 

marker 

Ref. 

outbreak 
L (bp) Dlit μlit Ref. μlit Destimated μestimated 

Cut-off 

Human/ 

Animal 
Food 

Using  

Dlit and 

μlit 

Using 

Destimated 

Using 

μestimated 

1 Nov. 2016 Australia SM2 13 0 
Chocolate 

mousse 
SNP [6] 4857450 120 12E10-7 [6] 

95.64 

(68.73-120.41) 

1.01e-06 

(4.83e-07-

1.69e-06) 

8 7 7 

2 
Jan-May 

2014 
Australia SM2 25 0 

Chicken 

liver pâté 
SNP [22] 4857450 20 12E10-7 [6] 

20.51 

(20.01-54.7) 

6.33e-07 

(2.18e-07-

1.09e-06) 

1 1 1 

3 
Jan-May 

2014 
Australia SM2 20 0 

Hot bread 

shop 
SNP [22] 4857450 38 12E10-7 [6] 

44.92 

(38.8-54.83) 

1.13e-06 

(2.78e-07-

1.2e-06) 

2 2 2 

4 
Oct-Nov 

2013 
Australia CJ3 7 2 

Chicken 

liver pâté 
SNP [20] 1343000 9 3.23E10-5 [32] 

28.08 

(16.19-29.99) 

1.38e-04 

(9.11e-05-

0.000312) 

4 11 11 

5 
Dec 2002 - 

Jan 2003 
Finland CJ3 2/2 2 Milk cgMLST [21] 1432000 65 3.23E10-5 [32] 

73.07 

(66.26-95.73) 

3.53e-05 

(2.19e-05-

3.07e-04) 

16 19 18 

6 
May-July 

2011 

Germany 

&France 

EC4 

O104:H4 
15 0 Sprouts SNP [19] 5437407 55 2.5E10-6 [33] 

107.41 

(70.33-180.02) 

5.39e-06 

(1.72e-06-

5.90e-06) 

7 13 13 

7 2011 UK EC4 O157 10 0 Unwashed SNP [23] 4122236 340 2.26E10-7 [34] 352. 3.21e-07 2 2 2 

.
C

C
-B

Y
-N

C
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vegetables (340.07-

394.00) 

(1.16e-07-

5.26e-07) 

8 2012-2013 B1 LM5 5 10 Beef cgMLST [24] 1462000 466 4.3E10-7 [35] 

494.49 

(466.09-

582.86) 

2.09e-06 

(3.44e-07-

3.78e-06) 

2 2 7 

9 2007-2013 B1 LM5 5 3 Crabmeat cgMLST [24] 1732000 2200 4.3E10-7 [35] 

2270.8 

(2200.54-

2569.1) 

4.83e-07 

(2.75e-07-

9.93e-07) 

12 12 13 

10 2013-2014 B1 LM5 5 4 Sandwiches cgMLST [24] 1698000 289 4.3E10-7 [35] 

473.51 

(318.76-

499.83) 

1.05e-06 

(3.78e-07-

3.63e-06) 

2 4 5 

11 2013-2014 B1 LM5 2 2 Ox tongue cgMLST [24] 1464000 943 4.3E10-7 [35] 

1559.36 

(1025.81-

1599.92) 

1.17e-06 

(6.22e-07-

4.10e-06) 

4 7 10 

12 2009-2011 B1 LM5 9 1 Unknown cgMLST [24] 1685000 783 4.3E10-7 [35] 

805.65 

(783.08-

888.25) 

2.46e-07 

(1.4e-07-

4.52e-07) 

6 6 4 

13 2013 T1 LM5 4 1 Rakfisk cgMLST [24] 1526000 180 4.3E10-7 [35] 
186.32 

(76.94-299.33) 

5.47e-07 

(8.25e-08-

2.98e-06) 

1 1 1 

14 2013-2014 X1 LM5 13 6 Foie gras cgMLST [24] 1686000 161 4.3E10-7 [35] 

492.69 

(234.34-

499.94) 

2.91e-06 

(1.1e-06-

4.29e-06) 

2 5 8 

15 2012 X1 LM5 4 9 Cheese cgMLST [24] 1698000 548 4.3E10-7 [35] 

384.79 

(244.07-

558.99) 

3.54e-07 

(1.53e-07-

5.35e-07) 

5 4 4 

16 2012 C1 LM5 25 0 Brie cheese cgMLST [24] 1707000 150 4.3E10-7 [35] 
294.28 

(252.2-299.99) 

3.43e-06 

(1.81e-06-

4.3e-06) 

2 3 9 

1 Country code from the reference article; 2 SM: Salmonella enterica serovar Typhimurium; 3 CJ: Campylobacter jejuni; 4 EC: Escherichia coli; 5 LM: Listeria 

monocytogenes 
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