1 Lung evolution in vertebrates and the water-to-land transition

Camila Cupello^{1*}, Tatsuya Hirasawa², Norifumi Tatsumi³, Yoshitaka Yabumoto⁴, Pierre Gueriau^{5,6}, Sumio Isogai⁷, Ryoko Matsumoto⁸, Toshiro Saruwatari^{9,10}, Andrew King¹¹, Masato Hoshino¹², Kentaro Uesugi¹², Masataka Okabe³, Paulo M. Brito^{1*}

5 6

2

3

- 7 ¹Departamento de Zoologia-IBRAG, Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier, 524-Maracanã, Rio de Janeiro 20550-900, Brazil. camila.dc@gmail.com; pbritopaleo@yahoo.com.br 8 ²Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo 7-3-1 0 10 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. hirasawa@eps.s.u-tokyo.ac.jp ³Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, 11 12 Tokyo 105-8461, Japan. noratt2008@gmail.com; maokabe@jikei.ac.jp ⁴Kitakyushu Museum of Natural History and Human History, 2-4-1 Higashida, Yahatahigashi-ku, 13 Kitakyushu, Fukuoka 805-0071, Japan. yabumoto@kmnh.jp 14 ⁵Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland. 15 16 pierre.gueriau@hotmail.fr ⁶Université Paris-Saclay, CNRS, ministère de la Culture, UVSQ, MNHN, Institut photonique d'analyse 17 18 non-destructive européen des matériaux anciens, 91192 Saint-Aubin, France. 19 ⁷Department of Anatomy, Iwate Medical University School of Medicine, Morioka, Iwate, Japan. 20 sumio_isogai@yahoo.co.jp 21 ⁸Kanagawa Prefectural Museum of Natural History, 499, Iryuda, Odawara, Kanagawa, 250-0031, Japan. 22 ryokosaur@gmail.com 23 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan. tsaruwat@aori.u-24 tokyo.ac.jp 25 ¹⁰Seikei Education and Research Center for Sustainable Development, Tokyo, Japan. ¹¹Synchrotron SOLEIL, L'orme des Merisiers Saint-Aubin, BP48, F-91192, Gif-sur-Yvette Cedex, France. 26 king@synchrotron-soleil.fr 27 ¹²Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, 28 29 Japan. hoshino@spring8.or.jp; ueken@spring8.or.jp 30 31 *Corresponding authors. Email: camila.dc@gmail.com; pbritopaleo@yahoo.com.br 32 33 Abstract 34
- 35 A crucial evolutionary change in vertebrate history was the Palaeozoic (Devonian ~400
- 36 million years ago) water-to-land transition, allowed by key morphological and
- 37 physiological modifications including the acquisition of lungs. Nonetheless, the origin and
- 38 early evolution of vertebrate lungs remain highly controversial, particularly whether the
- 39 ancestral state was paired or unpaired. Due to the rarity of fossil soft tissue preservation,
- 40 lung evolution can only be traced based on the extant phylogenetic bracket. Here we
- 41 investigate, for the first time, lung morphology in extensive developmental series of key

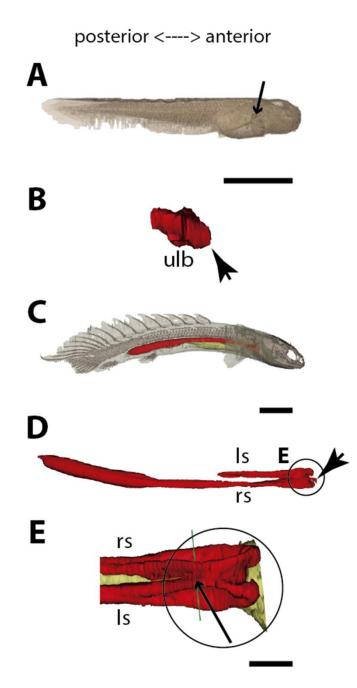
42	living lunged osteichthyans using synchrotron X-ray microtomography and histology. Our
43	results shed light on the primitive state of vertebrate lungs as unpaired, evolving to be
44	truly paired in the lineage towards the tetrapods. The water-to-land transition confronted
45	profound physiological challenges and paired lungs were decisive for increasing the
46	surface area and the pulmonary compliance and volume, especially during the air-
47	breathing on land.
48	
49	
50	Introduction
51	Lungs, the most important organ of the pulmonary complex, are rarely preserved in
52	fossils, hindering direct evidence of how the earliest air-breathing vertebrates breathed air.
53	So far, the evolutionary origin of the vertebrate lung has been narrowed down to the basal
54	osteichthyans (Goujet, 2011; Tatsumi et al., 2016). However, since the knowledge about
55	morphological and genetic development of the lung has been highly biased in amniotes,
56	the original form of this evolutionary novelty has remained elusive. One hypothesis,
57	formed and supported by studies on tetrapods (particularly mammals and birds), assumes
58	that the lung evolved through a modification of the pharyngeal pouch (Kastschenko, 1887).
59	as the lung bud develops at the pharyngo-oesophageal junction during embryonic
60	development. Consequently, this view (Kastschenko, 1887; Kuratani and Tanaka, 1990)
61	predicts that the primitive lungs appeared as bilaterally paired organs at the caudolateral
62	part of the pharynx. Indeed, in embryology, lungs of living tetrapods have been mostly
63	described as paired derivates of the respiratory tube, arisen from paired and small hollow
64	swellings (Marshall Flint, 1990). Previous studies on amphibians have also proposed that
65	the lung bud develop from paired rudiments of the ventral portions of the eighth
66	pharyngeal pouches (Goodrich, 1931; Marcus, 1937; Perry et al., 2001). Additionally, the

67	plesiomorphic state of lungs has been mostly described as paired organs (Funk, Lencer
68	and McCune, 2020). On the other hand, another hypothesis does not constrain the
69	evolutionary origin of the lung to the serial homologue of the pharyngeal pouch (Greil,
70	1913; Neumayer, 1930; Wassnetzov, 1932). In this view, although the possibility that the
71	primitive lung developed on the pharyngeal endoderm is not excluded, the primitive lung
72	is considered to appear on the floor of the pharynx, or more generally, on the floor of the
73	foregut. This scenario does not predict bilaterally paired forms of primitive lungs.
74	Curiously, some living vertebrates display an unpaired organ (Cupello et al., 2015;
75	Cupello et al., 2017a; Cupello et al., 2017b; Cupello, Clément and Brito, 2019; Lambertz
76	and Perry, 2015; Lambertz et al., 2015), leaving the ancestral condition equivocal. The
77	sister group to all other extant actinopterygians, the obligate air-breathing polypterids
78	(Icardo et al., 2017), breath air using lungs, which have previously been described as a
79	paired organ (Icardo et al., 2017; Geoffrey Saint Hilaire, 1802; Graham, 1997). However,
80	in adult specimens of Polypterus senegalus the glottis only opens to the right sac and the
81	left sac is connected to the right sac by a separate opening (Graham, 1997), raising old
82	questions about its true paired condition. Among sarcopterygians, the unpaired lung of
83	coelacanths is unequivocal. The living coelacanth Latimeria chalumnae, that inhabits
84	moderate deep-water and makes gas exchanges only through gills, have an unpaired lung
85	with no outline of a second bud at different developmental stages (Cupello et al., 2015;
86	Cupello et al., 2017a; Cupello, Clément and Brito, 2019). In the extant sister group of all
87	tetrapods (Amemiya et al., 2013), namely lungfishes, the three extant genera have lungs
88	capable to uptake oxygen from the air. However, in the most basal one, the facultative air-
89	breather Neoceratodus forsteri, the lung is described as unpaired (Greil, 1913; Graham,
90	1997; Grigg, 1965). In contrast with both South American and African lungfishes, the

Lepidosirenoidea, that are obligated air-breathers and have a lung described as a ventral
 paired organ (16) like tetrapod lungs.

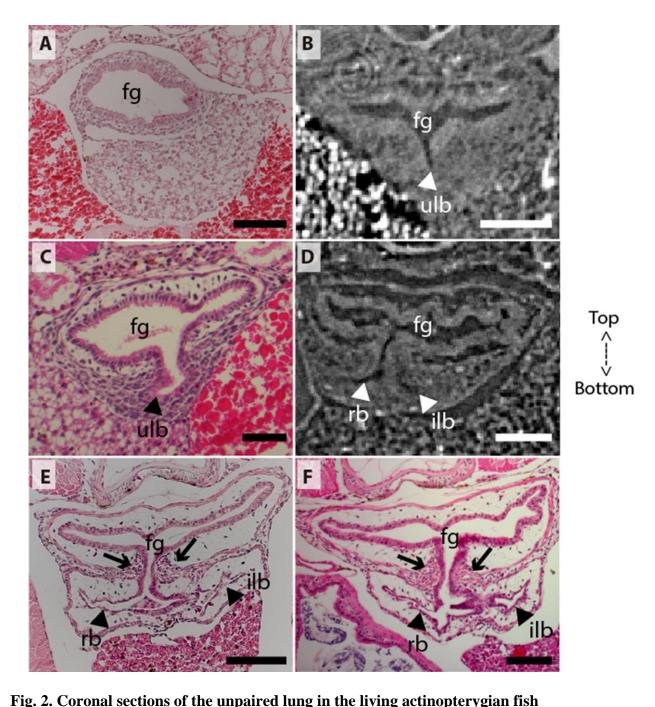
93	To follow lung evolutionary history in vertebrates, we analyzed primitive sequence
94	of morphogenesis of lungs of key living osteichthyans (Figs. 1–6). Embryos, larvae,
95	juveniles and adults of P. senegalus, N. forsteri, Lepidosiren paradoxa were examined. To
96	compare the lung anatomy of osteichthyan fishes with tetrapods, we studied also an
97	extensive developmental series of the living salamandrid Salamandra salamandra, from
98	early and late larvae to juveniles before and after metamorphosis (Fig. 5). As salamanders
99	are often considered to have retained plesiomorphic characteristics of tetrapod stance and
100	locomotion (Pierce et al., 2020), we used them here also as a model for understanding lung
101	evolution in tetrapods. Specimens of mentioned taxa were examined through x-ray
102	microtomography, the unique effective non-invasive methodology to study their
103	morphology and histology at a three-dimensional (sub) microscale. When possible, we
104	proceeded also with dissections and the study of histological sections. We compare our
105	results with the available information from the lung of fossil taxa, the coelacanths and
106	salamanders (Cupello, Clément and Brito, 2019; Brito et al., 2010; Tissier, Rage and
107	Laurin, 2017).

- 108
- 109


110 **Results**

111

The lung development in *Polypterus senegalus*


From our observations on embryos of 8.0, 8.5, 9.1 and 9.3 mm TL (total length), the lung anlage develops as a ventral unpaired and tubular depression of the respiratory pharynx (the posterior portion of the pharynx), surrounded by undifferentiated mesenchymal cells⁶ (Fig. 1A, B, Fig. 2B, C). Only at the 12 mm TL larva, the left bud arises from the principal

116	and primary lung anlage as a branch (Fig. 2D). Subsequently, the lung assumes its
117	asymmetrical morphology, the left sac is smaller and remains ventral in the abdominal
118	cavity, while the right one (principal tube) starts a partial turn up and stays parallel to the
119	dorsal portion of the foregut (including the stomach). The left sac keeps a secondary
120	connection to a lateral opening of the principal tube, and not to the foregut (Fig. 1 D, E,
121	Fig. 6 A, B, Fig. S1, Fig. S2). Uundifferentiated dense cells surrounding the glottis are
122	visible for the first time in specimens of 15.5 mm TL (black arrows in Fig. 2E). Air-
123	breathing behavior starts at the juvenile stage in <i>P. senegalus</i> (2), and from juveniles of 23
124	mm TL onward, the blastema starts to develop into the muscular sphincter and respiratory
125	epithelium at the glottis (ciliated cells intercalated by goblet cells). Right and left sacs are
126	well developed and have a projection anterior to the connection with the small pneumatic
127	duct in juveniles (Fig. 1D, E). The right tube is three times longer than the left one, with
128	an expanded diameter in its caudal portion, posterior to the stomach (Fig. 1C, D).

- Fig. 1. Three-dimensional reconstructions of the pulmonary complex of *Polypterus senegalus*. (A) Early embryo (9.3 mm) TL in right lateral view, (B) Isolated lung of the early embryo in dorsal view, (C) Juvenile (45 mm TL) in right lateral view, (D) Isolated lung of the juvenile in dorsal view, (E) Close-up of (D) highlighting the lung in ventral view and pointing out the region of the independent and secondary connection of the left sac to the right one by a lateral opening. Yellow, foregut including the stomach; red, lung. Black arrow in (A) pointing to the lung. Arrowheads in (B) pointing to the lung connection to the foregut and in (D) pointing to the pneumatic duct connection to the foregut. Black arrow in (E) pointing to the independent connection. Ls, left sac; rs, right sac; ulb, unpaired lung bud. Scale bars, 5.0 mm (A); 0.075 mm (B); 5.0 mm (C, D); 1.0 mm (E).

142	The right and left sacs make a partial turn-up, remaining parallel to the dorsal
143	surface of the upper gastrointestinal tract (one of each side). Polypterus senegalus lung is
144	internally smooth and lacks alveolation at all the examined developmental stages, except
145	for in the 45 mm TL juvenile, in which the most anterior projection of the lung, anterior to
146	the connection with the pneumatic duct, is slightly compartmentalized. This evidence
147	based on the first developmental stages of P. senegalus (embryos with 8.5 mm, 9.1 mm,
148	9.3 mm) lung prove that the lung bud initially develops as an unpaired anlage in this taxon
149	(Fig. 1B, Fig. 2 B, C). The left sac develops secondarily from the right sac at later
150	developmental stages, as a diverticulum, or a lobe, of the right primary lung (Fig. 2 E, F,
151	Fig. S1, Fig. S2).

Polypterus senegalus. (A) No lung bud in 8.0 mm TL specimen, (B) Origin of an unpaired lung bud in 8.5 mm TL specimen, (C) Unpaired lung bud in 9.1 mm TL

specimen, (D) First register of an independent and lateral second lung bud in 12

mm TL specimen, (E, F) Independent and lateral second lung bud arising from the

principal tube in 15.5 mm TL and 18 mm TL specimens. (A, C, E-F) Histological

thin-sections. (**B**, **D**) Sections of synchrotron X-ray microtomography of the early

embryo. Black and white head arrows pointing to the lumen of the unpaired lung

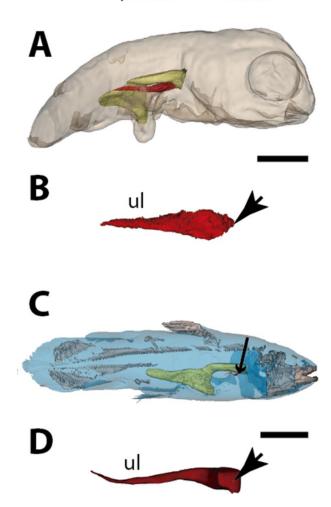
foregut; ilb, independent lateral bud; rb, right bud; ulb, unpaired lung bud. Scale

buds; arrows pointing to the undifferentiated cells surrounding the glottis. Fg,

bars, 0.2 mm (A, E); 0.1 mm (B, D, F); 0.05 mm (C).

153

152


154

- 155 156
- 157 158 159
- 160 161
- 162 163
- 164

166The lung development in Latimeria chalumnae

167	Embryos of L. chalumnae display ventral compartmentalized unpaired lung throughout its
168	length, suggesting alveolation (7), and in the early embryo (40 mm TL) a lateral and
169	internal chamber is also present (Fig. 3; Fig. 6 D). At the latest developmental stages the
170	pulmonary complex shows vestigial features, and no internal compartmentalization is
171	recognizable (Lambertz and Perry, 2015). Adult specimens have constrictions and
172	septations that divide the unpaired lung into separate lobes throughout its length, as in
173	some fossil coelacanths (Cupello, Clément and Brito, 2019). Fossil coelacanths, from late
174	Devonian to late Cretaceous, were most probably facultative air-breathers and made gas
175	exchanges through their unpaired lungs and gills (Cupello, Clément and Brito, 2019; Brito
176	et al., 2010). Although some authors suggest that L. chalumnae fatty organ evidences a
177	paired lung, previous studies proved that this organ is not the second lung, since there is
178	no opened connection between this organ and the foregut or lung, nor lung plates
179	surrounding it (Cupello et al., 2015; Cupello et al., 2017a; Cupello et al., 2017b). Based on
180	these, the paired condition of coelacanth lungs can be excluded.

posterior <----> anterior

182	Fig. 3. Three-dimensional reconstructions of the pulmonary complex of Latimeria
183	chalumnae. (A) Early embryo of Latimeria chalumane (45 mm TL) in right lateral
184	view (Cupello et al., 2015), (B) Isolated unpaired lung of the early embryo in
185	dorsal view, (C) Adult specimen of Latimeria chalumnae (1300 mm TL) in right
186	lateral view (Cupello et al., 2015), (D) Isolated unpaired lung of the adult
187	specimen in dorsal view. Yellow, foregut including the stomach; red, lung.
188	Arrowheads in (B) and (D) pointing to the lung connection to the foregut. Black
189	arrow in (C) pointing to the lung. Ul, unpaired lung bud in (B) and unpaired lung
190	in (D). Scale bars, 5.0 mm (A); 5.0 mm (B); 200.0 mm (C); 40 mm (D). Modified
191	from Cupello et al., 2015.
192	

The lung development in Neoceratodus forsteri

194	The first develo	pmental stage	with lung	anlage register	red in this s	study is an	early larva of

- 13.5 mm TL, with an unpaired morphology represented primarily by lung anterior
- projection (Fig. 4 B). In larvae of 16 mm, 17 mm, and 17.5 mm TL, although

197	organogenesis is still not complete, a long and unpaired lung anlage is clearly identifiable
198	and arises as a ventral depression of the post-pharyngeal foregut (Fig. 6 E, F). In the 19
199	mm TL specimen, the unpaired lung starts its dorsal turn up in relation to the dorsal
200	portion of the foregut (including the stomach) (Fig. S3). From 20.5 mm TL onward,
201	organogenesis is completed. In the larva of 20.5 mm TL, the lung remains unpaired and is
202	ventrally connected to the post-pharyngeal foregut by a ventral, opened and long
203	pneumatic duct. This organ has a projection anterior to the connection of the pneumatic
204	duct and does not display alveolation/compartmentalization yet. According to previous
205	studies (Kemp, 1982, 1986), air-breathing begins in N. forsteri at 25mm TL larval stage.
206	Our results reveal that the larva with 26.5 mm TL presents a lung wall slightly pleated.
207	From 50 mm TL larval stage onward, the lung wall is pleated eventually providing a high
208	degree of alveolation. In the adult individual with 200 mm TL, the single lung displays
209	internally two lateral chambers that are connected to a principal median chamber at both
210	sides as a single structure (Fig. 4 C–E). In adult specimens of <i>N. forsteri</i> , the lung is highly
211	compartmentalized by septa of smooth muscle and non-elastic connective tissue, as well as
212	spongy alveolar structures (Grigg, 1965). At this developmental stage, the lung makes a
213	complete dorsal turn-up at its posterior portion in relation to the gastrointestinal tract (Fig.
214	4 C). Although some authors pointed the presence of a second bud at the early
215	developmental stages of N. forsteri, referred as the left lung (Spencer, 1893; Neumayer,
216	1904), the results presented herein show an indubitably unpaired configuration for
217	Neoceratodus lung throughout the ontogeny (Fig. 4 A-E, Fig. 6 E, F, Fig. S3).
21 0	

218

219

The lung development in Lepidosiren paradoxa

Lungs of the four specimens studied herein, from larva to adults (larva with 46 mm TL, juveniles with 68 mm TL and 222.1 mm TL, and adult with 400 mm TL), display a similar

222	morphology and, surprisingly, left and right tubes do not arise simultaneously. Only the
223	right sac is connected to the pharynx by a long pneumatic duct (Fig. 6 G, H, Fig. S4). The
224	left sac is a branch of the right one, connected by a posterior and secondary opening at the
225	lung level, already in dorsal position in relation to the foregut (Fig. 6 G, H, Fig. S4). There
226	is no connection of the left sac with the pneumatic duct. In L. paradoxa, only the
227	pneumatic duct is ventrally positioned, and the lung makes a complete dorsal turn up from
228	the right side of the upper gastrointestinal tract (Fig. 4 F-K, Fig. S5), just after the ventral
229	connection to the pharynx. This complete dorsal turn-up is also seen in the lung of adult
230	specimens of N. forsteri (Fig. 4 I–K). There are no anterior projections of the lung. Lung
231	compartmentalization is clearly observable through dissections, evidencing the high
232	degree of alveolation (Fig. S5). Our results indicate that the lung of <i>L. paradoxa</i> is, in fact,
233	remarkably similar to P. senegalus lung. The so-called left lung of L. paradoxa is most
234	likely a diverticulum or a modified lateral lobe, which had evolved secondarily, an
235	advantage for enlarging the surface area for oxygen-uptake, eventually enabling the
236	obligatory air-breathing performance in the linage towards L. paradoxa.
207	

posterior <----> anterior

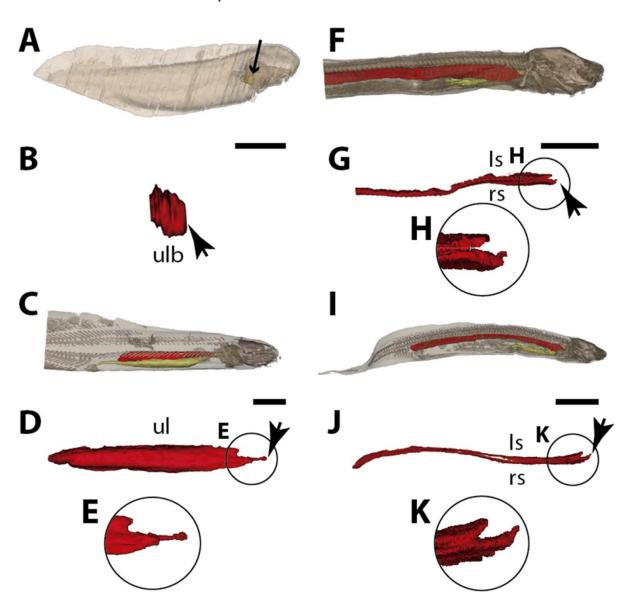
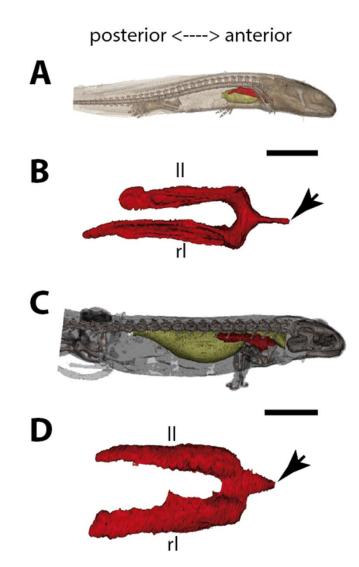



Fig. 4. Three-dimensional reconstructions of the pulmonary complex of two species of Lepidosirenoidea. (A) Early embryo of *Neoceratodus forsteri* (13.5 mm TL) in right lateral view, (B) Isolated unpaired lung of the early embryo in dorsal view, (C) Adult specimen of *Neoceratodus forsteri* (200 mm TL) in right lateral view, (D) Isolated unpaired lung of the adult specimen in dorsal view, (E) Close-up of the lung unpaired connection to the foregut in (D), (F) Larva of *Lepidosiren paradoxa* (46 mm TL) in lateral view, (G) Isolated lung of the larval specimen in dorsal view, (H) Close-up of the lung unpaired connection to the foregut of the foregut in (H), (I) Juvenile of *Lepidosiren paradoxa* young adult (68 mm TL) in lateral view, (J) Isolated lung of the juvenile specimen in dorsal view, (K) Close-up of the lung unpaired connection to the foregut in (J). Yellow, foregut including the stomach; red, lung. Black arrow in (A) pointing to the lung. Arrowheads in (B), pointing to the lung connection to the foregut. Ls, left sac; rs, right sac; ul, unpaired lung; ulb,

254 255 256 unpaired lung bud. Scale bars, 2.5 mm (A); 0.1 mm (B); 20 mm (C); 10 mm (D, I, J); 5.0 mm (F, G).

257 The lung development in Salamandra salamandra

258	In early larvae with 35.5 mm TL and 42.8 mm TL, paired lungs are collapsed in its middle
259	and posterior portion (Fig. 5 A, B). The internal lung wall is thin and smooth, without
260	compartmentalization and/or alveolation in its inner wall (Fig. 6 J, Fig. S6). From the early
261	larvae onward, the muscular glottis develops on the ventral portion of the pharynx, and
262	both left and right lungs arise simultaneously and symmetrically from a long trachea and
263	paired first order bronchioles (Fig. 5 C, D, Fig. 6 I, J, Fig. S6). Lungs are symmetrical in
264	size and morphology and are placed in the anteriormost portion of the abdominal cavity, as
265	described for other tetrapods (Fig. 5 C, D).

267
268

269

266

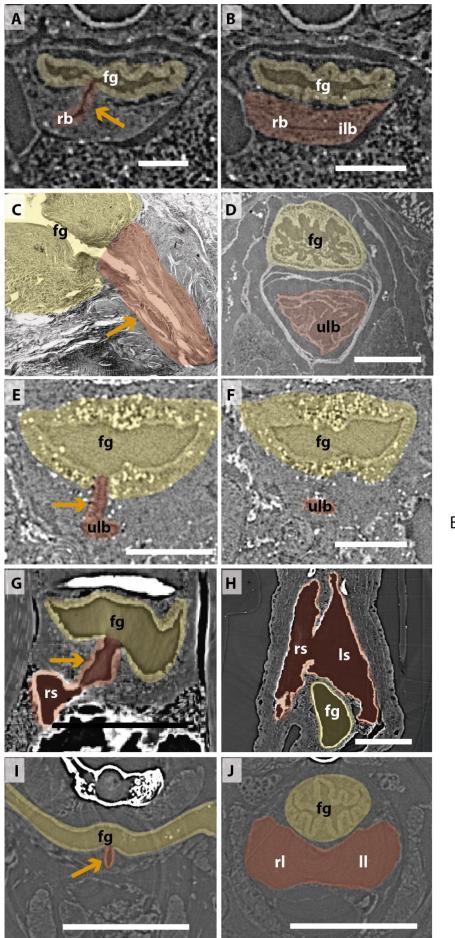

- 270
 271
 272
 273
 274
 275
- 276
- 270

Fig. 5. Three-dimensional reconstructions of the pulmonary complex of Salamandra salamandra. (A) Early larva of Salamandra salamandra (35.5 mm TL) in right lateral view, (B) Isolated paired lung of the larva embryo in dorsal view, (C) Juvenile of Salamandra salamandra (81.85 mm TL) in right lateral view, (D) Isolated unpaired lung of the juvenile specimen in dorsal view. Yellow, foregut including the stomach; red, lung. Arrowheads in (B) and (D) pointing to the trachea connection to the foregut. Ll, left lung; rl, right lung. Scale bars, 5.0 mm (A); 3.125 mm (B); 10 mm (C); 6.25 cm (D).

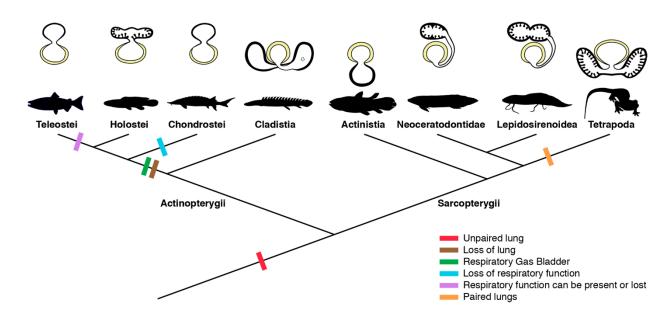
277	In postmetamorphic juveniles (of 81.85 mm TL), paired lungs are already functional, not
278	collapsed, and the main organ for oxygen-uptake (Goniakowska-Witalińska, 1978, 1982).
279	From this developmental stage onward, lungs are highly compartmentalized by multiple

septa. Due to the paired and compartmentalized anatomy, the lung surface area for

281	oxygen-uptake, as well as its volume capacity, increase substantially – both important
282	features for a functional lung in dry environments. Here we confirm that at different
283	developmental stages of S. salamandra, lungs are truly paired since both left and right
284	lungs arise simultaneously and symmetrically and are directly connected to the trachea.
285	Throughout the ontogeny, S. salamandra lungs have a ventral origin, and makes a partial
286	dorsal turn-up in its posterior portion, remaining parallel to the dorsal wall of the upper
287	gastrointestinal tract. Due to the rarity of soft tissue preservation in the fossil record, only
288	one species of salamandrid, Phosphotriton sigei presents its lung preserved (Tissier, Rage
289	and Laurin, 2017). This lung is described as multichambered, placed in the anteriormost
290	part of the abdominal cavity (Tissier, Rage and Laurin, 2017), such as in the living
291	salamandrid described above.

294	Fig. 6. Comparison of sections showing the difference in lung origin and connection
295	between unpaired (A-H) and true paired lungs (I, J). (A, B) Virtual section of
296	Polypterus senegalus (12 mm TL), (C) Histological thin section of Latimeria
297 208	<i>chalumnae</i> (127 cm) (Cupello et al., 2017a), (D) Virtual section of <i>Latimeria</i>
298 299	<i>chalumnae</i> (40 mm TL) (modified from Cupello et al., 2017a), (E , F) Virtual section of <i>Neoceratodus forsteri</i> (16 mm TL), (G , H) Virtual section of <i>Lepidosiren</i>
300	paradoxa (46 mm TL), (I , J) Virtual section of Salamandra salamandra (35.5 mm
301	TL). Yellow, foregut including the stomach; red, lung. Orange arrows, opened
302	connection between the foregut and the lung. Fg, foregut; ll, left lung; ls, left sac;
303	rb, right bud; ilb, independent lung bud; rl, right lung; rs, right sac; ulb, unpaired
304	lung bud. Scale bars, 0.25 mm (A , B); 3.0 mm (C); 1.0 mm (D); 0.1 mm (E , F);
305	0.5 mm (G , H); 1.25 mm (I , J).
306	
307	
507	
308	Discussion
200	Traditionally, watchests hungs are defined as wanted asigned around derived from the
309	Traditionally, vertebrate lungs are defined as ventral paired organs derived from the
310	ventral portion of the posterior pharynx or post-pharyngeal foregut (Perry et al., 2001;
311	Funk, Lencer and McCune, 2020; Lambertz and Perry, 2015; Graham, 1997; Kardong,
312	2015). However, we demonstrate here the presence of an unambiguous unpaired lung, that
512	2013). However, we demonstrate here the presence of an unantorguous unparted lung, that
313	develop from the ventral foregut, but sometimes occupy the dorsal position later in the
314	development of osteichthyan fishes (Fig. 7). Based on extensive developmental series of
315	different vertebrate taxa, we present a new interpretation of some lungs previously
316	considered as paired and, therefore, a new definition of paired lungs. Based on our results,
510	constatica as partea and, dictorore, a new actimition of partea rangs. Dasea on our results,
317	true paired lungs are stated when bilateral lung buds arise simultaneously and are both
318	connected directly to the foregut, as observed in the salamander (Fig. 7).
210	The sister group to all other living actinopterygian (polypterids) and all living
319	The sister group to an other fiving actinopterygran (porypterios) and an fiving
320	sarcopterygian fishes have a clear unpaired lung in early developmental stages that can be
321	developed in later stages either in a unilobed or a secondarily multilobed lung (Fig. 7), and
200	not in a true paired lung. Debut and socialize and the lungfield I manual and a second
322	not in a true paired lung. Polypterus senegalus and the lungfish L. paradoxa possess
323	secondary multilobed structure from the larval stage onward since the lung is derived from
-	,

. . .


324	a unilateral connection to the foregut. The presence of this secondary multilobed
325	morphology is an advantage for the obligatory air-breathing behavior of these taxa, raising
326	the respiratory compliance. In the teleost Batrachomoeus trispinosus, the non-respiratory
327	gas bladder is also described as paired (Rice and Bass, 2009), although it is certainly a
328	secondary condition.

The most parsimonious scenario inferred from our data mapped on the phylogenetic 329 framework (Fig. 7) is that the vertebrate lung was unpaired at the evolutionary origin. 330 Since soft tissue are rarely preserved in fossils, living lunged osteichthyans are key taxa 331 for the understanding of how evolutionary constraints shaped breathing adaptations on 332 land. Our study revealed that the ancestral condition of the lung is a median unpaired 333 334 organ (Fig. 7), thereby being inconsistent with the scenario that the lung evolved through a modification of the posteriormost pharyngeal pouch assumed to be present in primitive 335 taxa (Kastschenko, 1887; Goodrich, 1931). Consequently, the evolutionary origin of the 336 lung was likely independent of the pharyngeal pouch at the morphological level. 337

From this evolutionary point of view, we complement lung definition as an 338 unpaired or paired respiratory organ, or its vestigial form, that develops and are ventrally 339 connected to the foregut. Some criteria previously used for discriminating lungs from gas 340 bladders are no longer useful, including paired/unpaired organization, position ventral to 341 the alimentary tract (Marcus, 1937; Funk, Lencer and McCune, 2020; Lambertz and Perry, 342 2015; Graham, 1997), as well as its function. The dorsal position of the majority of 343 osteichthyans lungs described here may be related to its dual and secondary functionality 344 345 of respiration and buoyancy control (Thomson, 1968). Actually, the only morphological characteristic that can be used to distinguish lungs and gas bladders is the ventral and 346 dorsal origins from the foregut, respectively (Funk, Lencer and McCune, 2020; Cass, 347 348 Servetnick and McCune, 2013). This phenotypic differentiation into true paired lungs in

349	tetrapods may be related to differential gene expressions (Funk, Lencer and McCune,
350	2020; Bi et al., 2021). Nevertheless, at the developmental genetic level, the possibility of
351	co-options of gene regulatory networks of the pharyngeal pouch morphogenesis cannot be
352	excluded, as both the lung bud and pharyngeal pouch develop through the invagination of
353	the foregut endoderm. Our results open the door for future molecular analyses to trace
354	possible regulatory elements for the evolutionary transition from unpaired lungs to true
355	paired lungs in tetrapods.

According to morphological evidence presented here, bifurcation morphogenesis 356 into true paired lungs was not developed yet in osteichthyan fish ancestors. The bilaterally 357 paired nature of the lung evolved only in the lineage towards the tetrapods, as a 358 synapomorphy of this clade (Fig. 7). This morphological modification brought about 359 improvement of the efficiency in oxygen-uptake from the air, as the paired lungs having 360 parallel air flows exchange the air more quickly than the unpaired lung having only single 361 air flow does. This innovation led to the elevation of metabolic rate that was required for 362 the sustained body support against the gravity. Paired lungs may have been present also in 363 early tetrapods and were probably essential to raise lung surface area and volume capacity 364 during the evolution of vertebrate respiratory system and the air-breathing intensification 365 at the water to land transition. 366

Fig. 7. Schematic figure reconstructing the evolutionary history of vertebrate lungs. All living actinopterygian and sarcopterygian fishes have unpaired lungs. True paired lungs are a synapomorphy of tetrapods. Dashed circle in Cladistia lung pointing to the secondary and independent opening to a left sac, at the lung level. Modified from Liem, 1988. This figure was made with free silhouettes from PhyloPic.

375

367

368

369

370

371

372

- 376 Materials and Methods
- 377 Specimens information

378	All specimens used in this work are permanently housed in collections of public
379	institutions. No specimens were collected alive in the field for this work. Polypterus
380	senegalus specimens were originally obtained for the study on the molecular
381	developmental in polypterids (Tatsumi et al., 2016). Nine specimens here studied are: six
382	late embryos (free embryonic phase or postembryos) of 8.0 mm TL (PS-001-01) and
383	histological thin-section of another specimen of 8.0 mm TL (PSS-No1), 8.5 mm TL (PS-
384	001-02), 9.1 mm TL (PSS-No2) and 9.3 mm TL (two specimens, PS-001-03); four larva
385	of 12 mm TL (two specimens, PS-001-04), 15.5 mm TL (PSS-No3) and 18.0 mm TL
386	(PSS-No4); and three juveniles of 20 mm TL (PS-001-05), 23 mm TL (PS-001-06), and
387	45 mm TL (PS-001-07). We indicate the developmental stages (embryo, larvae.

388	juveniles, and adults) following Bartsch, Gemballa and Piotrowski (1997). Specimens
389	and histological material are housed at the Department of Anatomy of the Jikei
390	University School of Medicine (Tokyo, Japan).
391	Four specimens of Lepidosiren paradoxa here studied are from the collections of
392	the Universidade do Estado do Rio de Janeiro and were collected legally in 2008, with
393	the permission number 11471-1. The specimens are registered under the acronym UERJ-
394	PN: UERJ-PN 550 is a larva of 46 mm TL; UERJ-PN 262 is a juvenile of 68 mm TL;
395	UERJ-PN 238 is juvenile of 222.1 mm TL; and PC02 is an adult of 400 mm TL. We
396	follow Kerr (1900) for the developmental staging of Lepidosiren.
397	Specimens of Neoceratodus forsteri were collected legally from Department of
398	Biological Sciences, Macquarie University, Sydney, Australia, and transported with the
399	permission of CITES (Certificate No. 2009-AU-564836). The developmental series
400	comprises fourteen specimens. Sizes are: an early embryo of 13.5 mm TL (IMU-RU-SI-
401	0013); 11 larvae of 16 mm TL (IMU-RU-SI-0017), 17 mm TL (IMU-RU-SI-0019 and
402	IMU-RU-SI-0022], 17.5 mm TL (IMU-RU-SI-0037), 19 mm TL (IMU-RU-SI-0038),
403	20.5 mm TL (IMU-RU-SI-0039), 24 mm TL (IMU-RU-SI-0040), 25.5 mm TL (IMU-
404	RU-SI-0041), 26.5 mm TL (IMU-RU-SI-0042), 30 mm TL (IMU-RU-SI-0043), and 50
405	mm TL (IMU-RU-SI-0045); a juvenile of 70 mm TL (IMU-RU-SI-0048); and an adult
406	specimen of 200 mm TL (KPM-NI 11384). For the developmental identification
407	(embryos, hatchlings/larvae, juveniles, and adults) we follow Kemp (1982, 2011) and
408	Ziermann et al. (2018).
409	Six Salamandra salamandra specimens were obtained on loan at the amphibian
410	collection of the Muséum national d'Histoire naturelle (Paris, France). The three
411	developmental stages (as described at the MNHN collection) are: two early larvae
412	MNHN 1978.636 (1) of 35.5 mm TL and MNHN 1978.636 (2) of 42.8 mm TL; larva

413	MNHN 1985.9039 of 49.6 mm; larva in metamorphosis MNHN 1978.542 of 54.44 mm
414	TL; small juvenile MNHN 1988.7177 of 50 mm TL; juvenile MNHN 1962.1004 of
415	81.85 mm TL.
416	Institutional abbreviations: IMU-RU-SI, Iwate Medical University, Ryozi Ura
417	Collection, Japan; PS, Polypterus senegalus; PSS, Polypterus senegalus sections; KPM-
418	NI, Kanagawa Prefectural Museum Natural History, Odawara, Japan; MNHN, Muséum
419	national d'Histoire naturelle, Paris, France; UERJ-PN, Universidade do Estado do Rio de
420	Janeiro, Peixes Neotropicais.
421	
422	X-ray tomography
423	Due to the extremely small size of the embryos and larvae, and to the weak
424	density difference between soft tissues of the abdominal cavity, propagation phase-
425	contrast microtomography was the unique way to study their anatomy and histology at
426	micrometer scale. Phase-contrast microtomography being only achieved at synchrotron
427	sources, we accessed the anatomy of these rare and tiny samples at the Synchrotron
428	SOLEIL and Synchrotron SPring-8. The high brightness of the synchrotrons was
429	essential for our material and enabled the collection high resolution scans in short
430	timescales.
431	Specimens of P. senegalus, L. paradoxa and S. salamandra were imaged at the
432	PSICHÉ beamline of the SOLEIL Synchrotron (Saint-Aubin, France) while N. forsteri
433	specimens were scanned at SPring-8 Synchrotron. The specimens were scanned isolated
434	in a plastic tube filled with Phosphate-buffered saline (PBS) for <i>P. senegalus</i> and <i>N.</i>
435	forsteri, ethanol for L. paradoxa and formaldehyde for S. salamandra. They were

436 immobilized in vertical position using gauze pads, and/or sank inside the tip of a plastic

43	/	

438

461

pipette in the case of tiny individuals, in order to benefit as much possible from the available field of view and thus achieve the highest possible resolution.

At SOLEIL Synchrotron, imaging was performed using a monochromatic beam 439 with an energy of 25 keV. A series of acquisitions with vertical movement of the sample 440 were recorded to extend vertically the field of view and image the entire (or most of the) 441 individual. Two distinct setups were used to accommodate the different sizes of the 442 individuals (size variations occurring both between developmental stages and taxa). (1) 443 Small individuals were scanned using a field of view of $2.6 \times 2.6 \text{ mm}^2$ (5x 444 magnification) resulting in a projected pixel size of 1.3 µm, and a propagation distance of 445 148 mm. (2) Larger individuals were scanned using a field of view of $\sim 12.6 \times 3.3 \text{ mm}^2$ 446 (1x magnification) resulting in a projected pixel size of 6.17 μ m, and a propagation 447 distance of 500 mm. For individuals slightly wider than these field of views, the latter 448 were extended horizontally by positioning the rotation axis off-centre and acquiring data 449 over a 360° rotation of the sample. The volumes were reconstructed from the (vertically) 450 combined radiographs using PyHST2 software (Mirone et al., 2014), with a Paganin 451 phase retrieval algorithm (Paganin et al., 2002). The huge resulting volumes (from 70 Gb 452 to 1.2 Tb) were reduced (crop, rescale 8-bit, binning) to facilitate 3D data processing. 453 Specimens of Neoceratodus forsteri (from 13.5 to 70 mm TL) were imaged at 454 the SPring-8 Synchrotron, beamline 20B2. For specimens from 13.5 mm TL to 30 mm 455 TL, a beam energy of 15 keV was used with a double bounce Si (111) monochromator. 456 Data were obtained at three different resolutions, and correspondingly used three 457 combinations of two lenses and fluorescent material, as follows, 2.75 µm/voxel; 1st-458 stage lens: "beam monitor 2" f35 mm; 2nd-stage lens: Nikon 85 mm lens; GADOX 459 thickness: 15 µm 4.47 µm/voxel; 1st-stage lens: "beam monitor 2" f35 mm; 2nd-stage 460

lens: Nikon 50 mm lens; GADOX thickness: 15 µm 12.56 µm/voxel; 1st-stage lens:

462	"beam monitor 5" f200 mm; 2nd-stage lens: Nikon 105 mm lens; GADOX thickness: 25
463	μm.
464	Datasets were acquired at propagation distances of 2.75 μ m/voxel, 4.47
465	μ m/voxel: 600 mm; 12.56 μ m/voxel: 3 m and three different exposure times of 70 ms,
466	150 ms, and 200 ms per projection. Field of view were: pixel size x 2048 (2.75 x 2048 =
467	5632 μm; 4.47 x 2048 = 9154.56 μm; 12.56 x 2048 = 25722.88 μm) A total of 1800
468	projections were recorded per scan as the sample was rotated through 180°. A high-
469	resolution computerized axial tomography scanning (CAT scan) was performed for the
470	adult specimen of Neoceratodus (KPM-NI 11384) of 200 mm TL at the National
471	Museum of Nature and Science (Tokyo, Japan) using the following scanning parameters:
472	effective energy 189 kV, current 200 mA, voxel size 9.765 μ m and 1000 views (slice
473	width 0.1 mm).
474	
475	Segmentation and three-dimensional rendering
476	Segmentation and 3D rendering were performed using the software MIMICS Innovation
477	Suite 20.0 (Materialise) at the Laboratório de Ictiologia Tempo e Espaço of the
478	Universidade do Estado do Rio de Janeiro.
479	
480	
481	References
482	1. Amemiya, C. T.; Alföldi, J.; Lee, A. P.; Fan, S.; Philippe, H.; MacCallum, I,
483	Lindblad-Toh, K. The African coelacanth genome provides insights into tetrapod
484	evolution. <i>Nature</i> 496 , 311-316 (2013).
485	2. Bartsch, P.; Gemballa, S.; Piotrowski, T. The Embryonic and Larval Development
486	of Polypterus senegalus Cuvier, 1829: its Staging with Reference to External and

- 487 Skeletal Features, Behaviour and Locomotory Habits. *Acta Zool.* **78**, 309-328 488 (1997).
- Bi, X.; Wang, K.; Yang, L.; Pan, H.; Jiang, H.; Wei, Q...., Zhang, G. Tracing the
 genetic footprints of vertebrate landing in non-teleost ray-finned fishes. *Cell* 184,
 1377-1391 (2021).
- 492
 4. Brito, P. M.; Meunier, F. J.; Clément, G.; Geffard-Kuriyama, D. The histological
 493 structure of the calcified lung of the fossil coelacanth Axelrodichthys araripensis
 494 (Actinistia: Mawsoniidae). *Palaeontology* 53, 1281-1290 (2010).
- 495
 5. Cass, A. N.; Servetnick, M. D.; McCune, A. R. Expression of a lung developmental
 496
 497
 (2013).
- Cupello, C.; Brito, P. M.; Herbin, M.; Meunier, F. J.; Janvier, P.; Dutel, H.; Clément,
 G. Allometric growth in the extant coelacanth lung during ontogenetic development. *Nat. Commun.* 6, 8222 (2015).
- 501
 7. Cupello, C.; Meunier, F. J.; Herbin, M.; Clément, G.; Brito, P. M. Lung anatomy
 502 and histology of the extant coelacanth shed light on the loss of air-breathing during
 503 deep-water adaptation in actinistians. *Roy. Soc. Open Sci.* 4, 161030 (2017a).
- S04
 8. Cupello, C.; Meunier, F. J.; Herbin, M.; Janvier, P.; Clément, G.; Brito, P. M. The
 homology and function of the lung plates in extant and fossil coelacanths. *Sci. Rep.* 7, 1-8 (2017b)
- 507 9. Cupello, C.; Clément, G.; Brito, P. M. in *Evolution and Development of Fishes*508 (Cambridge University Press, Cambridge, 2019), pp. 252-262.
- 509 10. Funk, E.; Lencer, E.; McCune, A. Dorsoventral inversion of the air-filled organ
 510 (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected
 511 embryonic tissue. J. Exp. Zool. Part. B. 334, 325-338 (2020).

512	11. Geoffrey Saint Hilaire, E. Histoire naturelle et description anatomique d'un nouveau
513	genre de poisson du Nil, nommé Polyptére. Paris Mus. Nat. Hist. Ann. 1, 57-68
514	(1802).
515	12. Goniakowska-Witalińska, L. Ultrastructural and morphometric study of the lung of
516	the European salamander, Salamandra salamandra L. Cell and Tissue Res. 191, 343-
517	356 (1978).
518	13. Goniakowska-Witalińska, L. Development of the larval lung of Salamandra
519	salamandra L. Anat. Embryol. 164, 113-137 (1982).
520	14. Goodrich, E. S. Studies on the Structure and Development of Vertebrates. J. N.
521	Ment. Dis. 74, 678 (1931).
522	15. Goujet, D. "Lungs" in placoderms, a persistent palaeobiological myth related to
523	environmental preconceived interpretations. C. R. Palevol. 10, 323-329 (2011).
524	16. Graham, J. B. Air breathing fishes: evolution, diversity and adaptation (Academic
525	Press, 1997).
526	17. Greil, A. Entwickelungsgeschichte des Kopfes und des Blutgefäßsystems von
527	Ceratodus forsteri. II. Die epigenetischen Erwerbungen während der Stadien 39-48.
528	Denkschr. Med. Naturwiss. Ges. Jena. 4, 935-1492 (1913).
529	18. Grigg, G. C. Studies on the Queensland lungfish, Neoceratodus forsteri (Krefft). 1.
530	Anatomy, histology, and functioning of the lung. Aust. J. Zool. 13, 243-253 (1965).
531	19. Icardo, J. M.; Colvee, E.; Kuciel, M.; Lauriano, E. R.; Zaccone, G. The lungs of
532	Polypterus senegalus and Erpetoichthys calabaricus: insights into the structure and
533	functional distribution of the pulmonary epithelial cells. J. Morphol. 278, 1321-1332
534	(2017).
535	20. Kardong, K. V. The respiratory system, Vertebrates: Comparative anatomy,
536	function, evolution, 413-450 (2015).

537	21. Kastschenko, N. Das Schlundspaltengebiet des Hühnchens. Arch. Anat. Phys. Anat.
538	Abt. 258-300 (1887).
539	22. Kemp, A. The embryological development of the Queensland lungfish,
540	Neoceratodus forsteri (Krefft). Mem. Qd. Mus. 20: 553-97 (1982).
541	23. Kemp, A. The biology of the Australian lungfish, Neoceratodus forsteri (Krefft
542	1870). J. Morphol. 190, 181-198 (1986).
543	24. Kemp, A. Comparison of embryological development in the threatened Australian
544	lungfish Neoceratodus forsteri from two sites in a Queensland river
545	system. Endanger Species Res. 15, 87-101 (2011).
546	25. Kerr, S. G. V. The external features the development of Lepidosiren paradoxa,
547	Fitz. Philos. Tr. R. Soc. Lon. B, 192, 299-330 (1900).
548	26. Kuratani, S.; Tanaka, S. Peripheral development of the avian vagus nerve with
549	special reference to the morphological innervation of heart and lung. Anat. Embryol.
550	182 , 435-445 (1990).
551	27. Lambertz, M.; Grommes, K.; Kohlsdorf, T.; Perry, S. F. Lungs of the first amniotes:
552	why simple if they can be complex? Biol. Lett. 11, 20140848 (2015).
553	28. Lambertz, M.; Perry, S. F. in Phylogeny, Anatomy and Physiology of Ancient Fishes,
554	(CRC Press, Florida, 2015), pp. 201-211.
555	29. Liem, K. Form and function of lungs: the evolution of air breathing mechanisms.
556	Amer. Zool. 28, 739-759 (1988).
557	30. Marcus, H. in: Lunge, Handbuch der vergleichenden Anatomie der Wirbeltiere
558	(Urban and Schwarzenberg, Berlin, 1937).
559	31. Marshall Flint, J. The development of the lungs. Am. J. Anat. 6, 1-137 (1906).
560	32. Mirone, A.; Gouillart, E.; Brun, E.; Tafforeau, P.; Kieffer, J. The PyHST2 hybrid
561	distributed code for high speed tomographic reconstruction with iterative

562	reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods 324, 41-
563	48 (2014).

564	33.	Neumayer, L. Die Entwicklung des Darmkanales, von Lunge, Leber, Milz und
565		Pankreas bei Ceratodus. Forsteri. Zool. Forsch. reisen 1, 379-422 (1904).
566	34.	Neumayer, L. Die Entwicklung des Darms von Acipenser. Acta Zool. 39, 1-151
567		(1930)
568	35.	Paganin, D.; Mayo, S. C.; Gureyev, T. E.; Miller, P. R.; Wilkins, S. W.
569		Simultaneous phase and amplitude extraction from a single defocused image of a
570		homogeneous object. J. Microsc. 206, 33-40 (2002).
571	36.	Perry, S. F.; Wilson, R. J. A.; Straus, C.; Harris, M. B.; Remmers, J. E. Which came
572		first, the lung or the breath? Comp. Biochem. and Physiol. 129, 37-47 (2001).
573	37.	Pierce, S. E.; Lamas, L. P.; Pelligand, L.; Schilling, N.; Hutchinson, J. R. Patterns of

limb and epaxial muscle activity during walking in the fire salamander, Salamandra salamandra. *Integr. Org. Biol.* **2**, obaa015 (2020).

38. Rice, A. N.; Bass, A. H. Novel vocal repertoire and paired swimbladders of the
three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the
Batrachoididae. *J. Exp. Biol.* 1377-1391 (2009).

574

- 579 39. Spencer, W. B. Contributions to Our Knowledge of Ceratodus: The Blood Vessels.
 580 *Linnean Soc of New South Wales* (1893).
- 40. Tatsumi, N.; Kobayashi, R.; Yano, T.; Noda, M.; Fujimura, K.; Okada, N.; Okabe,
 M. Molecular developmental mechanism in polypterid fish provides insight into the
 origin of vertebrate lungs. *Sci. Rep.* 6, 30580 (2016).
- 584 41. Thomson, K. S. Lung ventilation in dipnoan fishes. *Pea. Mus. Nat. Hist.* 122, 1-6
 585 (1968).

586	42. Tissier, J.; Rage, J-C.; Laurin, M. Exceptional soft tissues preservation in a
587	mummified frog-eating Eocene salamander. PeerJ 5: e3861 (2017).
588	43. Wassnetzov, W. Über die Morphologie der Schwimmblase. Zool. Jahrb. Allg. Zool.
589	56 , 1-36 (1932).
590	44. Ziermann, J. M.; Clement, A. M.; Ericsson, R.; Olsson, L. Cephalic muscle
591	development in the Australian lungfish, Neoceratodus forsteri. J. Morphol. 279, 494-
592	516 (2018).
593	
594	
595	Acknowledgments
596	We thank J. Joss (Macquarie University) for providing Neoceratodus embryos. We
597	are grateful to Dr H. Seno (curator of the Ichthyology Collection of the Kanagawa
598	Prefectural Museum of Natural History) for the loan of Neoceratodus specimen KPM-NI
599	11384.
600	
601	
602	Funding:
603	Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-grant
604	Finance Code 001 (Programa Nacional de Pós Doutorado-PNPD) (CC)
605	Programa de Apoio à Docência (PAPD) grant E-26/007/10661/2019)—Universidade do
606	Estado do Rio de Janeiro (CC)
607	Interdisciplinary Collaborative Research Program of the Atmosphere and Ocean Research
608	Institute, the University of Tokyo JP (CC, TS)
609	Prociência fellowship CNPq grant 310101/2017-4 (PMB)
610	FAPERJ grant E-26/ 202.890/2018 (PMB)

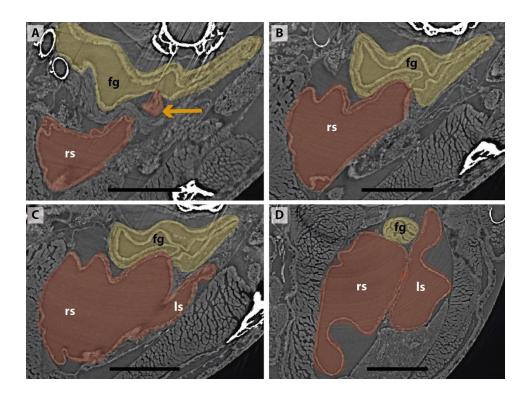
611	
612	
613	Author contributions:
614	Examples:
615	Conceptualization: CC, YY, PMB
616	Synchrotron acquisitions: CC, TH, YY, PG, SI, AK, MH, KU, PMB
617	CT scan acquisitions: RM
618	Computerized microtomography rendering: CC, NT
619	Histological thin sections preparation: NT, MO
620	Specimens dissection: CC, NT, SI
621	Tomographic setups and data processing: PG, RM, AK, MH, KU
622	Figures: CC, PG
623	Data interpretation and Writing—original draft: CC, TH, NT, YY, PG, MO, PMB
624	Writing—final writing & manuscript approval: CC, TH, NT, YY, PG, SI, RM, TS,
625	AK, MH, KU, MO, PMB
626	
627	
628	Competing interests: All authors declare no competing interests.
629	
630	
631	Data and materials availability: All data are available in the main text or the
632	supplementary materials.
633	
634	
635	Supplementary Materials

- 637 Supplementary information is available for this paper at https://doi.org/.
- 638
- 639

Supplementary Information for

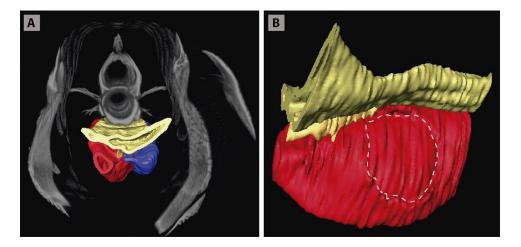
Lung evolution in vertebrates and the water-to-land transition

Camila Cupello,^{1*} Tatsuya Hirasawa,² Norifumi Tatsumi,³ Yoshitaka Yabumoto,⁴ Pierre Gueriau,^{5,6} Sumio Isogai,⁷ Ryoko Matsumoto,⁸ Toshiro Saruwatari,^{9,10} Andrew King,¹¹ Masato Hoshino,¹² Kentaro Uesugi,¹² Masataka Okabe,³ Paulo M. Brito^{1*}


*Corresponding authors. Email: camila.dc@gmail.com; pbritopaleo@yahoo.com.br

This PDF file includes:

Figs. S1 to S5


Fig. S1. Sections of synchrotron X-ray microtomography of a juvenile of *Polypterus*

senegalus (23 mm TL). (A) Unpaired lung origin. (B) Right sac arising from the foregut. (C) Left sac arising from an independent and lateral connection to the right sac. (D) Right and left sacs. Yellow, foregut; red, lung. Orange arrow, opened connection between foregut and lung. Fg, foregut; ls, left sac; rs, right sac. Scale bars, 0.5 mm (A-D).

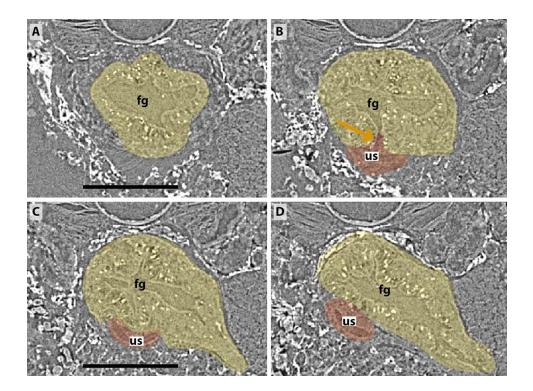


Fig. S2. Three-dimensional reconstructions of the pulmonary complex of Polypterus

senegalus. (A) Virtual section of the juvenile (45 mm TL) in anterior view, evidencing the oesophagus and the lung in 3D. (B) Isolated right lung of the juvenile in lateral view, evidencing the independent and secondary connection of the left sac to the right one by a lateral opening. Yellow, foregut including the stomach; red, right sac; blue, left sac, dashed line, independent and secondary connection of the right one.

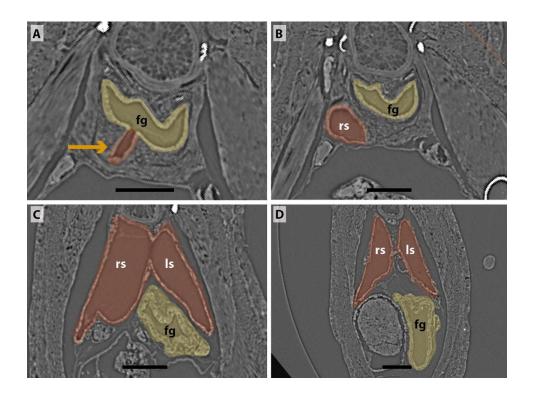


Fig. S3. Sections of synchrotron X-ray microtomography of a larva of *Neoceratodus forsteri* (**19 mm TL**). (**A**) Unpaired lung origin. (**B**) Unique sac arising from the foregut. (**C**, **D**) Unique sac developing. Yellow, foregut; red, lung. Orange arrow, opened connection between foregut and lung. fg, foregut; us, unique sac. Scale bars, 0.5 mm (**A-D**).

Fig. S4. Sections of synchrotron X-ray microtomography of a juvenile of *Lepidosiren*

paradoxa (68 mm TL). (A) Unpaired lung origin. (B) Right sac arising from the foregut. (C) Left sac arising from an independent and lateral connection to the right sac. (D) Right and left sacs. Yellow, foregut; red, lung. Orange arrow, opened connection between foregut and lung. fg, foregut; ls, left sac; rs, right sac. Scale bars, 0.5 mm (A-D).

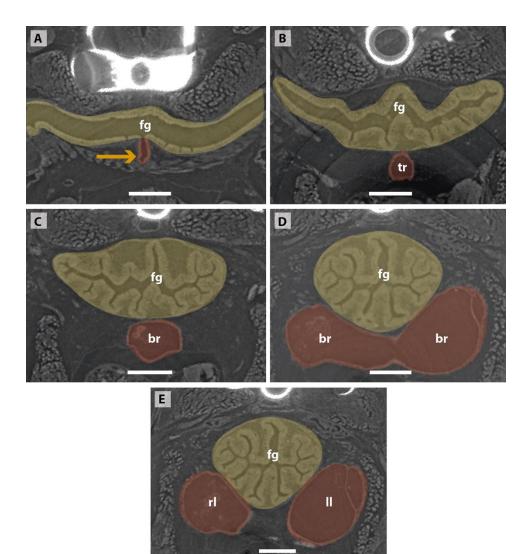


Fig. S5. Dissection of the lung of an adult *Lepidosiren paradoxa* (400 mm TL). Red arrow, lung. Black arrow, ventral insertion of the right sac. ls, left sac; rs, right sac. Scale bars, 50 mm (A, B); 10 mm (C).

Fig. S6. Sections of synchrotron X-ray microtomography of a larva of *Salamandra*

salamandra (42.8 mm TL). (A, B) Trachea arising. (C, D) Fist order bronchioles. (E) Right and left lungs arising simultaneously and symmetrically. Yellow, foregut; red, lung. Orange arrow, opened connection from the foregut. br, braonchile; fg, foregut; ll, left lung; rl, right lung; tr, trachea. Scale bars, 0.5 mm (A-D).

