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Abstract 

As knowledgebases become increasingly important for structuring vast amounts of scientific knowledge 

and making it accessible to researchers, their construction entails expensive multi-year projects 

involving teams of bio-curators, computer scientists, or both. This restricts the coverage of existing 

knowledgebases to a limited set of popular topics, leaving a long tail of more specialized interests 

uncovered.  

We present a methodology and a supporting tool to allow individual researchers or small teams, without 

background in bio-curation or computer science, to mine the scientific literature and construct ad-hoc, 

personalized, and literature-anchored knowledgebases, that are tailored around their specific research 

interests and support their scientific goals. The time investment involved in creating a knowledgebase 

ranges from a few hours to a few weeks, depending on the desired coverage and accuracy.  

We demonstrate the methodology by constructing knowledgebases for different purposes: a high-level 

overview of challenges and controversies in a field (the cancer frontiers knowledgebase); a mapping of 

main concepts and interactions in a field, to support lab-internal hypothesis generation (tissue 

engineering and regeneration, cancer surgery and radiotherapy knowledgebases); and a comprehensive 

and accurate knowledgebase designated as an online up-to-date resource for the wider research 

community (the cell specific drug delivery knowledgebase). In each case we show how the structured 

knowledgebase, coupled with effective visualizations, facilitates effective data exploration, hypothesis 

generation and meta-analysis.  

We implement the method as part of an open source web-based platform for knowledgebase 

construction, available publicly and freely at https://spike-kbc.apps.allenai.org. 
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Main 

The overwhelming extent of biomedical data, based on unstructured, narrative papers, books and 

medical records has made it unfeasible for scientists to keep up with the breadth of published work in 

their fields of expertise, or enter new fields1. Expectedly, a variety of solutions have been developed in 

recent years to address this challenge, aimed at presenting up-to-date, concise, and yet comprehensive 

information: Nowadays, databases and ontologies (commonly referred here as knowledgebases) gain 

popularity as alternative platforms for knowledge organization and presentation, as they provide highly 

accessible and readily updated representations of contemporary data to let end users interact with entries 

of interest and their relations, while avoiding irrelevant information2–4.  

The majority of biomedical knowledgebases are constructed by dedicated teams of bio-curators. These 

are typically trained Ph.D. level trained individuals who manually review multiple information sources, 

contact authors where needed, and upon which produce structured ontologies which represent our ‘best 

view’ of the data. They also ensure that identifiers and links to other ontologies are used where possible 

and optimize data representation and interoperability5,6. Hence, while biocuration has produced highly 

utilized resources, the meticulous processes and quality controls involved may preclude many research 

labs from producing similar knowledgebases 7,8. 

As an alternative to biocuration, trained Natural Language Processing (NLP) models can be used for 

automated knowledgebase construction (AKBC)9–11. A prominent example is CancerMine, a cancer-

focused knowledgebase which was mined from the scientific literature and is being kept up to date 

regularly, with minimal human involvement12. However, despite its benefits, AKBC involves significant 

efforts of data collection, model training and tuning. As both biocuration and AKBC demand inter-

disciplinary collaborations, their practice is typically out of reach for individual researchers or small 

labs. Therefore, existing knowledgebases tend to focus on relation types that are expected to be of 
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interest to a wide scientific community, thus leaving a wide “tail” of relations which are not covered by 

any knowledgebase. 

We advocate to supplement such large-scale knowledgebase construction efforts with ad-hoc, 

personalized, literature-based and literature-anchored knowledgebases that can be rapidly created by 

individuals and small teams based on their current research interests, and without requiring biocuration 

or computer science expertise.  

Such personalized knowledgebase are meant to be created rapidly, used to explore the literature, 

discover connections, and form hypotheses. Moreover, as the researcher who created the knowledgebase 

is also its initial consumer, it can be kept up to date as long as the research is active, and its quality can 

improve along its lifetime, depending on the researcher's goals and expectations. A personalized 

knowledgebase can start as a private, crude effort, providing a high-level view of a field the researcher is 

just starting to explore, and gradually change into a public, highly precise resource, tracking and 

expanding the knowledge in a field the researcher is already an expert on.  

We show how such ad-hoc knowledgebase can be built by leveraging extractive-search. Extractive-

search is an emerging query-based interface to the scientific literature that aims to provide scientists with 

access to text-mining and NLP building-blocks, without requiring extensive training in NLP, text-

mining or computer science, and without requiring programming13. In this work, we extend extractive-

search with knowledgebase curation tools, resulting in a web-based platform for biomedical 

knowledgebase construction. The system, named SPIKE-KBC, allows researchers to construct and 

query personalized knowledgebases on an ad-hoc basis, according to their current research interests.  

We demonstrate this approach with three levels of knowledgebase construction: we commence with a 

general application of extractive search to form a small scale, high-level overview, focusing on abstract 

challenges in the field of cancer therapy. We then advance to rapid knowledgebase construction when 
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entering a new field, enabling hypothesis generation and exploration (this is demonstrated with 

knowledgebases on tissue engineering, radiotherapy and surgery). We conclude with a fully annotated, 

comprehensive public knowledgebase in targeted drug delivery; the authors’ domain of expertise. For 

each of these workflows, we demonstrate the creation process, how the resulting knowledgebase can be 

explored, and how scientific insights can be gained. 

 

Results 

Method and system for the construction of personalized knowledgebases  

In this work, we advocate the rapid construction and exploration of ad-hoc, literature-based and 

personalized knowledgebases as part of the scientific workflow, and demonstrate (a) how researchers 

without experience in NLP can construct such knowledgebases using extractive-search; and (b) how 

such constructed knowledgebases can be used to gain scientific insights.  

The proposed method is based on Extractive Search and on the use of ``extractive queries''13. An 

extractive query is a query which combines the standard keyword and search operators that are used to 

select documents, with capture operators that allow to extract values from the selected documents. As a 

concrete example, given a list of Chemicals and a list of Drugs, one can form a query that counts all the 

joint occurrences of a chemical and a drug in a sentence that is mentioned in a paragraph that contains 

the term treatment. Beyond term co-occurrence, extractive queries can impose additional linear, 

syntactic or semantic restrictions on matching texts14,15. 

At a high level, the method consists of the following steps (Fig 1, graphic workflow): A user decides on 

the set of relations they want to capture; the user collects lists of entities of interest, using a combination 

of pre-defined ontologies (if these exist) and extractive queries over the literature; the user formulates a 

list of extractive queries that suggest a relation between the entities; optionally, the user verifies the 
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resulting extractions; at this point we have a mostly-correct knowledgebase that is linked to the 

literature; the user then queries/browses the knowledgebase to explore the literature and form 

hypotheses. While doing so, the user can revise the extractive queries and entity lists to refine or expand 

the knowledgebase. We’ll now discuss these steps in more detail. 

1. Deciding on a set of relations 

This step is derived from the scientific question at hand, and the intended use of the knowledge-base. It 

can span a single relation (``which ligands are associated with which biomaterial’’) but richer 

knowledge-bases can be formed by considering a network of linked relations, as in Fig 1a.  

2. Collecting Name Lists for Entities 

The vast majority of relations hold between typed entities (e.g. ``ligands’’ and ``biomaterias’’), and the 

initial stage requires identifying literature occurrences of these entities. Name lists representing the 

different entity types can often be downloaded from online sources or obtained from existing lab 

records. When no relevant source is available, a standard set of extractive queries can be used to 

bootstrap an effective list. Table 1 shows a set of queries we used to obtain biomedical polymers, these 

queries, based on generic Hearst Patterns16–18, can be trivially modified to extract other types of entities 

directly from the scientific literature. 

3. Extracting candidate relation instances 

Once entity lists are compiled, extractive queries are used to find potential pairwise connections between 

entities (relation instances). Researches can use basic queries, e.g. queries to retrieve pairs of ligands and 

targets which appear in the same sentence, or more involved ones, e.g. queries which retrieve pairs of 

drugs and cancers which are in close structural proximity to one another (Fig 1b). With deeper 

knowledge of extractive search, more sophisticated queries can be formed, and precision can be 
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increased. However, we find that co-occurrence queries based on domain knowledge are often sufficient 

to support the annotation step that follows, and that domain experts find these queries intuitive and 

simple to use. 

4. Annotating candidate instances  

After importing the queries, researchers are presented with a tabular results view. Each result row in this 

view consists of a pair of entities and an evidence sentence (i.e. the sentence which matched an 

extractive query and the captured entities within it). The results are grouped by entity pairs such that 

results which are associated with the same entity pair appear in sequence. Researchers can label each 

result row as “positive” or “negative” (whether the evidence indicates that the entity pair satisfies the 

relation or not). Once a result is labeled, the associated entity pair, evidence sentence and label are added 

to the knowledgebase. By default, once an entity pair is added, all results associated with it are removed 

from the results view. This allows researchers to focus on undiscovered connections while skipping 

established ones. Furthermore, the results are sorted such that entity pairs with more evidence sentences 

appear before those with less evidence. This allows researchers to prioritize adding frequently reported 

associations before less established ones.  

The annotation and extraction stages are iterative: after labeling some of the results, researchers can 

choose to refine and re-run the underlying queries. This allows them to improve the recall and precision 

of unlabeled results without affecting the labeled results already added to the knowledgebase (Fig 1c).  

5. Visually exploring the knowledgebase and generating novel research hypotheses 

The result of the process is a dense graph of relations. Rather than seeing the entire graph at once, we 

suggest deriving linear paths of interest between entities, and visualizing them as a tree. The first layer 
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of the tree is populated with entities of a selected class (e.g., entities of class Biomaterial) and 

subsequent levels are populated by layering more classes, based on the defined relations. Consequently, 

each layer is linked to the former by relation instances Per instance, if relations are defined between the 

classes Biomaterial and Ligand and between the classes Biomaterial and Target, then entities of either 

class Ligand or Target can be selected to populate the second layer of the tree, etc. (Fig 1d).  

This form of visualization generates a sequence of relations between layered classes to form multi-

component hypotheses, while each linear, horizontal path along the knowledge tree can be seen as a 

research hypothesis: pairs of adjacent entities on the path are known to be related to one another, so a 

hypothesis can be made that all entities on the path might be transitively dependent. As the total number 

of hypotheses in a given knowledgebase can be very large (>100,000), the user can filter in or out 

entities from each layer to reduce the hypotheses’ branching. In addition, to allow integration with 

existing platforms, the results can be exported in Web Ontology Language (OWL format) which can be 

easily incorporated with other external platforms such as BioPortal and Protégé19,20 or as CSV, 

facilitating further analysis of the knowledgebase by quantifying entities and frequencies of relations.  
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Figure 1. knowledgebase construction using extractive search. a, Example of project definitions 

based on entity classes and defined relation pairs. b, Example of pairs extraction using SPIKE for 

Cancer-Drug relation. c, Final steps of knowledgebase construction are importing pairs extraction 

queries and annotating pair relation instances. d, knowledgebase user interface visualization for 

hypothesis exploration with 5 class layers filtered for sorafenib (drug) and hepatocellular carcinoma 

(cancer).
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Use case 1: Challenges in Cancer Research 

We sought to demonstrate a challenging literature review task of capturing unknown entities and 

concepts from intangible classes. We thus constructed a knowledgebase to map challenges in cancer 

research using three conceptual classes: ‘controversial’, ‘still unknown/unclear’ and ‘unmet need’. We 

used structured (syntactic) queries in SPIKE, the extractive search engine used by SPIKE-KBC, to 

capture entities from structured context. For example, to retrieve controversial findings we used the 

query “<>:something $remains/still/is $controversial”, restricted to papers that have words pertaining to 

different cancer types in their abstract and filtered to the last three years to reflect only contemporary 

topics. The queries yielded entities from diverse biomedical classes from drugs and genes to abstract 

concepts such as ‘the role of surgery’ or ‘alcohol consumption’ (Fig 2a). Then we queried for these 

terms together with a list of cancer types to capture matching pairs of cancer type-controversial entities. 

The results were imported to the SPIKE-KBC annotation module and went through manual triage, 

rejecting only out-of-context entities, establishing an overview of current challenges mapped by cancer 

type. Fig 2b shows the top ranked cancers and entities by their number of relations which aggregate 

several insights in cancer research. For example, the most common ‘controversial’ entities for all 

cancers, are ‘optimal treatment’ and ‘the role of surgery’. Of the different cancer types, the highest 

number of ‘controversial’ relations applied to breast cancer and hepatocellular carcinoma. We show an 

example for these types of relations in pancreatic cancer (Fig 2c). In the class of ‘still unknown’, the 

most common entities in multiple cancers were long noncoding RNA (lncRNA), circRNAs and PDL1. 

We curated 29 entities that are unmet needs, such as ‘novel therapy’ and ‘biomarkers’, of which, `breast 

cancer’ notably had the highest number (17 vs. median of 2). An example for these relations is shown 

for ovarian cancer in Fig 2c. The estimated time for the construction and quantitative evaluation of the 

knowledgebase was less than 3 hours.  
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Figure 2. Knowledge Base Construction for Literature Exploration. a, knowledgebase construction 

scheme using three different structural queries for capturing entities in conceptual classes (controversial, 

unknown, in need). Example of entities identified as unknown or unclear, related to liver cancer with 

exclusive entities in bold (right). b, Top entities in the knowledgebase sorted by number of relations in 

different cancer types (top) and common to most cancers (bottom). c, examples of entities found 

controversial in relation to pancreatic cancer (top) and example of ‘unmet need’ relations in ovarian 

cancer. 
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Use case 2a: Rapid Hypothesis Generation and Exploration: Tissue Engineering and 

Regeneration 

The field of tissue engineering and regeneration is one of the major disciplines in biomedical 

engineering and could be a great example for rapid knowledgebase construction. First, we set to define 

the main hypothesis in this field with a combinatorial relation of classes. Tissue engineering is defined 

as the use of various cells, material engineering methods and biochemical factors to restore, maintain, 

improve, or replace biological tissues21. We took this simple definition and reconstructed it to the 

following combinatorial hypothesis of entity classes: A certain medical condition A can be treated with a 

scaffold made from material B which can support the growth of cell type C by combining bioactive 

element D (growth factors, hormones). We also noted that there many different methods to combine the 

cells with scaffolds and how to introduce the scaffold to the damaged tissue and for that purpose we 

added another class Method E (Fig 3a). 

After constructing a list of entities for each class (see methods), we defined the allowed relations 

between classes. We noted that practically all relations between all classes are highly plausible except 

the relation between the ‘Method-Bioactive’ classes as the vast majority methods deal with the scaffold 

the indication or the celltype but not the bioactive principle. We then used SPIKE-KBC app to import all 

published relations between entities and briefly annotated relation instances in bulk (not every single 

sentence) which resulted in the desired knowledgebase in about 4 hours (Fig 3a). The resulting 

knowledge base consisted of 6884 relations between 78 scaffolds 32 cell types 43 medical indications 70 

different methods and 109 bio active elements.  We show a representative example (Fig 3b) from 

sequence CellType-Indication-Bioactive-Scaffold. This sequence has 3603 unique hypotheses and due to 

limited space, we applied filters to show a representative 10% of hypotheses space. We applied a select 

only filter for mesenchymal stem cells (CellType), spinal cord injury (Indication) and also filtered out 
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randomly 10 out of 16 Bioactives and 37 out of 52 Scaffolds which yielded a total of 36 unique 

hypotheses which is 1% of the whole possible hypotheses space of this sequence. Of the 6 bioactive 

elements, two well-known growth factors, bFGF and VEGF were shown to be the most versatile and 

studied with 10 or more different scaffolds each. We then wished to characterize the prevalence of other 

hypotheses sequences in PubMed (Fig 3c). We tested 3 sequences of 3 layers starting from Scaffold 

layer. The most published sequence was Scaffold-Indication-Method followed by Scaffold-Method-

CellType and Scaffold-Bioactive-Indication. In another example we show the 4 layered sequence 

Bioactive-Scaffold-Method-Indication (20,000 hypotheses) with a select-in filter for RGD peptide 

(bioactive) and Chitosan (Scaffold) and filtered out randomly 50% of Methods and Indications to yield 

19 unique hypotheses (1% from all hypotheses in the space). Following this example, the most versatile 

methods used with Chitosan are 3D Printing and Autograft (tissue transferred from one part of the body 

to another) and the most applied indication is wound healing (Fig 3d). We then analyzed and ranked all 

the relations of the different scaffold in relations to Indications and compared to Method relations (Fig 

3e). We saw that most scaffolds in the top 10 are not synthetic (collagen, alginate, chitosan, hyaluronan, 

silk fibroin). Collagen has the greatest number of relations to both methods and indications while 

synthetic polymer Poly caprolactone (PCL) is ranked second in methods and 5th in indications. To 

overview and quantitively map the relations between Indications, Bioactives and Celltypes, we 

generated an unfiltered sequence Bioactive-Indication-CellTypes and analyzed the distribution of shared 

Indication relations to Bioactives and CellTypes (Fig 3f). After sorting the table, we can first observe 

that the most connected Celltypes are Mesenchymal Stem Cells and iPSC and Fibroblasts. It can be 

further seen that the VEGF and HGF -Mesenchymal Stem Cells pairs have the greatest number of shared 

relations. In addition, we can observe that HGF, TGFb and RUNX2 is understudied with neural stem 

cells and cardiomyocytes.  
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Figure 3. Knowledgebase for Tissue Engineering and Regeneration. a, knowledgebase construction 

scheme and details. b, example of hypothesis assembly in 4-entities space of sequence Celltype-

Indication-Bioactive-Scaffold with filters on Celltypes (mesenchymal) and indications (spinal cord 

injury). c, 3-entities based hypotheses ranked by the number of publications in PubMed. d, example of 

hypotheses assembly starting from bioactive and ending with indication with filters on Bioactives and 

Scaffolds (RGD peptide and Chitosan). e, quantitative analysis of scaffolds relations to indications and 

methods. f, Heat map for the number of indication relations shared between Bioactives and Cell types. 
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Use case 2b: Cancer Surgeries and Radiotherapeutics 

Since surgery and radiotherapy are the main cancer treatment modalities aside of pharmaceuticals, we 

moved to explore their relations with biomaterials.  

The resulting knowledgebase, spanning across 440 entities and annotated with 2392 relations, was 

designed allow rapid hypothesis generation and exploration, aimed to evaluate more complex concepts 

by layering up to four classes sequentially to assemble more than 4000 different hypotheses. This 

construction effort was complete in about an hour, excluding entities curation. In Fig. 4a we show 4-

class hypotheses, assembled from the class layering order: Cancer-Procedure-Tool-Biomaterial, focusing 

on esophageal cancer and the procedure of esophagectomy. We found 4 relations to surgical tools that in 

turn are related to 30 types of biomaterials – representing 30 different hypotheses. It should be noted that 

the sequence in which class-class relations are layered determines its reasonability. For example, the 

assembly of hypotheses in the sequence: Cancer-Tool-Biomaterial-Procedure, has many unreasonable 

relations between a procedure and a cancer as they are linked through biomaterials which are not cancer 

specific. On the other hand, for the space generated by Cancer-Procedure-Tools combinations, we found 

68% of the hypotheses published (all terms appear together at least in one PubMed article), leading with 

“colorectal-colectomy-endoscope”, portraying the in-context usage of tools used in various cancer-

related surgical procedures (Fig. 4b).  

For Radiotherapies, the knowledgebase construction time was estimated at approximately a single day 

(including curation of entities lists) and had 120 entities and 872 relations yielding >1500 possible 

hypotheses. The knowledgebase was designed under the general hypothesis that different cancers are 

related to distinct surgical procedures or surgical instruments and are assisted by different biomaterials. 

The knowledgebase structure enables the user to assemble and explore localized/ precision radiotherapy 

hypotheses with supporting evidence. A brief analysis highlights brachytherapy as the radiotherapy 
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having the most relations to, followed by “Intensity modulated radiotherapy”. The most common 

radioisotope-relations were with 131-I followed by 90-Y (Supplementary Fig. 1b). Similarly, the 

cancers with most related radiotherapies are prostate cancer and breast cancer (Supplementary Fig. 1c). 

Analysis of hypothesis ranking in the Cancer-Radiotherapy-Biomaterial space revealed 64% published 

hypotheses, leading with “Liver Cancer-Internal Radiation-Microspheres” as most published in PubMed 

(Fig. 4d).  
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Figure 4. Knowledge Bases for Biomaterials in Cancer Surgeries and Radiotherapies. a, 

knowledgebase construction scheme for cancer surgeries using 4 different classes (top) and exploration 

in the hypotheses space using esophageal cancer as an example (bottom). b, 3-entities based hypotheses 

ranked by the number of publications in PubMed. c, knowledgebase construction scheme for cancer 

radiotherapy using 4 different classes (top) and example hypotheses assembly starting from cancer 

ending with biomaterials (bottom). d, 3-entities based hypotheses ranked by the number of publications 

in PubMed. 

Use case 3: Targeted Drug Delivery Knowledgebase 

Next, we sought to construct a comprehensive public knowledgebase in nanomedicine for cancer 

targeted drug delivery. One of the main paradigms in this field suggests that a drug (A), carried by 

biomaterial (B), can be targeted to cancer (C) using ligand (D) to bind molecular target (E) expressed on 

cell type (F) in the tumor microenvironment. We compiled lists of entities for each the 6 classes(A-F) –

using multiple SPIKE queries (see Table 2) as well as databases such as DrugBank22, Human Protein 

Atlas23, Apta-Index24. We defined 10 possible relations between the classes, as shown in Fig 5a. The 

construction process resulted with 61 biomaterials, 53 Cancers, 29 cell types, 439 drugs, 219 ligands and 

173 targets, connected with 6089 annotated relations which leads to >106 possible hypotheses. The 

estimated time for construction was total of full 4-5 days spanning over 4-5 weeks. Constructing this 

knowledgebase took longer than the previous ones due to the carful manual annotation and name 

unification processes applied, which were done only briefly and in bulk in the previous knowledgebases. 

Another time-consuming step was curation of entity lists of biomaterials and ligands which contains 

many synonyms and acronyms.   

The estimated time for construction was total of full 4-5 days spanning over 4-5 weeks, resulting with 61 

biomaterials, 53 Cancers, 29 cell types, 439 drugs, 219 ligands and 173 targets, connected with 6089 

annotated relations which leads to >106 possible hypotheses.  
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For knowledgebase exploration and hypothesis generation, we show an example for targeting 

endothelial cells in prostate or lung cancers is shown in Fig. 5a (bottom). Of the 26 possible class 

layering orders, based on the available annotated relations, the 4 most promising sequences were 

evaluated. Critical assessment revealed that arbitrary class layering orders results with an overwhelming 

number of possible entity combinations (Fig. 5b left), while having very few correlating references in 

the PubMed corpus (low % hits). In contrary, sequence #1 (cell type ► ligand ► target ► cancer ► 

drug ► biomaterial) consistently yielded the most hits with 2.5% of the suggested combinations 

represented in PubMed, while all the other sequences fall below 0.01% (Fig. 5b right). As this 

knowledgebase was aimed to be comprehensive and accurate, we evaluated the knowledgebase’s 

coverage and specificity relevance to its stated discipline of targeted drug delivery. In Fig. 5c we show 

the average coverage and specialization scores of the CSDD knowledgebase and 4 other leading 

ontologies, calculated by the NCBO Ontology Recommender25, with respect to entities mined from 

selected review articles (Supplementary Table S1)26–28. The coverage score, representing the extent to 

what the ontology covers the input data, similarly to the level of specialization of the ontology to the 

domain of the input data, were both comparable or superior to other ontologies.  
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Figure 5. Construction of the cell specific drug delivery knowledgebase (CSDD). a, knowledgebase 

construction scheme from relation types (top). Example of exploration in the hypotheses space via 

sequential assembly, from biomaterials to endothelial cells (bottom). b, Number of possible hypotheses 

vs. number of layers (left); and the % of published entity combinations to the total hypotheses, arising 

from 5 different class layering sequences (right). c, Relevance of recommended ontologies to 3 leading 

review papers26–28. CSDD, Cell-Specific Drug Delivery; OCHV, Ontology of Consumer Health 

Vocabulary; MDM, Mapping of Drug Names and MESH 2021; NCIT, National Cancer Institute 

Thesaurus; MESH, Medical Subject Headings.  
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Following the CSDD knowledgebase overview and quality measures, we move to its meta-analysis. To 

direct the optimal class layering order, we compared the prevalence in PubMed of the combinations of 

entities, generated by different class layering sequences. In the Cell Type-Cancer-Target space, 82% of 

hypotheses were published, with leading hypothesis “Cancer cells-Breast Cancer-HER2”, followed by 

“B-cell-Lymphoma-CD20” (Fig. 6a). Indeed, HER2 and CD20 targeting is one of the most used 

examples in precision nanomedicine29,30. In contrast, the combination “Endothelial cells-ANXA1-

Gastric Cancer”, is an example of hypothesis that is unpublished, even though every pairwise relation 

within it had published evidence. In the Biomaterial-Drug-Cancer space, 71% of hypotheses are 

published. The most frequent hypothesis is “Liposomes-Doxorubicin-Breast cancer” followed by “PEG-

Doxorubicin-Breast cancer” (Fig. 6b). Again, we saw that the most common hypotheses are ones 

including the most published cancer (breast cancer), drug (doxorubicin) and biomaterials (liposomes). In 

contrast, “Chitosan-Rapamycin-Melanoma” contains multiple published pair relations even though the 

explicit combination is unpublished. The same analysis, applied for Cancer-Target-Biomaterial revealed 

“Hyaluronan-CD44-Breast Cancer” as the leading hypothesis followed by “Liposomes-EGFR-Breast 

Cancer” (Supplementary Fig. 2a) and ‘Doxorubicin-Hyaluronan-CD44’ for Drug-Biomaterial-Target 

(Supplementary Fig. 2b). Next, we analyzed specific entities and their prevalence in relations in 

different contexts. We found that the targets with most biomaterial-drug relations are the Endothelial 

Growth Factor-Receptor (EGFR) and CD44 (Fig. 6c). In the context of targeting biomaterials, the most 

popular ligands are folic acid and the cell penetrating peptide, R8 (Fig. 6d). Next, as cancers and cell 

types are highly associated, we assessed the number of different targeting candidate per each cancer and 

cell type. As can be seen in Fig. 6e, multiple targets are shared between different cancers and cell types. 

While Esophageal cancer targeting was found only to a few 'Cancer cells', ‘Fibroblasts’ and Cancer stem 
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cells’ targets, Breast cancer active targeting is suggested by many hypotheses, involving multiple targets 

for different cell types: 21 different targets for ‘Cancer cells’, 15 to ‘Endothelial cell’ etc.  

 

Fig. 6. Meta-analysis of the CSDD knowledgebase. a, 3-class entity combinations, derived from two 

different general hypotheses, ranked by the number of publications in PubMed. b, Prevalence of 

biomaterials by the number of drug relations. c, Relative distribution of targets in combinations with 

both cancers and biomaterials. d, Relative distribution of targeting ligands relations to both targets and 

biomaterials. e, Heat map for the number of targets relations shared between cancer and cell types. 
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Discussion 

Existing approaches to biomedical knowledgebase construction require significant specialization and 

expertise, and a significant time investment. On the one hand, there are biomedical ontologies which are 

constructed by professional Biocurators. These are highly accurate, but can take years to construct and 

maintain7,8. On the other hand, there are knowledgebases which are automatically constructed through 

the use of ML models12,31. While ML models greatly simplify the task of keeping the knowledgebases 

up to date, their initial creation requires significant expertise in NLP, ML, and ML productization, as 

well as significant time investments in data annotation, evaluation, and model tuning. In practice, both 

biocuration and automatic knowledgebase construction involve inter-lab collaborations and are typically 

out of reach for individual researchers or small labs. As a consequence, existing knowledgebases tend to 

be focused on relation types that are expected to be of interest to a wide scientific community, thus 

leaving a wide “tail” of relations which are not covered by any knowledgebase. 

 

We demonstrated that by using extractive search, we can significantly lower the barrier of entry for 

knowledgebase construction, allowing individual researchers or small teams to rapidly construct 

personalized, targeted knowledgebases that are tailored to their research interests and are anchored in the 

literature. The effort required to create such knowledgebases depends on the researchers’ goals and their 

expected level of coverage and accuracy, and can range from hours to weeks. 

In the results section of this paper, we surveyed different knowledgebases which manifest the above-

mentioned tradeoffs. The knowledgebases were constructed by researchers in a biomedical engineering 

lab specializing in targeted drug delivery and cancer research. The constructed knowledgebases reflect 

some of the main research topics in biomedicine: the cancer frontiers knowledgebase is designed to 

identify recent trends and challenges in cancer research. It was created by a single researcher in a couple 
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of hours, by aggregating the results of a few extractive queries without validation. The knowledgebase 

can be easily kept up to date by re-applying these queries, and since the knowledgebase is for personal 

use, occasional errors or omissions are not a significant concern. The tissue engineering and 

regeneration, cancer surgery and radiotherapy knowledgebases were each created in less than a day by 

applying sporadic validation to the results of extractive queries. These knowledgebases were used to 

support rapid hypothesis exploration and generation as discussed in the Results section. For this purpose, 

non-prohibitive amounts of noise were acceptable: the knowledgebases are used to surface promising 

hypotheses, but each hypothesis is directly linked to the literature, and can subsequently be reviewed by 

researchers who use their experience to focus on useful ones and eliminate those based on incorrect 

connections. Finally, the CSDD knowledgebase was designed to be a comprehensive and up to date 

source of structured knowledge for the wider drug-delivery research community. To maintain the levels 

of precision expected from a public resource, it was constructed by 3 annotators over the course of a few 

weeks and all curated facts were manually validated.  

In surveying these knowledgebases, we demonstrate that knowledgebase construction need not be an 

effort-intensive process. By applying extractive queries and varying degrees of manual validation, 

researchers can rapidly create knowledgebases to accelerate their own research and to benefit the larger 

community. 

Conclusions 

We propose a fully functional human-machine hybrid method for rapid construction of both 

personalized and public knowledgebases in biomedicine and demonstrate the construction and 

evaluation of five  different knowledgebases. The resulting knowledgebases facilitate hypotheses 

generation and exploration backed with evidence from the literature. We provide the infrastructure, the 
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tools and tutorials for a broad use of diverse biomedical researchers with no background in text mining 

and NLP. The potential of generating plausible hypotheses that are yet unpublished can enable 

accelerated discovery in multiple fields of biomedicine.  

 

Methods 

The presented workflow repeats, with minor modification, in all of the reported knowledgebases. In each 

case, we commence with project definition and the implementation of extractive queries to (i) obtain 

lists of biomedical entities, and (ii) capture relations between these entities, adding these relations and 

their supporting evidence to the knowledgebase. The lists and queries used for the construction of the 

different knowledgebases are detailed below, and are also available in the supplementary information 

along with instructions on how to easily load them to SPIKE-KBC to reproduce our findings. 

 

Construction of the Challenges in Cancer Research Knowledgebase 

Project definition: This case demonstrates a literature review task of capturing unknown entities and 

concepts from intangible classes. We aimed to construct a knowledgebase of recent challenges in cancer 

research using three conceptual classes: ‘controversial’, ‘still unknown’ and ‘unmet need’.  

Generation of entity lists: Independent of any prior hypothesis on what concepts might be 

‘controversial’, we used SPIKE over PubMed search engine to mine concepts into de novo name lists, 

applying structured (syntactic) queries15. For example, to retrieve controversial findings we used the 

query “<>:something $remains/still/is $controversial”, restricted to papers that have words pertaining to 

different cancer types in their abstract and filtered to the last three years to reflect only contemporary 

topics. In this query, a colon (‘:’) was used as captures for things that are controversial, ‘<>’ to expand 

the captured string to possibly more than one word, and ‘$’ as an anchor, requiring one of the specified 
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following words to appear in the captured sentence. Similar queries were used to capture possible 

‘unmet needs’ and ‘things that are unknown’ (see Table 1a) The terms were saved as lists within the 

SPIKE system for later use.  

Query Type Filters Sought Class Query 
# of Captured 

Entities 

Structure 
Year field:2018 to 2022,  

Abstract: "cancer" 

Controversial concepts <>:something $is $controversial 802 

Controversial concepts <>:something $remains $controversial 47 

Controversial concepts <>:something $still $controversial 3 

Controversial concepts the $controversy $of <>:something 16 

Unknown concepts <>:something $remains $unknown 14 

Unknown concepts <>:something $is $unknown 1174 

Unmet needs <>:something $is $unmet $need 86 

Unmet needs <>:something $remains $unmet $need 16 

Unmet needs $unmet $need $is <>:something 10 

Unmet needs the $unmet $need $of <>:something 21 

Table1a: Extractive search queries used to mine entities based on their class, to be used in the 

Challenges in Cancer Research knowledgebase.  

 

Mining candidate relation instances: To match various cancers to their corresponding ‘challenging’ 

concepts, citations having two sought words appear in the same sentence, were mined from the PubMed 

corpus. In the SPIKE search engine, a list of 47 cancer types, based on the National Cancer Institute’s 

list of cancer types32, was matched to one of the previously formed lists using the Boolean extractive 

query ‘arg1:{listA} arg2:{listB}’. In this query, ‘arg1’ and ‘arg2’ are arbitrary argument names and the 

braces (‘{}’) act as placeholder to enable the automatic, iterative search of all words within a pre-saved 

concept list with the corresponding name (e.g., ‘arg1:{Unmet Needs} arg2:{Cancers}’). By applying 

this search, SPIKE retrieved citations that capture matching pairs of specific cancer type-controversial 

entities in the same context, tagging the specified entities within the sentences (see Table 1b). 

Arg1 

Class 
Arg2 Class Query Filters # Results # Relations 

Cancer Controversies 
arg1:w={cancers_100} arg2:w={Controversial_Cancer} 

controversial|debated 
- 1398 597 
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Cancer Unknowns 
arg1:w={cancers_100} arg2:w={Unknown_Cancer} 

unknown|unclear 
- 3127 633 

Cancer Unmet need arg1:w={cancers_100} arg2:w={Unmet_Cancer} need  - 1929 
282 

Cancer Unmet need arg1:w={cancers_100} arg2:w={Unmet_Cancer} unmet need  - 162 

Table 1b: Queries used for the capture of relation instances for the Challenges in Cancer Research 

knowledgebase. The number of results include redundant instances of identical relations, before their 

unification as the net number of approved relations. 

 

 

Validation and annotation of relation instances:  

The captured citations were exported from SPIKE by copying the query’s SPIKE URL and imported 

into the SPIKE-KBC app. For each of the 3 conceptual categories, a separate relation was added. The 

captured sentences, grouped by and tagged with the specific entity combination as ‘arg1’ and ‘arg2’, 

were individually reviewed by the annotator to be appraised as appropriate relation instances. Per each 

entity-entity combination, the annotator decides whether a certain relation instance (the annotation) 

complies with the defined relation, and whether it should be included in the knowledgebase, given three 

options: Approve, where both decisions are positive, which results with the relation instance included in 

the knowledgebase with the citation as evidence; Alternatively, Reject opts to discard the relation 

completely from the knowledgebase, with all the corelating instances. Lastly, the Delete opts to discard 

an irrelevant instance that fails to support the specified relation, though unlike Reject, it does not reject 

the relation itself, which may be supported by further evidence for annotation. In this case, since this is 

an explorative knowledgebase, and in order to avoid bias caused by the annotator’s prior knowledge, all 

relations were approved in bulk, except boldly out-of-context entities or relations. The proposed 

instances are ranked by default such that frequently occurring candidates are shown before rare ones. 

However, reversing this order highlighted undiscovered or rare connections, was found useful in this 

context. For this knowledgebase and all that followed, unless stated otherwise, a minimal threshold of 
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instances per entity pair was not applied. Consequently, a single reference was adequate to establish a 

connection.  

 knowledgebase Analysis: The visualization module was used to review and analyze the resulted 

knowledgebase. We displayed each of the two connected classes (e.g., cancer<->unmet needs) and 

downloaded a .csv file of all the two entity pairs, allowing to compare the total number of relations per 

cancer. Reversibly, we counted the total number of relations per concept, highlighting the concepts 

having the most relations to (e.g., ‘what are the most unmet needs in cancer?’). 

Construction of Tissue Engineering and Regeneration Knowledgebase 

Project Definition: The field of tissue engineering and regeneration is one of the major disciplines in 

biomedical engineering and could be a great example for rapid knowledgebase construction. We set to 

define the main hypothesis in this field with a combinatorial relation of classes. Tissue engineering is 

defined as the use of various cells, material engineering methods and biochemical factors to restore, 

maintain, improve, or replace biological tissues21. We took this simple definition and reconstructed it to 

the following combinatorial hypothesis of entity classes: A certain medical condition A can be treated 

with a scaffold made from material B which can support the growth of cell type C by combining 

bioactive element D (growth factors, hormones). We also noted that there many different methods to 

combine the cells with scaffolds and how to introduce the scaffold to the damaged tissue and for that 

purpose we added another class Method E. After defining each class, we defined the allowed relations 

between classes. We noted that practically all relations between all classes are highly plausible except 

the relation between the ‘Method-Bioactive’ classes as the vast majority methods deal with the scaffold 

the indication or the Cell Type but not the bioactive principle. 
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Generation of Entity Lists: After defining the required classes, we moved to extract entities for each 

class. For that purpose, we used the SPIKE engine and a series of structured queries to produce lists of 

entities (see methods). In brief we used extractive queries such as ‘<>:something $is $method|technique’ 

and applied a filter in the abstract: ‘tissue engineering|regeneration’. This approach mostly captured 

words that are types of methods used in tissue engineering. They were then manually selected as 

appropriate entities from the displayed sentences (see Table 2a).  

 
Query 

type 

Sought 

Class 
Filters Query 

# of Captured 

Entities 

Sequence 

Bioactive Abstract: "tissue engineering|regeneration" growth factors such as <>:* 42 

Biomaterial 

 

Paragraph:"delivery|targeting|nanomedicine" vehicles such as :* 11 

- 

polymers such as :NounPhrase 449 

polymers like|including :NounPhrase 74 

:NounPhrase and|or [w=some|any]? 

other polymers 
55 

biomaterials such as <>:* 211 

Paragraph:"delivery|targeting|nanomedicine" vehicles such as :* 11 

- :e=CHEMICAL nanoparticles  649 

Structure 

Bioactive 

Abstract: "tissue engineering|regeneration" 

<>:e=PROTEIN $is $chemokine 12 

<>:something $is $factor 50 

<>:[e=PROTEIN]something $activates 60 

<>:[e=CHEMICAL]something $activate

s 30 

<>:e=PROTEIN was added 25 

Biomaterial <>:something $is $biomaterial 84 

Method 
<>:something $is $method 415 

<>:something $is $technique 244 

Scaffold t=DT :e=CHEMICAL $scaffold 1063 

Table 2a: Extractive queries used to capture entities and compile entity lists in the Tissue Engineering 

and Regeneration knowledgebase. t=DT is a tag for a determiner such as ‘the’. ‘e=’ directs the us of a 

term list, buit-in SPIKE. 

Mining candidate relation instances: Standard Boolean queries, as described above, were used to mine 

instances where two specific entities appear in the same context (see Table 2b). The captured citation, 

tagged with the entity pairs, were imported to SPIKE-KBC. 
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Arg1 

Class 
Arg2 Class 

# 

Relations 
Query Filters 

# 

Results 

Scaffold cell type 269 

arg1:w={biomaterialsTE} arg2:w={cell_types_3} 

embeded|seeded|grown|grow tissue engineering 167 

arg1:w={BMtemp} arg2:w={cell_types_3} 

embeded|seeded|grown|grow tissue engineering 9 

arg1:w={BMtemp} arg2:w={cell_types_3} 

tissue 

engineering|regeneration 273 

Indication  Scaffold 1371 

arg1:w={DISEASE_TE} 

arg2:w={biomaterialsTE}  tissue engineering 485 

arg1:w={DISEASE_TE}  tissue engineering 2712 

 arg2:w={biomaterialsTE}   

arg1:w={DISEASE_TE}  tissue engineering 100 

 arg2:w={BMtemp}  

arg1:w={DISEASE_TE}  arg2:w={BMtemp} 38 

 

tissue 

engineering|regeneration  

Indication cell type 315 
arg1:w={DISEASE_TE} arg2:w={cell_types_3} tissue engineering 74 

arg1:w={DISEASE_TE} arg2:w={cell_types_3} 423 

Indication Bioactive 773 

arg1:w={DISEASE_TE} arg2:w={TE_target} tissue engineering 92 

arg1:w={DISEASE_TE} arg2:w={TE_target} 829 

 tissue engineering  

arg1:w={DISEASE_TE} arg2:w={temp_target} tissue engineering 129 

arg1:w={disease_temp} arg2:w={TE_target} 

tissue 

engineering|regeneration 23 

arg1:w={DISEASE_TE} arg2:w={TE_target} 

tissue 

engineering|regeneration 348 

Methods Scaffold 1476 
arg1:w={TE_technuiqes} 

arg2:w={biomaterialsTE} tissue engineering 3694 

Methods Indication 194 
arg1:w={TE_technuiqes} arg2:w={DISEASE_TE} 

tissue 

engineering|regeneration 409 

Bioactive Scaffold 1241 

arg1:w={TE_target} arg2:w={biomaterialsTE} 

loaded|embeded|presence|containing|coated tissue engineering 129 

arg1:w={TE_target} arg2:w={BMtemp} 102 

 tissue engineering  

arg1:w={TE_target} arg2:w={BMtemp} 221 

 

tissue 

engineering|regeneration  

Methods cell type 228 arg1:w={TE_techniques} arg2:w={cell_type_3} 
tissue 

engineering|regeneration 360 

Table 2b: Queries used for the capture of relation instances for the Tissue Engineering and Regeneration 

knowledgebase. All queries were filtered to include ‘Tissue engineering’ or ‘Tissue Regeneration’ in the 

Abstract. 
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Validation and annotation of relation instances: As indicated above, the SPIKE-KBC app was used 

to review all the mined relations between entities. The relation instances were briefly reviewed and 

annotated in bulk (not every single sentence, but per entity pair).  

Knowledgebase Analysis: To explore the knowledgebase dedicated to Tissue Engineering and 

Regeneration, we applied similar analysis to the CSDD; per each multi-class visualization and applied 

filters, a comma-separated values (.CSV) file was downloaded. The prevalence of an entity to be related 

to other of different class was enumerated using a pivot table, rendering the count of entities of class A 

as values for the second class as categories. Similarly, a two-variable matrix of ‘Bioactives’ and ‘Cell 

Types’ was rendered with the shared ‘Indications’ as values. To evaluate the class layering order 

(sequence) which produce entity combinations that are most published on PubMed, we tested different 3 

or 4-layers sequences. For each of the specific 3 or 4 entities combinations, the number of search results 

in sought in PubMed and was summed. 

Construction of Cancer Surgeries and Radiotherapeutics Knowledgebases 

Project Definition: The driving hypothesis for Cancer Surgeries knowledgebase is that specific 

malignancies correspond with certain surgical procedures, in which surgical instrument and biomaterials 

are used. Accordingly, 6 hypothetic relations were phrased, involving cancers, surgical procedures, 

surgical tools and their relations to biomaterials (see Supplementary Video 1). 

The same approach was used for the construction of a similar, complementary knowledgebase on 

Targeted Cancer Radiotherapies, consisting of 4 classes of interest: Cancer, Target, Radiotherapeutic 

agent, and Biomaterial. The 4 defined relations are based on the general paradigm of targeted 

radiotherapeutics, according to a radiotherapeutic agent can be administrated in cancer treatment using 

targeted biomaterials. We note that diagnostics were omitted from this knowledgebase.  
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Generation of Entity Lists: To establish lists of surgical procedures and surgical tools, we used a 

similar approach to the described above, and used Sequence (token) queries to mine biomaterials, 

surgical procedures etc. based on expected use in sentences. Special syntax was used to direct the search 

of specific parts of speech (see Table 4a). 

 

Query 

type Sought Class 
Filters 

Query 

# Captured 

Entities 

Boolean Radiation radiotherapy|radiothepeutic isotope :e=CHEMICAL 10 

 
 radiotherapy|radiothepeutic :e=CHEMICAL 30 

Sequence Biomaterials - polymers such as :NounPhrase 449 

  - polymers like|including :NounPhrase 74 

  
- 

:NounPhrase and|or [w=some|any]? other 

polymers 
55 

 

Surgical 

procedure 
Abstract: "Cancer|tumor" <>:* is a surgical procedure 1468 

  paragraph: "cancer|tumor surgery"  undergo|underwent <>:*  1758 

 Biomaterial - biomaterials such as <>:* 211 

  Paragraph:"delivery|targeting|nanomedicine" vehicles such as :* 11 

  - :e=CHEMICAL nanoparticles  649 

Structure Surgical tool Abstract:"cancer|tumor"+"surgery|operation|surgical"  <>:something $is $tool 718 

 
 paragraph:"surgery|operation|surgical" <>:something $is $surgical $tool 80 

 Biomaterial - <>:something $is $biomaterial 84 

 Radiation radiotherapy|radiothepeutic :something $is $isotope 4 

 Radiosensitizer - :something $is radiosensitizer 233 

 
 - :e=something $sensitized a target to $radiation 211 

Table 4a: Extractive queries used to capture entities and compile entity lists in the Cancer 

surgeries and radiotherapy knowledgebases. ‘NounPhrase’ is shorthand for “(([t=DT]? [t=/JJ.*/]* 

[t=/NN.*/]+))” directing a determiner, followed by 0 or more adjectives followed by 1 or more nouns). 

Asterix (*) is a wild card to match any single word. lists previously mined are not shown. 

 

Mining candidate relation instances: standard Boolean queries were used to capture relation instances 

between the defined classes, as demonstrated above (see Table 4b). 

Arg1 

Class 
Arg2 Class Query Applied Filters # Results # Relations 

Radiation Cancer arg1:w={Radiation} arg2:w={Cancer} 
 

713 48 
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Radiation Target arg1:w={Radiation} arg2:w={Target} 
 

142 70 

Target Cancer arg1:w={Target} arg2:w={Cancer} 
 

1941 169 

Cancer Radiosensitizer arg1:w={Cancer} arg2:w={Radiosensitizer} sensitize|neoadjuvant|sensitization:("

abstract") 
2349 155 

Radiation Construct arg1:w={Radiation} arg2:w={Construct} delivery|carrier|scaffold|construct|par

ticle|vehicle:("abstract") 
241 162 

Radiation Radiosensitizer arg1:w={Radiation} 

arg2:w={Radiosensitizer} 

 

90 63 

Tool Biomaterial arg1:w={Tool} arg2:w={Biomaterial} 
 

1424 140 

procedure Cancer arg1:w={procedure} arg2:w={Cancer} 
 

2671 364 

Tool Procedure arg1:w={Tool} arg2:w={Procedure} 
 

1818 862 

Procedure Biomaterial arg1:w={Procedure} arg2:w={Biomaterial} 
 

799 570 

Tool Cancer arg1:w={Tool} arg2:w={Cancer} 
 

648 456 

Table 4b: Queries used for the capture of relation instances for the cancer surgeries and radiotherapy 

knowledgebases. 

 

Validation and annotation of relation instances: The results of the queries were imported from SPIKE 

to SPIKE-KBC as described above. The annotation process was done in bulk and was not supervised 

under specific criteria. The process was recorded and explained in real time for the purpose of 

demonstration and can be viewed here: https://www.youtube.com/watch?v=zRxnNfdQNF0&t=25s 

 

Knowledgebase analysis: Different class layering sequences were visualized to generate and explore 

different hypotheses in radiotherapy or cancer surgery. We evaluated the published space derived of 

each class-layering order, as thoroughly described above. 3 sets of 3-class combinations and 3 sets of 4-

class combinations were compared, each generating unique entity combinations. The sets were searched 

in PubMed and the overall number of results was counted. 

 

Construction of Cell Specific Drug Delivery Knowledgebase 

Project Definition: To construct a comprehensive public knowledgebase in nanomedicine for cell 

specific targeted drug delivery, a generally phrased hypothesis that conveys the topic’s main paradigm 
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was laid to define the knowledgebases outlines, as follows: A drug (A), carried by biomaterial (B), can 

be targeted to cancer (C) using ligand (D) to bind molecular targets (E) expressed on cell type (F) in the 

tumor microenvironment. Of the 15 possible relations between the classes, 9 of interest were defined, 

comprising of two entity classes and their appropriate logical relation, such as “Drug” and “Disease”, 

and the string “is_used_to_treat” as their relation. While some relations are obvious (e.g., ligand-target), 

the reasoning for the inclusion or omission of certain relations was done according to the general 

hypothesis’ logic: Biomaterials, aside from their role as scaffolds or carriers for the loading of a 

therapeutic agents or a targeting molecules (ligands), often convey useful intrinsic characteristics on 

their own (e.g., protein binding, immune cell evasion etc.). Hence, the relations between specific targets, 

ligands, drugs and biomaterials may express meaningful, specific interactions. Additionally, as various 

cell types are known to be involved in the tumor microenvironment and are considered as possible 

targets in some treatment modalities (such as, the cytokine targeting of immune cells), this relation was 

included. Lastly, the use of binding molecule to target or label certain cell types is often described in the 

literature without relating to a specific target, therefore the ligand-cell type relation was included. 

Generation of Entity Lists was performed by applying a hybrid approach to maximize the 

knowledgebase’ coverage – partially mining entity lists de novo using SPIKE extractive search, as 

previously described (Table 3a), and partially manually mining name lists from complementary 

databases and ontologies (Table 3b). In SPIKE, peptide-based targeting molecules (ligands) were mined 

using a case-sensitive query, to capture 7 to 14 letters-long strings written in upper case – a formatting 

almost exclusive for single-letter notation of amino acids. We listed all human Clusters of 

Differentiation (CDs) as possible targets, to be matched with corresponding cell types and cancer33. 

respectively, a reciprocal, hypothetic list of ligands, was created by adding the string ‘anti-‘ before all 

CDs, to facilitate the mining of relations to matching ligands (e.g., ‘CD40’ and ‘anti-CD40’ antibody). 
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Additionally, aptamer-based ligands were mined from Apta-Index24, DrugBank22 was used to retrieve a 

list of drugs, and the Uniprot34 database was a source for targets. A complementary list of biomaterials 

and drugs were retrieved from the  

author’s own inventory. 

Table 3a: Extractive queries used to capture entities and compile entity lists in the Targeted Drug 

Delivery knowledgebase. ‘NounPhrase’ is shorthand for “(([t=DT]? [t=/JJ.*/]* [t=/NN.*/]+))” directing 

a determiner, followed by 0 or more adjectives followed by 1 or more nouns). Asterix (*) is a wild card 

to match any single word. 

 

Database Class number of entities Reference 

DrugBank Drugs 910 27 

Apta-Index Ligands (aptamers) 87 29 

HCDM Targets (CD) 400 28 

Uniprot Targets 392 30 

Table 3b: Complementary sources for acquirement of entities for the Targeted Drug Delivery 

knowledgebase.  

Query 

Type 

Sought 

Class 
Filters Query 

# of Captured 

Entities 

 

Biomaterial 

Paragraph:"delivery|targeting|nanomedi

cine" 
vehicles such as :* 50 

 

Sequence 

-  

polymers such as :NounPhrase 449 

polymers like|including :NounPhrase 74 

:NounPhrase and|or [w=some|any]? other 

polymers 
55 

biomaterials such as <>:* 211 

:e=CHEMICAL nanoparticles  649 

Ligand 
delivery|targeting|nanomedicine ligands such as <>:* 32 

- <>:*7-14 A-Z 258 

Structure 

Biomaterial 

Paragraph:"delivery|targeting|nanomedi

cine" 
<>:something $is $vehicle 60 

- 
<>:something $is $biomaterial 84 

<>:something $is $polymer 3 

Ligand 

Paragraph:"delivery|targeting|nanomedi

cine" 
<>:something $is $peptide 396 

delivery|targeting|nanomedicine <>:something $is $ligand 221 

Target - <>:something $target $drug $delivery 200 
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Mining candidate relation instances: Assuming the existence of a relation between two specific 

entities, it will have evidence in the published literature. Hence, extractive queries were used to find 

instances of their co-occurrence in text, to possibly support the sought logical relation. Similarly to the 

described method above, 2 lists of discrete entity classes, added to SPIKE in the previous step, were 

used in the pairwise Boolean query ‘arg1:{ligand_list} arg2:{target_list}’. In this query, ‘arg1’ and 

‘arg2’ were used as placeholders to enable the automatic, iterative search of pairwise combinations of 

entities from each list, and the retrieval of matching citations within the PubMed corpus, having the two 

words appear in the same sentence. Some queries, as detailed in Table 3c, include domain specific terms 

which are required to be in the same sentence, paragraph or section, restricted by specific titles or 

journals. The resulting relation instances, tagging the specified entities within the sentences as possible 

relation instances, were exported from SPIKE by copying the query’s SPIKE URL and imported into the  

SPIKE-KBC  annotation module.  
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Arg1 Class 
Arg2 

Class 
Query Filters 

# 

Results 

# 

Relations 

Biomaterial Drug 
arg1:w={biomaterials2} 

arg2:w={FDA_DRUGS_YS1} drug delivery:("abstract") 
3431 1192 

      
Biomaterial ligand arg1:w={biomaterials2} arg2:w={ligands2} drug delivery:("abstract") 1527 491       
Biomaterial target arg1:w={biomaterials2} arg2:w={targets} drug delivery:("abstract") 918 

214 
Cancer target arg1:w={cancers} arg2:w={Targets1} 

delivery|conjugated: 

("Paragraph) 
1743 

      
Cancer target arg1:w={cancers} arg2:w={Targets1} drug delivery:("abstract") 2232 607       
Cell type Cancer arg1:w={cell_types_3} arg2:w={cancers_100} - 217 87       
Cell type ligand arg1:w={cell_types_3} arg2:w={ligands2}  314 91       

Drug Cancer 
arg1:w={FDA_DRUGS_YS1} 

arg2:w={cancers_100}  
2331 729 

      

ligand target arg1:{Antibodies} arg2:{Targets1} 
delivery|nanocarrier|nano

medicine:("section") 
510 182 

            

Table 3c: Queries used for the capture of relation instances for the Targeted Drug Delivery 

knowledgebase. 

 

Results Validation and Annotation  :As described above, for each case of class-class relations, the 

appropriate two-argument queries were imported and loaded into the annotation module. a team of 3 

annotators reviewed the results. For this use, once approving or rejecting an instance, additional 

instances of the same entity pair were mostly skipped by option, thus the number of instances in the final 

knowledgebase are not proportional to the original number of cited instances given by the search query. 

Post Processing: In all knowledgebases, some relation instances were retrospectively reviewed and 

individually removed, only if they included a capture error (e.g., marking the string ‘practical’ as a 

Target).In the CSDD knowledgebase, as this knowledgebase is in the Authors’ own specialty, post-

processing was practiced to removed context-irrelevant or boldly false relations, such as ‘anti-CD47’ 

(Ligand) related to ‘CD4’ (Target). The manual name unification module was applied as a quality 

measure and to increase the knowledgebases’ coherency and integrity. According to the annotator’s 

discretion, unwanted duplicates of separate entities were merged into a single entity, to override aliases, 

acronyms, alternative delimiters, letter capitalization, or use of abbreviations.  
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Knowledgebase Analysis: To shed light on the space of knowledge and prevalence of different entities 

in a defined context, different visualizations, such as all the Drug-Biomaterial relations, were 

downloaded as a .csv file and were transformed to a pivot table using Microsoft Excel. The prevalence 

of the use of the different targets or ligands, as % of total, was compared by counting, per specific entity, 

the number of relations exist to other entities. Similarly, by layering 3 classes and downloading all the 

specific paths, the number of relations shared between two classes to a third one was counted, having 

two classes as categories and the third as values. The resulting matrix was colored via conditional 

formatting, highlighting the over or under-shared specific entities. 

Critical Evaluation: Bearing in mind that the multi-class hypotheses are constituted from discrete, two-

class relation instances tailored together, the order of their layering affects the logics of the hypotheses. 

To evaluate which sequence is more reasonable, we systematically compared all entity combinations 

(hypotheses) arising from a specific class layering sequence (Set A) to fraction of entity combinations 

existing within the same text in PubMed (Set B). First, the crude size of each set ( ) was compared 

according to different layering orders, starting with 2 layers and up to 6. Secondly, the intersection 

are entity combinations arising from a given class sequence, also appearing within discrete 

texts in PubMed. As A’ is a subset of A ( ), the relative hit percentages were compared 

( ), where  is the number of entity combinations sought for in Pubmed, 

and is the number of times such entity combinations appear together in PubMed papers (number of 

‘hits’). Accordingly, if % hits = 100, all combinations are found within PubMed texts; whereas if % hits 

= 0, none of the combinations could be found within PubMed texts. This was calculated per each 

sequence, one layer at a time, until 6 classes were used in combination. 
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Lastly, we sought to evaluate whether the knowledgebases meets its goal of representing the current 

state of knowledge, with respect to comprehensive reviews in the field. The CSDD knowledgebase was 

exported in OWL format and imported to Bioportal20, where Bioportal's ontology recommender25 was 

used to compare the CSDD knowledgebases coverage and specialization with other published 

ontologies, with respect to highly cited review articles in the corresponding field26–28. Biomedical 

entities were manually mined from the 3 texts and were used as keywords for calculating ontology 

recommendations (see supplementary table s1). 

 

Data availability 

The SPIKE-KBC system and the knowledgebases reported in this work are publicly available at 

https://spike-kbc.apps.allenai.org. 

Complete tutorial on how to construct and explore knowledgebases using cancer surgeries as an 

example: https://www.youtube.com/watch?v=zRxnNfdQNF0&t=25s 

The source code for SPIKE-KBC as well as the lists and queries used for the construction of the 

described knowledgebases are available in the supplementary information and will be made publicly 

available under the open source Apache license. 

 

Code availability 

The code will be posted as Github repository after review of the code upon publication. 
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