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The recent breakthrough in in-silico protein structure pre-1

diction at near-experimental quality [1, 2] is revolutionizing2

structural biology and bioinformatics. The European Bioin-3

formatics Institute already holds 1 106 829 protein structures4

predicted by AlphaFold2 and plans to increase this to hun-5

dreds of millions this year [3], with billions to be expected6

soon [4]. The scale of this treasure trove poses challenges to7

state-of-the-art analysis methods.8

The most widely used approach to protein annotation and9

analysis is based on sequence similarity search [5–8]. The goal10

is to find homologous sequences from which properties of the11

query sequence can be inferred, such as molecular and cellu-12

lar functions and structure. Despite the success of sequence-13

based homology inference, many proteins cannot be annotated14

because detecting distant evolutionary relationships from se-15

quences alone remains challenging [9].16

Detecting similarity between protein structures by 3D su-17

perposition offers higher sensitivity for identifying homologous18

proteins [10]. The imminent availability of high-quality struc-19

tures for any protein of interest could allow us to use struc-20

ture comparison to improve homology inference and struc-21

tural, functional and evolutionary analyses. However, despite22

decades of effort to improve speed and sensitivity of struc-23

tural aligners, current tools are much too slow to cope with24

the expected scale of structure databases.25

Searching with a single query structure through a database26

with 100 M protein structures would take the popular TM-27

align [11] tool a month on one CPU core, and an all-versus-all28

comparison would take 10 millennia on a 1 000 core cluster.29

Sequence searching is four to five orders of magnitude faster:30

An all-versus-all comparison of 100 M sequences would take31

MMseqs2 [6] only around a week on the same cluster.32

Structural alignment tools (reviewed in [12]) are slower for33

two reasons. First, whereas sequence search tools employ34

fast and sensitive prefilter algorithms to gain orders of mag-35

nitude in speed, no comparable prefilters exist for structure36

alignment. Second, structural similarity scores are non-local:37

changing the alignment in one part affects the similarity in38

all other parts. Most structural aligners, such as the popu-39
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lar TM-align, Dali, and CE [11, 13, 14], solve the alignment40

optimization problem by iterative or stochastic optimization.41

To increase speed, a crucial idea is to describe the amino42

acid backbone of proteins as sequences over a structural alpha-43

bet and compare structures using sequence alignments [15].44

Structural alphabets thus reduce structure comparisons to45

much faster sequence alignments. Many ways to discretize46

the local amino acid backbone have been proposed [16]. Most,47

such as CLE, 3D-BLAST, and Protein Blocks, discretize the48

conformations of short stretches of usually 3 to 5 Cα atoms49

[17–19]. 3D-BLAST and CLE trained a substitution matrix50

for their structural alphabet and rely on an aligner like BLAST51

[5] to perform the sequence searches.52

For Foldseek, we developed a novel type of structural alpha-53

bet that does not describe the backbone but rather tertiary54

interactions. The 20 states of the 3D-interactions (3Di) al-55

phabet describe for each residue i the geometric conformation56

with its spatially closest residue j. Compared to the various57

backbone structural alphabets, 3Di has three key advantages:58

First, the dependency of consecutive 3Di letters on each other59

is weaker than for backbone structural alphabets, where for60

instance a helix state is followed by another helix state with61

high probability. The dependency decreases information den-62

sity and results in high-scoring false alignments. Second, the63

frequencies of the 3Di states are more evenly distributed than64

for backbone states, for which 60 % describe generic secondary65

structure states. This further increases information density in66

3Di sequences (Supplementary Table 1) and decreases false67

positives. Third, in backbone structural alphabets, less infor-68

mation is contained in the highly conserved protein cores (con-69

sisting mostly of regular secondary structure elements) and70

more in the predominantly non-conserved coil/loop regions.71

In contrast, 3Di sequences have the highest information den-72

sity in conserved cores and the lowest in loop regions.73

Foldseek (Fig. 1a) (1) discretizes the query structures into74

sequences over the 3Di alphabet and then searches through75

the 3Di sequences of the target structures using the double-76

diagonal k-mer-based prefilter and gapless alignment prefilter77

modules from MMseqs2, our open-source sequence search soft-78

ware [6]. (2) High scoring hits are aligned locally using 3Di79

(default) or globally with TM-align. The local alignment stage80

combines 3Di and amino acid substitution scores. The con-81

struction of the 3Di alphabet is summarized in Fig. 1b and82

Supplemental Fig. 2-4.83

To minimize high-scoring false positives caused by struc-84

turally disordered regions and to provide reliable E-values, for85

each match we subtract the score of the reversed query se-86
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FIG. 1. Foldseek workflow. (a) Foldseek searches a set of query structures through a set of target structures. (1) Query and target
structures are discretized into 3Di sequences (see b). To detect candidate structures, we apply the fast and sensitive k-mer and ungapped
alignment prefilter of MMseqs2 to the 3Di sequences, (2) followed by vectorized Smith-Waterman local alignment combining 3Di and amino
acid substitution scores. Alternatively, a global alignment is computed with a 1.7 times accelerated TM-align version (see Supplementary
Fig. 1). (b) Learning the 3Di alphabet: (1) 3Di states describe tertiary interaction between a residue i and its nearest neighbor j. Nearest
neighbors have the closest virtual center distance (yellow). Virtual center positions (Supplementary Fig. 2) were optimized for maximum
search sensitivity. (2) To describe the interaction geometry of residues i and j, we extract seven angles, the Euclidean Cα distance, and
two sequence distance features from the six Cα coordinates of the two backbone fragments (blue, red). (3) These 10 features are used to
define 20 3Di states by training a vector-quantized variational autoencoder [20] modified to learn states that are maximally evolutionary
conserved. For structure searches, the encoder predicts the best-matching 3Di state for each residue.

quence from the original score. Furthermore, a compositional87

bias correction lowers the substitution scores of 3Di states en-88

riched within a local 40 residue sequence window (see “Pair-89

wise local structural alignments”). E-values are calculated90

based on an extreme-value score distribution whose param-91

eters are predicted by a neural network from 3Di sequence92

composition and query length (see “E-Values”).93

We measured the sensitivity and speed of Foldseek, six94

protein structure alignment tools, an alignment-free struc-95

ture search tool (Geometricus [21]) and a sequence search96

tool (MMseqs2 [6]) on the SCOPe dataset of manually clas-97

sified single-domain structures [22]. Clustering SCOPe 2.0198

at 40 % sequence identity yielded 11 211 non-redundant pro-99

tein sequences ("SCOPe40"). We performed an all-versus-all100

search and compared the tools’ performance for finding mem-101

bers of the same SCOPe family, superfamily, and fold (true102

positive matches, TPs) by measuring for each query the frac-103

tion of TPs out of all possible correct matches until the first104

false positive (FP). FPs are matches to a different fold (see105

“SCOPe Benchmark”). The sensitivity was measured by the106

area under the curve (AUC) of the cumulative ROC curve up107

to the first FP (Fig. 2a).108

Foldseek reaches sensitivities at family and superfamily109

level below Dali, higher than the structural aligner CE, and110

similar to TM-align and TM-align-fast. Foldseek is much111

more sensitive than structural alphabet-based search tools 3D-112

BLAST and CLE-SW (Fig. 2a-b). Similarly, Foldseek has the113

second highest area under the precision-recall curve on each114

of the three levels (Fig. 2c, Supplementary Fig. 5). The115

performance is comparable across all six secondary structure116

classes in SCOPe (Supplementary Fig. 6). On this small117

SCOPe40 benchmark set, Foldseek is more than 4,000 times118

faster than TM-align and Dali, and over 21,000 times faster119

than CE (Fig. 2b). On the much larger AlphaFoldDB version120

1 (v1), where Foldseek approaches its full speed, it is around121

184,600 and 23,000 faster than Dali and TM-align, respec-122

tively (see below). Its E-values are accurate, which is critical123

for homology detection (Fig. 2d)124

We devised a reference-free benchmark to assess search125

sensitivity and alignment quality of structural aligners (see126

Fig. 2e,f) on a more realistic set of full-length, multi-domain127

proteins. We clustered the AlphaFoldDB (v1) to 34,270 struc-128

tures using BLAST and SPICi [23]. We selected randomly 100129

query structures from this set and aligned them against the130

remaining structures. TP matches are those with a Local Dis-131

tance Difference Test (LDDT) score [24] of at least 0.6 and FPs132

below 0.25, ignoring matches in-between. (For other thresh-133

olds and top-hit LDDT distributions, see Supplementary134

Figs. 7,8). LDDT measures the agreement of local residue-135

residue distances between two aligned structures. We set the136

LDDT thresholds according to the median inter- and intra-137

fold, -superfamily and -family LDDT scores of SCOPe40 align-138

ments, see Supplementary Fig. 9. A domain-based sensitiv-139

ity assessment would require a reference-based prediction of140

domains. To avoid it, we evaluated the sensitivity per residue.141

Fig. 2e shows the distribution of the fraction of query residues142

that were part of alignments with at least x TP targets with143

better scores than the first FP match. Again, Foldseek has144

similar sensitivity as Dali, CE, and TM-align and much higher145

than CLE-SW and MMseqs2.146

We analyzed the quality of alignments produced by the top147

five matches per query. We computed the alignment sensitiv-148

ity as the number of TP residues divided by the query length149

and the precision as the number of TP residues divided by150

the alignment length. TP residues are those with residue-151

specific LDDT score above 0.6, FP residues are below 0.25,152
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FIG. 2. Foldseek reaches similar sensitivities as structural aligners at thousands of times their speed (a) Cumulative
distributions of sensitivity for homology detection on the SCOPe40 database of single-domain structures. True positives (TPs) are
matches within the same SCOPe family, superfamily or fold, false positives (FPs) are matches between different folds. Sensitivity is the
area under the ROC curve up to the first FP. (b) Avg. sensitivity up to the first FP for family, superfamily and fold versus total runtime
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11 211 structures of SCOPe40. (c) Precision-Recall curve of
SCOPe40 superfamilies (see Supplementary Fig. 5 for family and fold). (d) Accuracy of reported E-values: Mean number of FPs per
query below the reported E-value threshold. (e) Search sensitivity on multi-domain, full-length AlphaFold2 protein models. 100 queries,
randomly selected from AlfaFoldDB (v1), were searched against this database. Per-residue query coverage is the fraction of residues that
are covered by at least x TP matches ranked before the first FP match. (f) Alignment quality for alignments of AlphaFoldDB (v1) protein
models, averaged over the top five matches of each of the 100 queries. Sensitivity = TP residues in alignment / query length, precision =
TP residues / alignment length.

residues with other scores are ignored. Fig. 2f shows the av-153

erage sensitivity versus precision of the 100×5 structure align-154

ments. Foldseek alignments are more accurate and sensitive155

than MMseqs2, CLE-SW, and TM-align, similarly accurate as156

Dali, and 16% less precise but 23% more sensitive than CE. In157

a reference-based alignment quality benchmark, Foldseek per-158

forms slightly below CE, Dali, and TM-align (Supplemen-159

tary Fig. 10).160

To find potentially problematic high-scoring Foldseek FPs,161

we searched the set of unfragmented models in AlphaFoldDB162

(v1) with average predicted LDDT [1] ≥ 80 against itself. We163

inspected the 1,675 (of 133 813) highscoring FPs (score per164

aligned column ≥ 1.0, TM-score < 0.5), revealing queries with165

multiple segments correctly folded by AlphaFold2 but with in-166

correct relative orientations (Supplementary Table 2, Sup-167

plementary Fig. 11). The segments were correctly aligned168

by Foldseek. This illustrates that 3D aligners as TM-align169

may overlook homologous structures that are not globally su-170

perposable, whereas the 1D aligner Foldseek (as the 2D aligner171

Dali) is independent of relative domain orientations and excels172

at detecting homologous multi-domain structures [12].173

We developed a webserver that can search174

through four structure databases, AlphaFoldDB175

(Uniprot50,Proteome,Swiss-Prot) and PDB100, using as176

alignment method standard Foldseek (default) or TM-align.177

The server takes PDB files as input and returns a list of178

matched structures, sequence alignments, bit-scores, E-values179

or TM-scores, and 3D structural alignments.180

We compared the Foldseek webserver with TM-align and181

Dali by searching with the SARS-CoV-2 RNA-dependent182

RNA polymerase (RdRp, PDB: 6M71_A [25]; 942 residues)183

through the AlphaFoldDB (Proteome+Swiss-Prot) containing184

804 872 structures. On a single CPU core, the search took185

10 days with Dali, 33h with TM-align, and 5 s with Fold-186

seek, 23 000 or 180 000 times faster. The 10 top hits of Fold-187

seek, TM-align, and DALI are to reverse transcriptases and188

kinases, which are known homologs (Supplementary Ta-189

ble 3). We have included the new Uniprot/AlphaFold (ver-190

sion 3) database clustered to 50% sequence identity, with191

52,327,413 million models, which Foldseek can search in 90192

seconds per 300-residue query structure using a single core.193

The availability of high-quality structures for nearly every194

folded protein is going to be transformative for biology and195

bioinformatics. Sequence-based analyses will soon be largely196

superseded by structure-based analyses. The main limitation197

in our view, the four orders of magnitude slower speed of struc-198

ture comparisons, is removed by Foldseek.199
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METHODS259

Overview Foldseek enables fast and sensitive comparison of260

large structure sets. It encodes structures as sequences over261

the 20-state 3Di alphabet and thereby reduces structural align-262

ments to 3Di sequence alignments. The 3Di alphabet devel-263

oped for Foldseek describes tertiary residue-residue interac-264

tions instead of backbone conformations and proved critical265

for reaching high sensitivities. Foldseek’s prefilter finds two266

similar, spaced 3Di k-mer matches in the same diagonal of267

the dynamic programming matrix. By not restricting itself to268

exact matches, the prefilter achieves high sensitivity while re-269

ducing the number of sequences for which full alignments are270

computed by several orders of magnitude. Further speed-ups271

are achieved by multi-threading and utilizing single instruction272

multiple data (SIMD) vector units. Owing to the SIMDe li-273

brary (github.com/simd-everywhere/simde), Foldseek runs on274

a wide range of CPU architectures (x86_64, arm64, ppc64le)275

and operating systems (Linux, macOS). The core modules of276

Foldseek, which build on the MMseqs2 framework [26], are de-277

scribed in the following paragraphs.
278

Create database The createdb module converts a set of279

Protein Data Bank (PDB; [27]) or macromolecular Crystal-280

lographic Information File (mmCIF) formatted files into an281

internal Foldseek database format using the gemmi package282

(project-gemmi.github.io). The format is compatible with283

the MMseqs2 database format, which is optimized for par-284

allel access. We store each chain as a separate entry in the285

database. The module follows the MMseqs2 createdb mod-286

ule logic. However, in addition to the amino acid sequence it287

computes the 3Di sequence from the 3D atom coordinates of288

the backbone atom and Cβ coordinates (see “Descriptors for289

3Di structural alphabet” and “Optimize nearest-neighbor se-290

lection”). Backbone atom and Cβ coordinates are only needed291

for the nearest-neighbor selection. For Cα-only structures,292

Foldseek reconstructs backbone atom coordinates using PUL-293

CHRA [28]. Missing Cβ coordinates (e.g. in glycines) are294

defined such that the four groups attached to the Cα are ar-295

ranged at the vertices of a regular tetrahedron. The 3Di and296

amino acid sequences and the Cα coordinates are stored in the297

Foldseek database.298

Prefilter The prefilter module detects double matches of299

similar spaced words (k-mers) that occur on the same diag-300

onal. The k-mer size is k=6 by default. Similar k-mers are301

those with a 3Di substitution matrix score above a certain302

threshold, whereas MMseqs2 uses the Blosum62 substitution303

matrix to compute the similarity. (see “3Di substitution score304

matrix”). The gapless double-match criterion suppresses hits305

to non-homologous structures effectively, as they are less likely306

to have consecutive k-mer matches on the same diagonal by307

chance. To avoid FP matches due to regions with biased 3Di308

sequence composition, a compositional bias correction is ap-309

plied in a way analogous to MMseqs2 [29]. For each hit we310

perform an ungapped alignment over the diagonals with dou-311

ble, consecutive, similar k-mer matches and sort those by the312

maximum ungapped diagonal score. Alignments with a score313

of at least 15 bits are passed on to the next stage.
314

Pairwise local structural alignments After the prefilter315

has removed the vast majority of non-homologous sequences,316

the structurealign module computes pairwise alignments317

for the remaining sequences using a SIMD accelerated Smith-318

Waterman algorithm [30, 31]. We extended this implementa-319

tion to support amino acid and 3Di scoring, compositional bias320

correction, and 256-bit-wide vectorization. The score linearly321

combines amino acid and 3Di substitution scores with weights322

1.4 and 2.1, respectively. We optimized these two weights and323

the ratio of gap-extend to gap open-penalty on ∼ 1% of align-324

ments (all-versus-all on 10% of randomly selected SCOPe40325

domains). A compositional bias correction is applied to the326

amino acid and 3Di scores. To further suppress high-scoring327

FP matches, for each match we align the reversed query se-328

quence against the target and subtract the reverse score from329

the forward score.330

E-Values To estimate E-values for each match, we trained331

a neural network to predict the mean µ and scale parameter332

λ of the extreme value distribution for each query. Module333

computemulambda takes a query and database structures as334

input and aligns the query against a randomly shuffled ver-335

sion of the database sequences. For each query sequence the336

module produces N random alignments and fits to their scores337

an extreme-value (Gumbel) distribution. The maximum like-338

lihood fitting is done using the Gumbel fitting function taken339

from HMMER3 (hmmcalibrate) [32]. To train the neural net-340

work, it is critical to use query and target proteins that include341

problematic regions such as structurally biased, disordered, or342

badly modeled regions that occur ubiquitously in full-length343

proteins or modeled structures. We therefore trained the net-344

work on 100 000 structures sampled from the AlphaFoldDB345

(v1). We trained a neural network to predict µ and λ from346

the amino acid composition of the query and its length (so a347

scrambled version of the query sequence would produce the348

same µ and λ). The network has 22 input nodes, 2 fully-349

connected layers with 32 nodes each (ReLU activation) and350

two linear output nodes. The optimizer ADAM with learning351

rate 0.001 was used for training. When testing the resulting352

E-values on searches with scrambled sequences, the log of the353

mean number of FPs per query turned out to have an accu-354

rately linear dependence on the log of the reported E-values,355

albeit with a slope of 0.32 instead of 1. We therefore correct356

the E-values from the neural network by taking them to the357

power of 0.32. We compared how well the mean number of358

FPs at a given E-value agreed with the E-values reported by359

Foldseek, MMseqs2, and 3D-Blast, (Fig. 2d for SCOPe40 and360

Supplementary Fig. 12 for AlphaFoldDB). We considered a361

hit as FP if it was in a different fold and had a TM-score lower362

than 0.3. Furthermore, we ignored all cross-fold hits within the363

four- to eight-bladed β-propeller superfamilies (SCOPe b.66-364

b.70) and within the Rossman-like folds (c.2-c.5, c.27, c.28,365

c.30, and c.31) because of the extensive cross-fold homologies366

within these groups [33].
367

Pairwise global structural alignments using TM-align368

We also offer the option to use TM-align for pairwise struc-369

ture alignment instead of the 3Di-based alignment. We im-370

plemented TM-align based on the Cα atom coordinates and371

made adjustments to improve the (1) speed and (2) memory372
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usage. (1) TM-align performs multiple floating-point based373

Needleman-Wunsch (NW) alignment steps, while applying dif-374

ferent scoring functions (e.g., score secondary structure, Eu-375

clidean distance of superposed structures or fragments, etc.)376

TM-align’s NW code did not take advantage of SIMD instruc-377

tions, therefore, we replaced it by parasail’s [34] SIMD-based378

NW implementation and extended it to support the different379

scoring functions. We also replaced the TM-score computa-380

tion using fast_protein_cluster’s SIMD based implementation381

[35]. Our NW implementation does not compute exactly the382

same alignment since we apply affine gap costs while TM-align383

does not (Supplementary Fig. 1). (2) TM-align requires 17384

bytes × query length × target length of memory, we reduce385

the constant overhead from 17 to 4 bytes. If Foldseek is used386

in TM-align mode (parameter --alignment-type 1), we re-387

place the reported E-value column with TM-scores normalized388

by the query length. The results are ordered in descending or-389

der by TM-score.
390

Descriptors for 3Di structural alphabet The 3Di alpha-391

bet describes the tertiary contacts between residues and their392

nearest neighbors in 3D space. For each residue i the confor-393

mation of the local backbone around i together with the local394

backbone around its nearest neighbor j is approximated by 20395

discrete states (see Supplementary Fig. 4). We chose the396

alphabet size A=20 as a trade-off between encoding as much397

information as possible (large A, see Supplementary Fig.398

13) and limiting the number of similar 3Di k-mers that we399

need to generate in the k-mer based prefilter, which scales with400

Ak. The discrete single-letter states are formed from neigh-401

borhood descriptors containing ten features encoding the con-402

formation of backbones around residues i and j represented by403

the Cα atoms (Cα,i−1,Cα,i,Cα,i+1) and (Cα,j−1,Cα,j ,Cα,j+1).404

The descriptors use the five unit vectors along the following405

directions,406

u1 :Cα,i−1 →Cα,i u4 :Cα,j→Cα,j+1

u2 :Cα,i →Cα,i+1 u5 :Cα,i →Cα,j

u3 :Cα,j−1 →Cα,j .

We define the angle between uk and ul as ϕkl, so cosϕkl =407

uT
k ul. The seven features cosϕ12, cosϕ34, cosϕ15, cosϕ35,408

cosϕ14, cosϕ23, cosϕ13, and the distance |Cα,i−Cα,j | describe409

the conformation between the backbone fragments. In addi-410

tion, we encode the sequence distance with the two features411

sign(i−j) min(|i−j|,4) and sign(i−j) log(|i−j|+1).
412

Learning the 3Di states using a VQ-VAE The ten-413

dimensional descriptors were discretized into an alphabet of 20414

states using a variational autoencoder with vector-quantized415

latent variables (VQ-VAE) [36]. In contrast to standard clus-416

tering approaches such as k-means, VQ-VAE is a nonlinear417

approach that can optimize decision surfaces for each of its418

states. In contrast to the standard VQ-VAE, we trained the419

VQ-VAE not as a simple generative model but rather to learn420

states that are maximally conserved in evolution. To that end,421

we trained it with pairs of descriptors xn,yn ∈R10 from struc-422

turally aligned residues, to predict the distribution of yn from423

xn.424

The VQ-VAE consists of an encoder and decoder network425

with the discrete latent 3Di state as a bottleneck in-between.426

The encoder network embeds the 10-dimensional descriptor427

xn into a two-dimensional continuous latent space, where the428

embedding is then discretized by the nearest centroid, each429

centroid representing a 3Di state. Given the centroid, the de-430

coder predicts the probability distribution of the descriptor yn431

of the aligned residue. After training, only encoder and cen-432

troids are used to discretize descriptors. Encoder and decoder433

networks are both fully connected with two hidden layers of434

dimension 10, a batch normalization after each hidden layer435

and ReLU as activation functions. The encoder, centroids,436

and decoder have 242, 40, and 352 parameters, respectively.437

The output layer of the decoder consists of 20 units predicting438

µ and σ2 of the descriptors x of the aligned residue, such that439

the decoder predicts N (x|µ,Iσ2) (with diagonal covariance).440

We trained the VQ-VAE on the loss function defined in441

Equation (3) in [36] (with commitment loss =0.25) using the442

deep-learning framework PyTorch (version 1.9.0), the ADAM443

optimizer, with a batch size of 512, and a learning rate of 10−3
444

over 4 epochs. Using Kerasify, we integrated the encoder net-445

work into Foldseek. The domains from SCOPe40 were split446

80 %/20 % by fold into training and validation sets. For the447

training, we aligned the structures with TM-align, removed448

all alignments with a TM-score below 0.6, and removed all449

aligned residue pairs with a distance between their Cα atoms450

of more than 5 Å. We trained the VQ-VAE with 100 different451

initial parameters and chose the model that was performing452

best in the benchmark on the validation dataset (the highest453

sum of ratios between 3Di AUC and TM-align AUC for family,454

superfamily and fold level).
455

3Di substitution score matrix We trained a BLOSUM-456

like substitution matrix for 3Di sequences from pairs of struc-457

turally aligned residues used for the “VAE-VQ training”.458

First, we determined the 3Di states of all residues. Next,459

the substitution frequencies between 3Di states were calcu-460

lated by counting how often two 3Di states were structurally461

aligned. (Note that the substitution frequencies from state A462

to B and the opposite direction are equal.) Finally, the score463

S(x,y)= 2 log2
p(x,y)

p(x)p(y) for substituting state x through state464

y is the log-ratio between the substitution frequency p(x,y)465

and the probability that the two states occur independently,466

scaled by the factor 2.467

3Di alphabet cross-validation We trained the 3Di alpha-468

bet (the VQ-VAE weights) and the substitution matrix by469

four-fold cross-validation on SCOPe40. We split the SCOPe40470

dataset into four parts, such that all domains of each fold471

ended up in the same part of the four parts. 3Di alphabets472

were trained on three parts and tested on the remaining part,473

selecting each of the four parts in turn as a test set. The 80:20474

split between training and validation sets to select the best al-475

phabet out of the 100 VQ-VAE runs happens within the 3/4 of476

the cross-validation training data. Supplementary Fig. 14477

shows the mean sensitivity (black) and the standard deviation478

(gray area) in comparison to the final 3Di alphabet, for which479

we trained the 3Di alphabet on the entire SCOPe40 (red). No480

overfitting was observed, despite training 492 parameters (282481

neural network, 210 substitution matrix entries). In Fig. 2482

we therefore show the benchmark results for the final 3Di al-483
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phabet, trained on the entire SCOPe40.484

Nearest-neighbor selection To select nearest-neighbor485

residues that maximize the performance of the resulting 3Di486

alphabet in finding and aligning homologous structures, we487

introduced the virtual center V of a residue. The virtual cen-488

ter position is defined by the angle θ (V -Cα-Cβ), the dihedral489

angle τ (V -Cα-Cβ-N), and the length l (|V −Cα|) (Supple-490

mentary Fig. 2). For each residue i we selected the residue j491

with the smallest distance between their virtual centers. The492

virtual center was optimized on the training and validation493

structure sets used for the VQ-VAE training by creating al-494

phabets for positions with θ∈ [0,2π], τ ∈ [−π,π] in 45◦ steps,495

and l∈{1.53Åk : k∈{1,1.5,2,2.5,3}} (1.53Å is the distance496

between Cα and Cβ). The virtual center defined by θ=270◦,497

τ =0◦ and l=2 performed best in the SCOPe benchmark.498

This virtual center preferably selects long-range, tertiary in-499

teractions and only falls back to selecting interactions to i+1500

or i−1 when no other residues are nearby. In that case, the501

interaction captures only the backbone conformation.502

SCOPe benchmark We downloaded SCOPe40 structures for503

the generation of 3Di states and for the performance evalua-504

tion of Foldseek.505

The SCOPe benchmark set consists of single domains with506

an average length of 174 residues. In our benchmark, we com-507

pare the domains all-versus-all. Per domain, we measured508

the fraction of detected TPs up to the first FP. For family-,509

superfamily- and fold-level recognition, TPs were defined as510

same family, same superfamily and not same family, and same511

fold and not same superfamily, respectively. Hits from differ-512

ent folds are FPs.513

Evaluation SCOPe benchmark In order to evaluate the514

sensitivity and precision of the structural alignment tools, we515

used a cumulative ROC curve analysis. After sorting the align-516

ment result of each query (described in Tools and options for517

benchmark comparison section), we calculated the fraction of518

TPs in the list up to the first FP, all excluding self-hits. We519

quantitatively measured the sensitivity by comparing the AUC520

for family-, superfamily-, and fold-level classifications. We521

evaluated only SCOPe members with at least one other fam-522

ily, superfamily and fold member.
523

Additionally, we plotted precision-recall curves for each tool524

(Fig. 2c, Supplementary Fig. 5). After sorting the align-525

ment results by the structural similarity scores (as described in526

Tools and options for benchmark comparison section) and ex-527

cluding self-matches, we generated a weighted precision-recall528

curve for family-, superfamily-, and fold-level classifications529

(precision=TP/(TP+FP), recall=TP/(TP+FN)). All counts530

(TP, FP, FN) were weighted by the reciprocal of their family-,531

superfamily-, or fold size. In this way, folds, superfamilies, and532

families contribute linearly with their size instead of quadrat-533

ically [33].
534

Runtime evaluations on SCOPe and AlphaFoldDB We535

measured the speed of structural aligners on a server with an536

AMD EPYC 7702P 64-core CPU and 1024 GB RAM mem-537

ory. On SCOPe40, we measured or estimated the runtime for538

an all-versus-all comparison. To avoid excessive runtimes for539

TM-align, Dali, and CE, we estimated the runtime by ran-540

domly selecting 10 % of the 11 211 SCOPe domains as queries.541

We measured runtimes on AlfaFoldDB for searches with the542

same 100 randomly selected queries used for the sensitivity543

and alignment quality benchmarks (Fig. 2e,f). Tools with544

multi-threading support (MMseqs2 and Foldseek) were ex-545

ecuted with 64 threads, tools without were parallelized by546

breaking the query set into 64 equally sized chunks and ex-547

ecuting them in parallel.
548

Reference-free multi-domain benchmarks Benchmark-549

ing using domain annotation from SCOPe/CATH of multi-550

domain proteins is problematic. Labeling the domains requires551

a gold-standard, reference annotation tool. The issue is that552

the benchmark would be uncontrollably biased in favor of tools553

that optimize similar alignment metrics or even make simi-554

lar mistakes as the reference tool used for annotation. False555

negatives of the annotation tool would give rise to numerous556

high-scoring FPs for more sensitive or dissimilar tools.557

We therefore devised two reference-free benchmarks that do558

not rely on any reference structural alignments. We clustered559

the AlphaFoldDB (v1) [37] using SPICi [38]. For this we first560

aligned all protein sequences all against all using an E-value561

threshold < 10−3 using BLAST (2.5.0+) [39]. SPICi produced562

34,270 clusters from the search result. For each cluster we563

picked the longest protein as representative. We randomly564

selected 100 representatives as queries and searched the set of565

remaining structures. The top five alignments of all queries566

are listed at wwwuser.gwdg.de/~compbiol/foldseek/multi_567

domain_top5_alignments/.568

For the evaluation, we needed to adjust the LDDT score569

function taken from AlphaFold2 [40]. LDDT calculates for570

each residue i in the query the fraction of residues in the 15 Å571

neighborhood which have a distance within 0.5,1,2,or 4 Å of572

the distance between the corresponding residues in the target573

[41]. The denominator of the fraction is the number of 15 Å-574

neighbors of i that are aligned to some residue in the target.575

This does not properly penalize non-compact models in which576

each residue has few neighbors within 15Å. We therefore use as577

denominator the total number of neighboring residues within578

15 Å of i.579

For the alignment quality benchmark (Fig. 2f), we classi-580

fied each aligned residue pair as TP or FP depending on its581

residue-wise LDDT score, that is, the fraction of distances582

to its 15 Å neighbors that are within 0.5, 1, 2, and 4 Å583

of the distance to the corresponding residues in the query,584

averaged over the four distance thresholds. TP residues are585

those with a residue-wise LDDT score of at least 0.6 and FPs586

below 0.25, ignoring matches in-between. For the sensitivity587

benchmark (Fig. 2e), TP residue-residue matches are those588

with an LDDT score of the query-target alignment of at least589

0.6 and FPs below 0.25, ignoring matches in-between. (The590

LDDT score of the query-target alignment is the average of591

the residue-wise LDDT score over all aligned residue pairs.)592

The choice of thresholds is illustrated in Supplementary593

Fig. 8.
594

All-vs-all search of AlphaFoldDB with Foldseek We595

downloaded the AlphaFoldDB (v1) [37] containing 365,198596

protein models and searched it all-versus-all using Foldseek597

-s 9.5 --max-seqs 2000. For our second best hit analysis598

we consider only models with: (1) an average Cα’s pLDDT599
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greater than or equal to 80, and (2) models of non-fragmented600

domains. We also computed the structural similarity for each601

pair using TM-align (default options).
602

Tools and options for benchmark comparison The603

following command lines were used in the SCOPe as well as604

the multi-domain benchmark:605

Foldseek We used Foldseek commit 4de45 during this606

analysis. Foldseek was run with the following parameters:607

--threads 64 -s 9.5 -e 10 --max-seqs 2000
608

MMseqs2 We used the default MMseqs2 (release 13-45111)609

search algorithm to obtain the sequence-based align-610

ment result. MMseqs2 sorts the results by e-value and611

score. We searched with: --threads 64 -s 7.5 -e 10000612

--max-seqs 2000
613

CLE-Smith-Waterman We used PDB Tool v4.80614

(github.com/realbigws/PDB_Tool) to convert the bench-615

mark structure set to CLE sequences. After the conversion,616

we used SSW [31] (commit ad452e) to align CLE sequences617

all-versus-all. We sorted the results by alignment score. The618

following parameters were used to run SSW: (1) protein619

alignment mode (-p), (2) gap open penalty of 100 (-o 100),620

(3) gap extend penalty of 10 (-e 10 ), (4) CLE’s optimized621

substitution matrix (-a cle.shen.mat), (5) returning align-622

ment (-c). The gap open and extend values were inferred623

from DeepAlign [42]. The results are sorted by score in624

descending order.625

ssw_test -p -o 100 -e 10 -a cle.shen.mat -c
626

3D-BLAST We used 3D-BLAST (beta102) with BLAST+627

(2.2.26) and SSW [31] (version ad452e). We first converted628

the PDB structures to a 3D-BLAST database using 3d-blast629

-sq_write and 3d-blast -sq_append. We searched the630

structural sequences against the database using blastp631

with the following parameters: (1) we used 3D-BLAST’s632

optimized substitution matrix (-M 3DBLAST), (2) number of633

hits and alignments shown of 12 000 (-v 12000 -b 12000),634

(3) E-value threshold of 1 000 (-e 1000) (4) disabling query635

sequence filter (-F F) (5) gap open of 8 (-G 8), and (6) gap636

extend of 2 (-E 2). 3D-BLAST’s results are sorted by E-value637

in ascending order:638

blastall -p blastp -M 3DBLAST -v 12000 -b 12000 -e639

1000 -F F -G 8 -E 2640

For Smith-Waterman we used (1) gap open of 8 (2) gap641

extend of 2 and (3) returning alignments (-c) (4) using the642

3D-BLAST’s optimized substitution matrix (-a 3DBLAST),643

(5) protein alignment mode (-p): ssw_test -o 8 -e 2 -c644

-a 3DBLAST -p. We noticed that the 3D-BLAST matrix645

with Smith-Waterman resulted in a similar performance646

to CLE: 0.717 0.230 0.011 for family-, superfamily- and647

fold-classification, respectively. We excluded 3D-BLAST’s648

measurement from the multi-domain benchmark since it649

produced occasionally high-scores (>107) for single residue650

alignments.
651

TM-align We downloaded and compiled the TMalign.cpp652

source code (version 2019/08/22) from the Zhang group653

website. We ran the benchmark using default parameters and654

-fast for the fast version. TM-align reports two TM-scores:655

(1) normalized by the length of 1st chain (query) or (2)656

normalized by the length of the 2nd chain (target). We657

used the TM-score normalized by the 1st chain (query) in658

all our analyses since, to be informative for searches with659

multi-domain proteins, we need to assess how well and how660

much of the query is aligned, not how well and how much of661

the target.662

Default: TMalign query.pdb target.pdb663

Fast: TMalign query.pdb target.pdb -fast
664

Dali We installed the standalone DaliLite.v5. For the665

SCOPe40 benchmark set, input files were formatted in DAT666

files with Dali’s import.pl. The conversion to DAT format667

produced 11 137 valid structures out of the 11 211 initial668

structures for the SCOPe benchmark, and 34,252 structures669

out of 34,270 spici clusters. After formatting the input files,670

we calculated the protein alignment with Dali’s structural671

alignment algorithm. The results were sorted by Dali’s672

Z-score in descending order:673

import.pl –pdbfile query.pdb –pdbid PDBid –dat DAT674

dali.pl –cd1 queryDATid –db targetDB.list –TITLE675

systematic –dat1 DAT –dat2 DAT –outfmt "summary"676

–clean677

CE We used BioJava’s [43] (version 5.4.0) implementation of678

the combinatorial extension (CE) alignment algorithm. We679

modified one of the modules of BioJava under shape configu-680

ration to calculate the CE value. Our modified CEalign.jar681

file requires a list of query files, path to the target PDB682

files, and an output path as input parameters. This Java683

module runs an all-versus-all CE calculation, with unlimited684

gap size (maxGapSize -1) to improve alignment results [44].685

The results were sorted by Z-score in descending order. For686

the multi-domain benchmark, we excluded 1 query that was687

running over 16 days. The Jar file of our implementation of688

CE calculation is provided.689

java -jar CEalign.jar querylist.txt690

TargetPDBDirectory OutputDirectory
691

Geometricus We included Geometricus [45] in the SCOPe692

benchmark as a representative of alignment-free tools.693

Geometricus discretizes fixed-length backbone fragments694

(shape-mers) using their 3D moment invariants and rep-695

resents structures as a fixed-length count vector over the696

shape-mers. To calculate the shape-mer-based structural697

similarity of the benchmark set, we used Caretta-shape’s698

Python implementation of multiple structure alignment699

(github.com/TurtleTools/caretta/caretta/multiple_700

alignment.py), which computes the BrayCurtis similarity701

between the Geometricus shape-mer vectors. Our modified702

version extracts structural information from the input files703

and generates all-versus-all pairwise structural similarity704

score as an output. The python code of our implementation705

of Geometricus is provided.706

python runGeometricus_caretta.py -i querylist.txt707

-o OutputDirectory
708

HOMSTRAD alignment benchmark The HOMSTRAD709

database contains expert-curated homologous structural710

alignments for 1032 protein families [46]. We downloaded the711

latest HOMSTRAD version (mizuguchilab.org/homstrad/712

data/homstrad_with_PDB_2022_Aug_1.tar.gz) and picked713
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the pairwise alignments between the first and last members of714

each family, which resulted in structures of a median length715

of 182 residues. We used the same parameters as in the716

SCOPe and multi-domain benchmark. We forced Foldseek,717

MMseqs2, and CLE-Smith-Waterman to return an alignment718

by switching off the prefilter and E-value threshold. With719

the HOMSTRAD alignments as reference, we measured for720

each pairwise alignment the sensitivity (fraction of residue721

pairs of the HOMSTRAD alignment that were correctly722

aligned) and the precision (fraction of correctly aligned723

residue pairs in the predicted alignment). Dali, CE and724

CLE-Smith-Waterman failed to produce an alignment for725

35, 1 and 1 out of 1032 pairs respectively, which were rated726

with a sensitivity of zero. The mean sensitivity and precision727

are shown in Supplementary Fig. 10 and all individual728

alignments are listed in homstrad_alignments.txt at729

wwwuser.gwdg.de/~compbiol/foldseek/.
730

Webserver The Foldseek webserver is based on the MM-731

seqs2 webserver [47]. To allow for searches in seconds we732

implemented MMseqs2’s pre-computed database indexing733

capabilities in Foldseek. Using these, the search databases734

can be fully cached in system memory by the operating735

system and instantly accessed by each Foldseek process,736

thus avoiding expensive accesses to slow disk drives. A737

similar mechanism was used to store and read the associated738

taxonomic information. The AlpaFoldDB/Uniprot50 (v3),739

AlphaFoldDB/Proteome (v2), AlphaFoldDB/Swiss-Prot (v2),740

and PDB100 require 459GB, 7.7GB, 5.5GB, and 3.7GB741

RAM, respectively. If Cα coordinates are omitted from the742

AlpaFoldDB/Uniprot50 (v3) then the database can be used743

with 304GB RAM. The databases are kept in memory using744

vmtouch (github.com/hoytech/vmtouch). Databases are745

only required to remain resident in RAM, if Foldseek is used746

as a webserver. During batch searches, Foldseek adapts747

its memory use to the available RAM of the machine. We748

implemented a structural visualization using the NGL viewer749

[48] to aid the investigation of pairwise hits. Since we only750

store Cα traces of the database proteins, we use PULCHRA751

[28] to complete the backbone of these sequences, and also752

of the query if necessary, to enable a ribbon visualization753

[49] of the proteins. For a high quality superposition we754

use TM-align [50] to superpose the structures based on the755

Foldseek alignment. Both PULCHRA and TM-align are756

executed within the users’ browser using WebAssembly. They757

are available as pulchra-wasm and tmalign-wasm on the758

npm package repository as free open-source software.
759

Code availability Foldseek is GPLv3-licensed free open760

source software. The source code and binaries for Foldseek can761

be downloaded at github.com/steineggerlab/foldseek.762

The webserver code is available at github.com/soedinglab/763

mmseqs2-app. The analysis scripts are available at:764

github.com/steineggerlab/foldseek-analysis.
765

Data availability Benchmark data is available at:766

wwwuser.gwdg.de/~compbiol/foldseek767
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