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Summary 41 

Openly available community science digital vouchers provide a wealth of data to study 42 

phenotypic change across space and time. However, extracting phenotypic data from these 43 

resources requires significant human effort. Here, we demonstrate a workflow and computer 44 

vision model for automatically categorizing species color pattern from community science 45 

images. Our work is focused on documenting the striped/unstriped color polymorphism in the 46 

Eastern Red-backed Salamander (Plethodon cinereus). We used an ensemble convolutional 47 

neural network model to analyze this polymorphism in 20,318 iNaturalist images. Our model 48 

was highly accurate (~98%) despite image heterogeneity. We used the resulting annotations to 49 

document extensive niche overlap between morphs, but wider niche breadth for striped morphs 50 

at the range-wide scale. Our work showcases key design principles for using machine learning 51 

with heterogeneous community science image data to address questions at an unprecedented 52 

scale.  53 

 54 

Introduction 55 

Species color patterns represent model systems for understanding evolution because color is a 56 

quantifiable biological trait that provides pertinent information about the organism. For instance, 57 

color patterns are used as a signal in mate choice and predator-prey interactions, and can aid in 58 

thermoregulation (Endler and Mappes, 2017). Color polymorphic species, in which multiple 59 

phenotypes (i.e., color morphs) coexist within the same population (Ford, 1945), make 60 

particularly good models for studying evolutionary change, as color patterns are discrete, and 61 

color morph frequency often varies geographically (McLean and Stuart-Fox, 2014). Further, 62 

morphs comprise correlated trait complexes, resulting in divergent selective pressures for a 63 

single species (Sinervo and Svenson, 2002; Mckinnon and Pierotti, 2010).  64 

            A wealth of information regarding species color patterns exists in web-based community 65 

science platforms, in which contributors can upload their own photographs of animals and plants, 66 

and seek help from other participants in identifying their observations. One of the largest and 67 

most successful platforms is iNaturalist (http://www.inaturalist.org/), which as of January 2022, 68 

holds > 88 million images of various species from across the world and roughly doubles in size 69 

each year. DiCecco et al. (2021) showcase the research value of iNaturalist, but one still nascent 70 

application is broad-scale assembly of color pattern data (but see Lehtinen et al., 2020; Lattanzio 71 

and Buontempo, 2021). The key challenge is that manual extraction of color pattern data is time 72 

and effort intensive. Automation is an obvious next step but complex image backgrounds can 73 

confuse simplistic image analysis toolkits (Peña et al., 2014; Pollicelli et al., 2020). Therefore, 74 

developing best practices and tools for streamlining extraction of information from variable 75 

quality images submitted by amateur naturalists is a critical need for processing the plethora of 76 

digital image data now being generated, enabling data-intensive research efforts in the areas of 77 

ecology and evolutionary biology (Weinstein, 2018; Lürig et al., 2021).   78 

Artificial intelligence methods, and deep learning in particular, offer the most promise for 79 

automating collection of phenotypic data (Lürig et al., 2021), given their remarkable ability to 80 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.11.480114doi: bioRxiv preprint 

http://www.inaturalist.org/
https://doi.org/10.1101/2022.02.11.480114
http://creativecommons.org/licenses/by/4.0/


3 

make accurate predictions. Convolutional neural networks (CNNs) are the basis for current state-81 

of-the-art accuracy in whole image classification (Deng et al., 2009; Zeiler, 2014; Sermanet et 82 

al., 2014). A CNN is a deep learning algorithm that uses training data to learn how to extract 83 

features from input images and then use those features to interpret an image’s content (LeCun et 84 

al., 2015). Much recent work using CNNs for ecological studies has focused on species 85 

identification from complex images (e.g., camera-trap images; Wäldchen and Mäder, 2018; 86 

Tabak et al., 2019; Willi et al., 2019; Whytock et al., 2021). Less developed are deep learning 87 

approaches that score quantitative traits of interest on those images.  88 

            Here, we present a workflow and machine learning approach for classifying color 89 

patterns of animals from community science photographs. To illustrate the value of this 90 

computer vision model, we focus on a use-case of a striped/unstriped color pattern 91 

polymorphism in the geographically widespread and abundant Eastern Red-backed Salamander, 92 

Plethodon cinereus (Petranka, 1998). The ‘striped’ color morph exhibits a stripe that varies in 93 

color from yellow to dark red, which is overlaid on a black dorsum, and the ‘unstriped’ morph is 94 

completely dark in dorsal coloration (Fig. 1). The ecological and evolutionary mechanisms 95 

influencing the geographic patterns of coloration in P. cinereus color morphs remains unclear, 96 

and little work has been done to examine range-wide patterns of the polymorphism (but see 97 

Gibbs and Karraker, 2006; Moore and Ouellet, 2015; Cosentino et al., 2017). Studies from single 98 

populations have suggested that the color morphs are correlated with distinct climatic niches; the 99 

striped morph is more associated with cooler, wetter niches, while the unstriped morph is more 100 

associated with warmer, drier conditions (Moreno, 1989; Anthony et al., 2008).  101 

The goal of our study was to test range-wide color morph and climate associations by 102 

leveraging more than 20,000 community science photographs. We created a computer vision 103 

model for scoring striped and unstriped color morphs of P. cinereus via an experimental design 104 

capable of handling photographs that are highly heterogeneous and vary extensively in quality. 105 

With the classified data, we then used ecological niche modeling and a logistic modeling 106 

framework to examine whether the two color morphs partition available niche space, thereby 107 

contributing to the maintenance of this polymorphism. Our methodological approach not only 108 

provides new insight into the association between climate and color morph frequency in P. 109 

cinereus at the range-wide scale, but also demonstrates a pipeline for rapidly classifying discrete 110 

color morphs in community science images. We also discuss the complications faced when 111 

developing the computer vision model, but highlight the utility of this approach with 112 

continuously growing community science image resources.  113 

  114 

Methods 115 

Community Science Image Dataset 116 

We downloaded 15,777 research-grade (georeferenced observations with species ID verified by a 117 

minimum of two separate reviewers) images of P. cinereus from iNaturalist (accessed August 5, 118 

2020) via a command-line query tool (https://gitlab.com/stuckyb/cbg_phenology). Images were 119 

not modified in any manner. From this initial set, we randomly selected 4,000 images to be the 120 
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basis of our training and validation dataset. Seven volunteers aided in scoring salamander color 121 

pattern (striped/unstriped). A color pattern scoring guide and training was provided by MMH to 122 

all participants prior to scoring to ensure unanimity in trait definitions. Images were divided into 123 

10 sets of 400. All image sets were scored twice by separate volunteers (i.e., no volunteer scored 124 

the same image twice). If there was incongruence between volunteers in scoring a color pattern, 125 

a third, independent, volunteer provided a consensus score.  126 

 127 

 128 
Figure 1. Color morphs of Plethodon cinereus. Representative iNaturalist images of the striped (left) and unstriped 129 

(right) color morphs of Plethodon cinereus. Photos and observations by iNaturalist users Jessica (iNaturalist user 130 

jessicapfund) and Myvanwy (iNaturalist user acuriousmagpie), respectively. 131 

 132 

To score salamander color patterns, we used the scriptable desktop software program 133 

ImageAnt (https://gitlab.com/stuckyb/imageant). We wrote a custom ImageAnt script to query: 134 

1) the number of salamanders in an image; 2) salamander color pattern (striped, unstriped, other); 135 

or 3) whether the image was unusable (i.e., the color pattern was unidentifiable). Images with 136 

multiple salamanders were subsequently presented with another scoring rubric of “striped”, 137 

“unstriped”, or “both color morphs”. In the final training set, images with multiple of the same 138 

color morph were lumped with images of a single salamander of the same color morph. Images 139 

that contained both color morphs were not included in the training set. Although P. cinereus 140 

displays a discrete striped/unstriped dorsal color pattern polymorphism, aberrant phenotypes 141 

(e.g., leucistic or the orange-red “erythristic’ phenotype) can be found (Moore and Ouellet, 142 

2014). The few cases of erythristic (“other”) phenotypes were included within the “striped” 143 

class, while no leucistic examples were observed in our training set. Our final model was trained 144 

using the binary categories: “striped” and “unstriped”.  145 

 146 

Deep Learning 147 

We trained a convolutional neural network (CNN) using the EfficientNet (efficientnet-b4; Tan 148 

and Le, 2019) architecture implemented in PyTorch with PyTorch Lightning used to implement 149 

model training (Falcon, 2019). We implemented transfer learning (Yosinski et al., 2014) with 150 

model weights that were pre-trained on the ImageNet dataset (Deng et al., 2009). CNN training 151 
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and validation was performed on the University of Florida HiPerGator high-performance 152 

computer using one GPU.  153 

            A series of model training hyperparameters were included and systematically modified to 154 

increase validation accuracy. To train the model, we used stochastic gradient descent with 155 

momentum and a dynamic learning rate scheduler starting with a learning rate of 0.001 and set to 156 

decay by a factor of 0.1 based on validation loss. An oversampling procedure was implemented 157 

due to unequal image representation of the striped and unstriped salamander phenotypes. Image 158 

preprocessing included resizing images to 596x447 pixels and normalizing the color channels 159 

with the same transformation used for ImageNet pretraining. A set of data augmentation 160 

techniques was applied to each batch during model training including: 1) random horizontal 161 

flips, 2) random vertical flips, 3) random rotations, 4) color jittering, and 5) random affine 162 

transforms.  163 

We used k-fold cross-validation with 4 random splits to evaluate model performance. For 164 

our final production model, we took the best model from each cross-validation fold (as defined 165 

by the lowest validation loss for that fold) and combined them into an ensemble model by 166 

averaging the predictions of all four models. Using ImageAnt, we manually scored 500 more 167 

images that were independent of those used for model training and validation to serve as a test 168 

set for evaluating the final ensemble model. We then used the production ensemble model to 169 

analyze all remaining P. cinereus images on iNaturalist. Due to the growth of P. cinereus 170 

research-grade images between model training and validation steps, we re-downloaded all 171 

research-grade images from iNaturalist (20,318 images; accessed March 24, 2021) and then 172 

analyzed all images not included in the training and test sets using the full model ensemble. Full 173 

modeling details and code can be found on our GitHub repository 174 

(https://github.com/mhantak/Salamander_image_analysis).  175 

   176 

Environmental Data  177 

To test climatic niche differences between the color morphs of P. cinereus, we first obtained 178 

bioclimatic (n =19) and elevational data at 30 arc-second (~1 km) resolution (WorldClim V1.4; 179 

Hijmans et al., 2005). We next determined the accessible area for P. cinereus by buffering the 180 

known geographic range by 100 km and then clipped environmental data layers to that area. 181 

After doing so, and to avoid overparameterization and multicollinearity, the environmental data 182 

layers were reduced to include only uncorrelated variables (r = .80). The final dataset included 183 

eight variables: elevation, mean diurnal range (BIO2), maximum temperature of warmest month 184 

(BIO5), temperature annual range (BIO7), mean temperature of wettest quarter (BIO8), mean 185 

temperature of direst quarter (BIO9), precipitation seasonality (BIO15), and precipitation of 186 

warmest quarter (BIO18).  187 

  188 

Niche Modeling 189 

We used ecological niche modeling (ENM) as a means to determine niche characteristics of both 190 

morphs. Prior to running niche models, we first filtered the iNaturalist data records. Filtering 191 
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included removing records with missing or incomplete latitude and longitude information, 192 

duplicate records, and manually removing records outside of the known range. To reduce the 193 

potential for spatial autocorrelation and bias from areas with particularly dense sampling, we 194 

thinned our data to include records separated by a minimum of 25 kilometers. ENM’s were 195 

constructed separately for both the striped and unstriped morphs using the maximum entropy 196 

algorithm implemented in MAXENT V3.4.1 (Phillips et al., 2006) in the R package ENMeval 197 

(Muscarella et al., 2014). Data were partitioned using the “block” method to account for spatial 198 

autocorrelation. Regularization multipliers ranged from 0.5 to 5 and possible feature 199 

combinations were: L, H, LP, LQ, LQH, LQP, and LQPH (L = linear, H = hinge, P = product, Q 200 

= quadratic). The best model was selected based on the lowest ΔAICc. After model calibration 201 

and validation, we converted the modeled output of predicted probabilities of presence within the 202 

accessible area to binary presence/absence maps using equate entropy and the original 203 

distribution (cloglog) threshold, which typically performs well when attempting to balance 204 

omission error versus the fraction of predicted presence. We next examined niche overlap 205 

between the two morphs with the Schoener’s D metric using ENMeval. Niche breadth of both 206 

morphs was calculated using the raster.breadth function in the R package ENMTools (Warren et 207 

al., 2010). To visually examine color morph overlap in association with climatic predictors, we 208 

ran a principal component analysis (PCA) using the reduced set of bioclimatic variables and the 209 

predicted presence points from the striped and unstriped morph ENM’s with the base R prcomp() 210 

function (R Core Team, 2019). 211 

  212 

Statistical Analyses  213 

We further quantified niche differences between the morphs by running a multiple logistic 214 

regression using the R base glm() function (R Core Team, 2019) with a binomial family and a 215 

logit link function.  The predictors for this model were generated by assembling underlying 216 

bioclimatic conditions (e.g., BIO2, BIO5, BIO7, BIO8, BIO9, BIO15, BIO18) and elevation at 217 

each pixel predicted as a presence in the above binarized maps, for both morphs. We opted to use 218 

the raw environmental data rather than principal components for ease of interpretation. Color 219 

morph, coded as 1 for striped morphs and 0 for unstriped morphs was the response variable. All 220 

predictors were mean-centered and scaled. In order to select the best model, and given no a 221 

priori hypotheses about the best predictors, we used the ‘dredge’ function in the R package 222 

MuMIn (Barton, 2012) to rank and assess the best-fit model with AICc. If any predictors were 223 

not in the top model or if any predictor variance inflation factor (VIF) was greater than four, we 224 

dropped those variables and re-ran the logistic regression. To generate a pseudo-R2 value, as a 225 

measure of goodness of fit for our best-fit model, we used the ‘r2_nagelkerke’ function in the R 226 

package performance (Lüdecke et al., 2021). 227 

 228 

Results 229 

Volunteer and Model Accuracy 230 
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Across the seven volunteers that scored the 4,000 training and validation images, we estimate 231 

that mean volunteer annotation accuracy was 95.9%. Consensus was achieved for 3,871 (3,005 232 

striped, 866 unstriped) images, while the remaining 129 images were either unidentifiable as 233 

striped or unstriped salamanders (n=51) or unusable because both morphs were visible in the 234 

image (n=78; Table 1). The majority of images were scored with a mean scoring time of three 235 

seconds. Some images took annotators considerably longer to analyze, although extremely long 236 

annotation times were likely due to annotators leaving ImageAnt running while not actively 237 

scoring. The 3,871 images served as the basis for model training and validation.  238 

Validation accuracy across the four cross-validation folds varied minimally (fold 1 = 239 

98.6%; fold 2 = 97.3%; fold 3 = 96.2%; fold 4 = 97.4%). The mean cross-validation accuracy 240 

was 97.4% and the test accuracy of the final ensemble model was 97.8% (Table 1). Out of the 241 

20,318 iNaturalist images analyzed by the ensemble model, 15,413 (75.9%) were labeled as 242 

striped and 4,905 (24.1%) as unstriped salamanders (Table 1) 243 

 244 
Figure 2. Color morph data generated from the computer vision model. Georeferenced iNaturalist observations 245 

(N = 20,258) of P. cinereus. Record localities are colored by morph (red = striped, black = unstriped) based on the 246 

final computer vision model run.  247 

 248 

Niche Modeling  249 

Our filtering steps removed 60 data points, generating a final dataset of 20,258 total point 250 

presences (N = 15,363 striped morphs; N = 4,895 unstriped morphs; Fig. 2). These were used 251 

along with the uncorrelated environmental predictors to generate a best-fit MAXENT model for 252 

striped and unstriped morphs. The best model for both striped and unstriped, based on AICc and 253 

ΔAICc, consisted of LQPH features with a regularization multiplier of two (striped model AICc 254 

=28877.63, ΔAICc = 4.86; unstriped model AICc = 16072.40, ΔAICc = 6.09). AUCtrain (striped 255 

0.78; unstriped 0.82) suggests relatively performant models; because P. cinereus is widespread 256 

and common across its range, separating higher and lower quality habitat is more challenging 257 
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than for habitat specialists. AUCtest values (striped 0.75; unstriped 0.81) were close to the 258 

AUCtrain scores, suggesting these models are not overfit. The Schoener’s D metric indicates that 259 

the niches of the morphs overlap at 87%. Niche breadth of the striped morph is greater than that 260 

of the unstriped morph (Levins B2; striped = 0.64; unstriped = 0.55). The PCA of the reduced 261 

bioclimatic variables shows how the morphs partition niche space (Table S1, Fig. 3). PC1 262 

represents 30% of the variation and its loadings are primarily mean diurnal range (BIO2), 263 

maximum temperature of warmest month (BIO5), and precipitation of warmest quarter (BIO18; 264 

Fig 3A). PC2 represents 26% of the variation and mean temperature of driest quarter (BIO9), 265 

temperature annual range (BIO7), and precipitation seasonality (BIO15; Fig. 3A) are the main 266 

loadings. Lastly, 17% of the variation is explained by PC3, with loadings primarily from 267 

elevation (ALT) and maximum temperature of warmest month (BIO5; Fig. 3B).  268 

  269 

270 
Figure 3. Climatic niche differences between color morphs of Plethodon cinereus. PCA of reduced climatic 271 

variables: A) PC1-PC2, B) PC1-PC3. Predicted presence points from striped and unstriped morph ecological niche 272 

models were grouped into hexbins (red = striped; black = unstriped). PCA loadings are represented by yellow 273 

arrows.   274 

 275 

Logistic Modeling 276 

The best model included elevation and all seven bioclimatic predictors (BIO2, BIO5, BIO7, 277 

BIO8, BIO9, BIO15, BIO18), however, BIO5 was subsequently dropped because it had a VIF 278 

greater than four (PsuedoR2 = 0.04). All model effects were significant. Striped morph frequency 279 

is positively correlated with elevation (β = 0.051, SE = 0.001, p < 0.001; Fig. 4A). There is a 280 

decreased odds of striped morphs with mean diurnal range (BIO2; β = -0.063, SE = 0.001, p < 281 

0.001; Fig. 4B). Striped morph frequency has higher odds of occurring with higher temperature 282 

annual range (BIO7; β = 0.126, SE = 0.001, p < 0.001; Fig. 4C), but the odds decrease with mean 283 

temperature of the wettest quarter (BIO8; β = -0.040, SE = 0.001, p < 0.001; Fig. 4D). The odds 284 

of striped morph frequency increases with mean temperature of driest quarter (BIO9; β = 0.112, 285 
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SE = 0.001, p < 0.001; Fig. 4E) and with both precipitation predictors: precipitation seasonality 286 

(BIO15; β = 0.315, SE = 0.001, p < 0.001; Fig. 4F) and precipitation of the warmest quarter 287 

(BIO18; β = 0.178, SE = 0.001, p < 0.001; Fig. 4G). Precipitation effect sizes were generally 288 

stronger than temperature in separating morphs. 289 

 290 

 291 
Figure 4. Climatic predictors of color morph frequency. Top model effect plots of color morph frequency 292 

variation in P. cinereus. The proportion of color morphs is influenced by A) elevation; B) mean diurnal range 293 

(BIO2); C) temperature annual range (BIO7); D) mean temperature of wettest quarter (BIO8); E) mean temperature 294 
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of direst quarter (BIO9); F) precipitation seasonality (BIO15); and G) precipitation of warmest quarter (BIO18). 295 

95% confidence intervals are included in each plot.   296 

 297 

Discussion 298 

Community science resources, especially images tied to community identifications available via 299 

iNaturalist, are rapidly expanding. These images contain a treasure trove of biologically relevant 300 

information about phenotypes and interactions (DiCecco et al., 2021), but unlocking this 301 

information remains a challenge. Thus far, computer vision models have largely focused on 302 

species identification from images (Gomez Villa et al., 2017; Norouzzadeh et al., 2018; Willi et 303 

al., 2019). To our knowledge, no previous studies have aimed to use machine learning 304 

approaches to extract trait information, but such approaches are needed given the deluge of 305 

records with digital vouchers being submitted. Here, we created a highly accurate (~98% 306 

accurate based on test set evaluation) computer vision model for classifying a salamander’s color 307 

pattern from community science images. With the data produced from this model, we expanded 308 

our knowledge of why a common striped/unstriped color polymorphism persists in the abundant 309 

salamander, Plethodon cinereus.  310 

  311 

Scalability of Community Science Images  312 

A challenge of using CNNs for feature classification is the need for robust sample sizes for 313 

training. Community science platforms, such as iNaturalist, hold millions of images of various 314 

plants and animals that are spatially and temporally replicated. A well-established machine 315 

learning algorithm provides iNaturalist users with a suggested species identification 316 

(www.inaturalist.org/). A few studies have manually scored traits such as flower presence or 317 

absence in order to identify phenological patterns across geography (Barve et al., 2020; Li et al., 318 

2021). Yet, manual scoring of more images would be necessary to expand upon these studies. 319 

Our pipeline provides a streamlined example of how to obtain large-scale trait data from 320 

community science images. This computer vision model can now be used to rapidly score the 321 

trait of interest, and can be used in perpetuity to gather data on more records as they become 322 

available on community science platforms. From August 5th, 2020 when we downloaded our 323 

core image dataset used for model training to January 13th, 2022, the number of research-grade 324 

P. cinereus records has nearly doubled (from 15,777 to 29,040). As well, many other Plethodon 325 

species have similar color polymorphisms and our model should be transferable to these other 326 

species. 327 

            Community science images are not perfect. With unstandardized images, expert decisions 328 

on feature classifications are key. For this work, we created a salamander color scoring guide 329 

(found in https://github.com/mhantak/Salamander_image_analysis) that was distributed to all 330 

volunteers who aided in creating the training dataset. While standardization of training data is 331 

important, some aspects of community science images remain out of our control and create 332 

unique challenges when designing machine learning experiments. For instance, during volunteer 333 

scoring, there were a few research-grade species misidentifications, which is unsurprising given 334 

that closely related species can look nearly identical to P. cinereus (Fisher-Reid and Wiens, 335 
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2015). These sorts of issues are inherent in working with community science data, but careful 336 

consideration is needed when making decisions about how to deal with these records. In our 337 

case, we scored misidentified species to the most similar looking morph of P. cinereus. For 338 

example, a Two-lined Salamander (Eurycea sp.), was categorized as a striped morph, while a 339 

Slimy Salamander (Plethodon glutinosus) was scored as an unstriped morph. Keeping these 340 

images of similar-looking species in the training dataset provides a more representative sample 341 

of what the model will encounter when analyzing new images. Further, there were several 342 

images solely of the ventral side of the salamander. While not a misidentification, the needed 343 

trait information is best obtained from a dorsal view, and ventral views would be better suited as 344 

additional images to augment iNaturalist records that also include a dorsal view. Due in part to 345 

these ventral images, there were 51 images out of 4,000 (1.3%) that were excluded from the 346 

training dataset because they could not be identified to morph. Other image problems included 347 

excessive blurriness, partial body part exposure (e.g., head only), or a salamander that was too 348 

distant in the photograph. Even if ~1% of all input images are unidentifiable and the model were 349 

to incorrectly guess on all of them, we maintain that this is still an acceptable error rate when 350 

dealing with community science images. Finally, we removed one extraneous data point from the 351 

data after determining it was well outside of the geographic range of the species. One record out 352 

of >20,000 is a very low error rate. 353 

 354 

Computer Vision Model Intricacies 355 

Our final computer vision model is based on a binary classification, ‘striped’ or ‘unstriped’ color 356 

morph. This simplified binary classifier works for the majority of individual P. cinereus across 357 

the distribution of the species. However, there is a third, uncommon erythristic (orange-red) 358 

color morph, which we combined with the striped morph (similar to another study; Fisher-Reid 359 

and Wiens, 2015) because there were too few examples in our training image set (n = 20) to train 360 

a model to identify it. In addition, other abnormal color phenotypes of P. cinereus can sometimes 361 

be found (see Moore and Ouellet, 2014). When preparing our training dataset, we found 16 362 

instances of a white (instead of orange or red) striped phenotype. As with the erythristic 363 

phenotype, these images were too sparse for model training and were lumped with striped 364 

morphs based on the existence of the dorsal stripe. Similar decisions were necessary for less 365 

frequent aberrant phenotypes. Single images that contained multiple salamanders also posed an 366 

issue with creating our training set. We initially considered attempting to train a model to 367 

determine the number of salamanders in an image or identify images with multiple salamanders. 368 

However, a stepwise classifier would require more training images for the additional categories 369 

and ultimately create a more unbalanced dataset, as there were less images with multiple 370 

salamanders. We, thus, adopted the simple solution of combining images with multiple 371 

salamanders of the same phenotype with images of single salamanders (e.g., an image with three 372 

striped morphs was binned into the “striped” class). We removed images that contained both 373 

color morphs from the training set because either category (striped or unstriped) could be 374 

considered correct for these images. At inference time, images with both color morphs were 375 
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considered to be correctly classified regardless of which color morph the model assigned them. 376 

Such images are quite rare and accounted for only 78 of the 4,000 images analyzed to generate 377 

the training and test sets.  378 

 379 

Climate & Color Morph Trends in the Eastern Red-backed Salamander 380 

The ecological niche models show that the morphs largely overlap (i.e., by 87%) in climatic 381 

niche space, but striped morphs have a wider niche breadth than unstriped morphs. The PCA 382 

highlights the variation between P. cinereus color morphs and in general shows that striped 383 

morphs can be found in areas with more variable climatic conditions. Logistic model findings are 384 

consistent with the PCA and demonstrate a positive association between striped morph frequency 385 

and elevation, metrics of precipitation, and two climate variables (BIO7 and BIO9). Whereas the 386 

proportion of striped morphs decreases with mean diurnal range (BIO2) and mean temperature of 387 

wettest quarter (BIO8). 388 

Our finding of a positive relationship between elevation and striped morph frequency is 389 

consistent with previous studies (Gibbs and Karraker, 2006; Moore and Ouellet, 2015; Hantak et 390 

al., 2021). Following the expectation that higher elevations are typically colder than lower 391 

elevations, we predicted the observed positive correlation. However, here and in other studies, 392 

striped morphs are not always associated with cooler temperatures. A recent study by Hantak et 393 

al. (2021) found the proportion of striped morphs increases with increasing elevation and mean 394 

annual temperature and, based on these results suggested that these predictors may be decoupled 395 

in relation to color morph frequency in P. cinereus. While the reason for greater proportion of 396 

striped morphs in higher elevations remains unclear, it may be possible that gene flow is reduced 397 

along altitudinal gradients in this species. Previous work has shown that elevation is a significant 398 

predictor of genetic differentiation in amphibians (Funk et al., 2005; Giordano et al., 2007; 399 

García-Rodríguez et al., 2021), including P. cinereus (Hantak et al., 2019); although moderate 400 

changes in elevation was not the most important driver of morph frequency variation in northern 401 

Ohio (Hantak et al., 2019).  402 

            Based on previous studies of climate associations between in P. cinereus color morphs, 403 

we predicted that striped morph occurrences would be more tightly linked with cooler and wetter 404 

climatic niches, whereas unstriped morphs would be more correlated with warmer, drier niches 405 

(Lotter and Scott, 1977; Moreno, 1989; Anthony et al., 2008). While we found the predicted 406 

trend for precipitation with striped morph frequency, our temperature-morph findings were more 407 

nuanced. The PCA and logistic model indicates that the striped morph is, in general, found in 408 

areas with more variability in temperature. Whereas the proportion of striped morphs decreases 409 

with mean diurnal range (BIO2), suggesting that striped morphs are negatively impacted by 410 

temperature fluctuations. In addition, the proportion of striped morphs decreased with mean 411 

temperature of wettest quarter (BIO8), indicating a possible humidity threshold for this morph.  412 

Much work on the polymorphism in P. cinereus relies heavily on findings that were 413 

conducted over relatively small spatial and temporal scales. In addition, some studies have found 414 

no climate-related morph trends or inconsistent patterns over time (Petruzzi et al., 2006; Muñoz 415 
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et al., 2016; Evans et al., 2018). Fisher-Reid et al. (2013) demonstrated that striped morphs were 416 

found in warmer, wetter habitats on Long Island, New York, while Hantak et al. (2021) found 417 

striped morphs were more associated with warmer, drier habitats in localities across Maryland, 418 

New York, and Virginia. Range-wide, dense data can help examine overall trends and localize 419 

those at finer scale in a unifying framework. Besides our current work, two other studies have 420 

attempted to examine climate-morph trends in P. cinereus across a greater proportion of the 421 

species range. But here again, these studies find conflicting results likely due to differences in 422 

datasets, covariates, and statistical approaches (Gibbs and Karraker, 2006; Moore and Ouellet, 423 

2015; Cosentino et al., 2017). It is possible that these variations in approaches lead to ambiguous 424 

color morph and climate relationships, or it may be there are more complex contextual cues that 425 

are being missed when attempting to understand polymorphism rates in P. cinereus. With 426 

physiological differences between the morphs (Moreno, 1989; Davis and Milanovich, 2010; 427 

Smith et al., 2015), climate likely plays some role in morph distribution, but other, local, 428 

selection pressures may be more important in this system.  429 

 430 

Next Steps 431 

The combination of community science and deep learning provides a powerful resource for 432 

future studies of phenotypic variation. With the rapid growth of data, including community 433 

science images, scalable resources such as computer vision models are necessary to keep pace 434 

with rate of data accumulation (Hassoun et al., 2021), which potentially provides a means to 435 

track temporal changes, not simply spatial ones. A further step for our research is to use this 436 

model to score color morphs of other species within the salamander genus Plethodon. In total, 437 

there are 10 species within Plethodon that contain the exact same dorsal striped/unstriped color 438 

pattern (Petranka, 1998; Highton, 2004). Occurrence data points are available for all of these 439 

other species on the iNaturalist platform, ranging from ~70 observations for the IUCN listed 440 

“vulnerable” mountaintop endemic, P. sherando (Highton and Collins, 2006) to >2,000 441 

observations of the more widespread Western Red-backed Salamander (P. vehiculum). Much 442 

research has been done on the morphs of P. cinereus, but very little is known about dynamics of 443 

the polymorphism in these other species, including whether the morphs diverge in climatic niche 444 

space. Although our computer vision model was developed to score salamander striped and 445 

unstriped color patterns, our entire workflow can also be transferred to any system that has 446 

discrete, easily identifiable, trait variation.  447 

 448 

Limitations of the Study 449 

Although machine learning holds much promise for rapidly gathering phenotypic data from 450 

digital images, the main limitation to using fully supervised deep learning approaches is the 451 

number of labeled training images (and, primarily, the time and expertise needed to generate the 452 

labels). Depending on the complexity of the intended classification, several thousand vouchers 453 

for each category may be necessary for training and validating the model. Here, we present a 454 

relatively simple problem: are the salamanders striped or unstriped? Adding categories or 455 
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addressing more complicated phenotypes will require more training images. In the deep learning 456 

literature, methods to reduce the labeling bottleneck (e.g., through one- or few-shot learning; 457 

O’Mahony et al. 2019; Wang et al. 2020) are being developed and future studies on the 458 

applicability and effectiveness of those methods to the application presented here are needed. 459 

The other main limitation to the type of work we presented in this paper is the imperfect nature 460 

of community science images. Misidentifications do occur, even when reducing the dataset to 461 

vetted (e.g., research-grade) images, and images themselves vary in absolute quality and relative 462 

usability for a particular trait scoring outcome. Solutions to dealing with these issues will be on a 463 

case-to-case basis, but in our work, we found that labeling misidentified species to the closest 464 

phenotype and filtering some of the most problematic images worked well. Misidentifications 465 

and unusable images are inherent when working with community science data, but they are 466 

infrequent. With tens of thousands of correctly identified images of usable quality, a few 467 

misidentifications and image issues will not dramatically impact the biological conclusions of the 468 

study. Certainly, future work can also include leveraging weak-learning approaches that are more 469 

robust to the presence of label noise and inaccuracies.  470 
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Table  727 

 728 

Table 1. Total number of images and how the images were classified for different datasets. 1) 729 

Volunteer scoring for the training and validation dataset. 2) Examination of a subset (500 730 

images) of the final model ensemble to retrieve an estimate of model accuracy. 3) Final computer 731 

vision model color pattern scores.  732 

 733 

Image Dataset Total Images Striped Unstriped Incorrect/unidentifiable 

Training & validating 4,000 3,005 866 129 

Ensemble accuracy 500 374 115 11 

Final output 20,318 15,413 4,905 NA 
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Figure Legends 763 

 764 

Figure 1. Color morphs of Plethodon cinereus. Representative iNaturalist images of the striped 765 

(left) and unstriped (right) color morphs of Plethodon cinereus. Photos and observations by 766 

iNaturalist users Jessica (iNaturalist user jessicapfund) and Myvanwy (iNaturalist user 767 

acuriousmagpie), respectively. 768 

 769 

Figure 2. Color morph data generated from the computer vision model. Georeferenced 770 

iNaturalist observations (N = 20,258) of P. cinereus. Record localities are colored by morph (red 771 

= striped, black = unstriped) based on the final computer vision model run.  772 

 773 

Figure 3. Climatic niche differences between color morphs of Plethodon cinereus. PCA of 774 

reduced climatic variables: A) PC1-PC2, B) PC1-PC3. Predicted presence points from striped 775 

and unstriped morph ecological niche models were grouped into hexbins (red = striped; black = 776 

unstriped). PCA loadings are represented by yellow arrows.   777 

 778 

Figure 4. Climatic predictors of color morph frequency. Top model effect plots of color 779 

morph frequency variation in P. cinereus. The proportion of color morphs is influenced by A) 780 

elevation; B) mean diurnal range (BIO2); C) temperature annual range (BIO7); D) mean 781 

temperature of wettest quarter (BIO8); E) mean temperature of direst quarter (BIO9); F) 782 

precipitation seasonality (BIO15); and G) precipitation of warmest quarter (BIO18). 95% 783 

confidence intervals are included in each plot.   784 
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Supplemental Information 805 

 806 

Supplemental Table 1. PCA bioclimatic variable loadings from the reduced set of elevation 807 

(ALT), temperature (BIO1-BIO9, and precipitation (BIO15 and BIO18) covariates. The standard 808 

deviation, proportion of variance, and cumulative proportion is provided for each PC axis.  809 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

ALT 0.217 0.256 -0.629 0.352 -0.070 0.476 0.101 0.356 

BIO2 0.510 0.174 -0.107 -0.499 0.197 0.336 0.011 -0.545 

BIO5 0.502 -0.119 0.444 -0.166 -0.051 0.181 -0.369 0.581 

BIO7 -0.161 0.552 -0.018 -0.517 0.190 -0.236 0.351 0.432 

BIO8 0.432 0.249 0.326 0.292 -0.469 -0.201 0.531 -0.130 

BIO9 0.136 -0.596 0.015 0.003 0.447 0.089 0.626 0.160 

BIO15 -0.012 0.407 0.383 0.482 0.653 0.117 -0.081 -0.091 

BIO18 0.458 -0.037 -0.378 0.125 0.265 -0.714 -0.221 0.027 

Standard deviation 1.548 1.450 1.161 0.872 0.793 0.680 0.439 0.330 

Proportion of variance 0.300 0.263 0.168 0.095 0.079 0.058 0.024 0.014 

Cumulative proportion 0.300 0.563 0.731 0.826 0.905 0.962 0.986 1.000 
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