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Research Data 

The habitat suitability maps and functional connectivity maps are made available as GeoTiff 

images via Figshare (10.6084/m9.figshare.19130078).  
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Abstract  1 

Pollinating invertebrates are vital to terrestrial ecosystems but are impacted by anthropogenic 2 

habitat loss/fragmentation and climate change. Conserving and improving landscape 3 

connectivity is important to offset those threats, yet its assessment for invertebrates is 4 

lacking. In this study, we evaluated the functional connectivity between protected areas in 5 

Australia for 59 butterfly species, under present conditions and different future scenarios (for 6 

2050 and 2090) of land-use, land-cover, and climate change. Using circuit-theory analysis, 7 

we found that functional connectivity under present conditions varies widely between 8 

species, even when their estimated geographical ranges are similar. Under future scenarios, 9 

functional connectivity is predicted to decrease overall, with negative changes worsening 10 

from 2050 to 2090, although a few species are positive exceptions. We have made our results 11 

available as spatial datasets to allow comparisons with taxa from other studies and can be 12 

used to identify priority areas for conservation in terms of establishing ecological corridors or 13 

stepping-stone habitat patches. Our study highlights the importance of considering pollinating 14 

invertebrates when seeking holistic conservation and restoration of a landscape’s functional 15 

connectivity, underscoring the need to expand and promote protected areas to facilitate 16 

functional connectivity under future scenarios of global change.  17 

 Keywords 18 

Circuit theory, ecological corridors, habitat suitable models, Lepidoptera  19 
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1. Introduction  20 

Landscape connectivity is defined as the extent to which the landscape facilitates the 21 

movement of organisms between habitat patches. It can be structural or functional; the former 22 

is dependent on only the landscape structure, while the latter (which is of focus in this study) 23 

also considers species attributes such as habitat preference and dispersal ability (Rudnick et 24 

al. 2012; Costanza and Terando 2019). Habitat loss and fragmentation increase barriers 25 

between suitable habitats reducing gene flow and the ability of a species to track climate 26 

change. Maintaining and restoring landscape connectivity is considered as an important 27 

adaptation strategy to reduce the impact of habitat loss and fragmentation and climate change 28 

and thereby better conserve biodiversity (Rudnick et al. 2012; Costanza and Terando 2019; 29 

Littlefield et al. 2019).  30 

Studies on habitat connectivity (i.e., the degree of functional connectivity between patches of 31 

preferred or obligate habitat for individual species) are typically biased towards mammals 32 

and birds (Correa Ayram et al. 2016; Dickson et al. 2019). This leaves a gap in the literature 33 

for invertebrates—particularly pollinating invertebrates—although there are exceptions (e.g. 34 

Filz et al. 2013; Chen 2017; Kirk et al. 2018; Miranda et al. 2021). This gap needs to be 35 

filled, as habitat connectivity is important for sustaining pollinator abundance, diversity, and 36 

dispersal (Potts et al. 2016). Indeed preserving habitat connectivity is an important strategy 37 

for conserving insects (Samways et al. 2020) and its loss can have a negative impact on 38 

pollination (Mitchell et al. 2013).  39 

Butterflies make for an ideal functional-connectivity case study because they are a major 40 

pollinating taxon thought to be able to transfer pollen over larger distances than other insects 41 

(Winfree et al. 2011) and are demonstrably impacted by habitat loss/fragmentation and 42 

climate change (Miao et al. 2020; Warren et al. 2021). In some regions, available protected 43 
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areas are inadequate for butterfly conservation (Chowdhury et al. 2021a) while in other cases, 44 

the effectiveness of protected areas for butterflies is predicted to decrease under climate 45 

change (Cheng and Bonebrake 2017). Expanding and improving the connectivity of protected 46 

areas is part of the Aichi Biodiversity Targets (Target 11; Convention on Biological Diversity 47 

2022). Thus, maintaining and promoting ecological corridors or stepping-stone habitats is 48 

critical to facilitate species movement between metapopulations to prevent inbreeding and 49 

promote recolonisation after extirpation events (Sands 2018), as well as to facilitate 50 

movement in response to climate change (Stewart et al. 2019; Malakoutikhah et al. 2020).  51 

The aim of this study is to assess the landscape-scale functional connectivity for butterflies 52 

between protected areas in Australia, under both present conditions and different future 53 

scenarios of land-use, land-cover and climate change (for 2050 and 2090). We assessed the 54 

connectivity for 59 species of butterflies using the Circuitscape Julia package (Anantharaman 55 

et al. 2020) which is based on circuit theory (McRae et al. 2008). Circuitscape uses circuit 56 

theory to predict patterns of movement or dispersal of organisms or genes (McRae et al. 57 

2008) and has been used for studying landscape population genetics and identifying animal 58 

movement corridors (Dickson et al. 2019). Circuit theory operates on a continuous layer and 59 

considers multiple pathways for movements, making it more flexible than other, simpler 60 

methods like the least-cost pathway (McRae et al. 2008). We then considered the 61 

conservation implications of our findings for habitat prioritisation.  62 

 63 

2. Materials and Methods 64 

2.1 Butterfly species 65 
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Occurrence (presence) data were from the Atlas of Living Australia occurrence downloaded 66 

at https://doi.org/10.26197/ala.9028e7dc-2566-44de-8999-dbb36c6685a9 Accessed 15 67 

February 2021. Records were limited to those from 1960 onwards and classified as ‘human 68 

observation’. Duplicate records based on latitude and longitude were removed. We used 69 

spatial thinning to reduce spatial autocorrelation by removing records closer than a minimum 70 

nearest neighbour distance (NMD) using the R package spThin (Aiello-Lammens et al. 2015). 71 

We followed the method by Amin et al. (2021) to find the optimal NMD for each species 72 

separately – adjusting it based on the human activity index. To achieve this, firstly, we 73 

stratified Australia into low, medium and high human activity grids of resolution 25 km2 74 

using Global Human-Footprint data (Venter et al. 2018). Secondly, we removed all records 75 

(i.e., of all species combined) closer than 1.25 km to ensure that data in low-density grids 76 

were relatively uncorrelated. Then, for each species, we estimate the threshold number of re-77 

samples to be retained per grid (h) using: h= ni/Ni where ni represents the number of samples 78 

in low-activity grids and Ni is the number of low-activity grids. The threshold values were 79 

then applied to calculate the maximum number of re-samples to be retained from medium and 80 

high-density grids, using the formula: njk=h × Njk, where n is the maximum number of re-81 

samples from medium j or high k density grids, and N is the number of medium j or high 82 

grids k. This was repeated 20 times per sampling run and tuned the NMD for high- and 83 

medium-activity grids to achieve the maximum number of re-samples (njk) for each species. 84 

To enable robust model training and validation, we selected only species with at least 100 85 

unique occurrence records (after removing duplicates and accounting for spatial 86 

autocorrelation) for high model performance and estimation of geographical ranges. An 87 

exception to this rule was made for the Ptunarra Brown Butterfly (Oreixencia ptunarra 88 

Couchman 1953) which had 96 records as it is a threatened species (Geyle et al. 2021). We 89 

pooled all subspecies into their respective species as this enabled each species to have an 90 
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adequate number of occurrence records. Consequently, we modelled 59 species in this study, 91 

belonging to the Nymphalidae, Lycaenidae, Hesperiidae, Papilionidae families (Supplemental 92 

Table A1). 93 

2.2 Habitat suitability models 94 

In this study, we used habitat-suitability maps as the ‘resistance layer’ which represents the 95 

degree to which the landscape facilitates or blocks the movement of an individual across a 96 

given cell. Here, high suitability indicates low resistance (and therefore, a high probability of 97 

movement). Habitat suitability models are commonly used to estimate resistance in 98 

connectivity models (Correa Ayram et al. 2016), and this approach has the advantage of also 99 

providing an opportunity to assess the potential impact of climate change on functional 100 

connectivity (Ashrafzadeh et al. 2019; Bonnin et al. 2020; Malakoutikhah et al. 2020).  101 

To model habitat suitability, we selected all 19 bioclimatic variables (version 2.1; 102 

https://www.worldclim.org; Fick and Hijmans 2017), elevation (https://www.worldclim.org), 103 

and land-use and land-cover change (LULCC; Li et al. 2017) as predictors. The LULCC 104 

variable was resampled to match the resolution of the bioclimatic and elevation variables 105 

(0.05°, or ~5 km at Australian latitudes) using the raster R package (Hijmans 2020). We then 106 

reduced the number of predictors by removing highly correlated predictors using a threshold 107 

value of 0.7 (Dormann et al. 2013) and implemented using the findCorrelation function in 108 

caret R package (Kuhn 2021). If two variables were highly correlated, then the variable with 109 

the largest mean absolute correlation was removed. All non-correlated predictors were used 110 

for model fitting for each species (Supplementary Table A1). 111 

The study area for each species was constrained using its estimated kernel geographical 112 

range, which was implemented using the adehabitatHR R package (Calenge 2006). We 113 

assumed that a species can disperse within the entirety of its geographical range.  114 
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Pseudo-absences were generated using a random sampling method, with the presence to 115 

pseudo-absence ratio set to unity. We used k-fold cross-validation (k=10) for algorithm 116 

optimisation and implemented using the caret R package (Kuhn 2021). The algorithms used 117 

in the study include random forest, artificial neural network, k-nearest neighbour, flexible 118 

discriminant analysis, and naïve Bayes, as they have different operating mechanisms and so 119 

capture a diversity of machine-learning approaches.  120 

Random forest is decisions trees based on bagging (Breiman 2001). Artificial neural network 121 

consists of a network of neurons that are considered as the processing units in a strictly feed-122 

forward neural network (Sazli 2006). k-nearest neighbour works under the assumption that 123 

similar things exist in proximity (in parameter hyperspace) and thus classifies data most 124 

common among its neighbours (Cover and Hart 1967). Flexible discriminant analysis uses 125 

multivariate adaptive regression splines to separate the data  (Hastie et al. 1994), while naïve 126 

Bayes is based on conditional probability (Ren et al. 2009).  127 

Habitat-suitability models were fitted using the trained algorithms, and then ensembled. An 128 

ensemble algorithm averages the prediction of structurally different algorithms and has the 129 

potential to overcome uncertainty in model selection and improve prediction accuracy by 130 

reducing variance and bias (Dormann et al. 2018). As such, we averaged the algorithms using 131 

an unweighted method and assessed the goodness of fit using AUC and TSS (Allouche et al. 132 

2006).  133 

To account for the influence of global climate models (GCMs) we selected CanESM5 and 134 

MIROC6, which have been used in previous studies in Australia (e.g., Briscoe et al. 2016; 135 

Ofori et al. 2017; Morán�Ordóñez et al. 2018) under Shared Socio-economic Pathways 136 

(SSP) 7.0, a high-emission scenario (IPCC 2021). For the LULCC variable, we selected A1 137 

(low population growth, sprawling urban expansion, very high economic growth, rapid 138 
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technological innovation, strong biofuels demand including cellulose-based ethanol) and B1 139 

(low population growth, compact urban expansion, high economic growth, medium 140 

technological innovation, low overall energy use, lower demand for biofuels) scenarios which 141 

are both oriented globally (Li et al. 2017). Future predictions were made for each species per 142 

algorithm per year per climate model per LULCC scenario, and then ensembled (unweighted) 143 

per year (2050 and 2090).  144 

2.3 Functional connectivity models  145 

Functional connectivity was assessed using the Circuitscape package in the Julia 146 

Programming Language (Anantharaman et al. 2020). Circuitscape calculates connectivity 147 

between focal nodes (habitat patches or populations) across a resistance layer (represents the 148 

degree to which the landscape impedes the movement of an individual across a given cell) 149 

and in analogy to an integrated circuit board in electronics, then calculates the effective 150 

resistance and ‘current flow’ which in the ecological interpretation is a measure of net 151 

movement probability (McRae et al. 2008). The modelling of functional connectivity results 152 

in maps with cumulative current, where the intensity of current is a proxy for a species’ 153 

movement at each pixel (Grafius et al. 2017).  154 

In this study, we used the centroids of protected areas as focal nodes (Mukherjee et al. 2021);  155 

for this purpose, we only selected protected areas with an average habitat suitability of ≥ 0.7 156 

as this represented a high threshold of suitability. We identified focal nodes for each species 157 

individually, under present climate conditions and future climate-change scenarios (for 2050 158 

and 2090).  159 

The resistance layer in our study of butterflies is equal to the sum of the habitat suitability 160 

model and Global Human Footprint data (Venter et al. 2018). The Global Human Footprint is 161 

a measure of human impact (Venter et al. 2018), where cells with high impact are associated 162 
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with high resistance, likely to be a function of dispersal limitation rather than habitat 163 

suitability, as urban and agricultural areas can reduce the ability of butterflies to move across 164 

landscapes and infrastructure such as roads results in significant mortality of butterflies 165 

(Chowdhury et al. 2021b). The predicted habitat-suitability data ranges from 0.0 to 1.0 (low 166 

to high resistance), while the Global Human Footprint data ranges from 0.0 to 100.0 (high to 167 

low). To match the scale and direction of these two data sets, we transformed the habitat 168 

suitability data by subtracting the data from 1 and multiplying it by100. The transformed 169 

habitat suitability data was added to the Global Human Footprint data and then rounded up to 170 

the nearest integer, because Circuitscape does not accept non-integer values. Due to the 171 

unavailability of future Global Human Footprint data, we were forced to assume that this data 172 

is constant under present conditions and future scenarios. The final resistance layer scales 173 

from 0 to 200 (lowest to highest possible resistance). Resistance layers were created for each 174 

species under present climate conditions and future climate scenarios (for 2050 and 2090).  175 

We predicted the functional connectivity for each species under present conditions and then 176 

calculated their goodness of fit (AUC) to assess model accuracy (Jackson et al. 2016). We 177 

also calculated the mean cumulative current (with standard error) of the connectivity models. 178 

If a pixel facilitates connectivity, then the presence points should on average have higher 179 

values than pseudo-absences (Grafius et al. 2017; Rodrigues et al. 2021). We then predicted 180 

the functional connectivity for each species under future scenarios (for 2050 and 2090). And 181 

assessed the difference in functional connectivity between present conditions and future 182 

scenarios (i.e., future minus present functional connectivity model) as well.  183 

 184 

3. Results  185 
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The habitat suitability models for all 59 Australian butterfly species with sufficient data 186 

achieved high goodness of fit for both AUC and TSS scores. The highest and lowest AUC 187 

scores were 0.99 and 0.94 respectively, while the highest and lowest TSS scores were 0.92 188 

and 0.65 respectively (Supplemental Table A1). The connectivity models also achieved high-189 

to-moderate goodness of fit, with AUC scores ranging between 0.94 and 0.68 190 

(Supplementary Table A1). The mean cumulative current of the presence points was higher 191 

than that of the pseudo-absences for functional connectivity models of all species 192 

(Supplementary Fig. A1-2).  193 

The circuit-theory results (a proxy for functional connectivity) of all the families except for 194 

Papilionidae predicted similar future trends, with mean cumulative current expected to 195 

decrease through to 2090 (Fig. 1). However, the results for individual species provided a 196 

more nuanced perspective than looking at families and exhibited considerably more variation. 197 

For example, Dispar compacta (Hesperiidae) has a higher mean cumulative current than 198 

Hypolycaena phorbas (Lycaenidae) with current predicted to decrease for the former and 199 

increase for the latter (Fig. 2b, d), whereas for Acraea andromacha (Nymphalidae) and 200 

Graphium choredon (Papilionidae), future scenarios show similar results to present-day 201 

conditions (Fig. 2a, c).  202 
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 203 

Fig 1. Mean cumulative current with standard error of the families (a) Hesperiidae (b) 204 

Lycaenidae, (c) Nymphalidae, and (d) Papilionidae under present conditions and future 205 

scenarios of climate change (for the year 2050 and 2090).   206 
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 207 

Fig 2. Mean cumulative current with standard error of the species (a) Acraea andromacha (b) 208 

Dispar compacta, (c) Graphium choredon, and (d) Hypolycaena phorbas under present 209 

conditions and future scenarios (the year 2050 and 2090).  210 

 211 

Under present conditions, functional connectivity is modelled to vary between species and 212 

regionally, including those with similar geographical ranges. For example, Catochrysops 213 

panormus has higher connectivity along the northern part of Australia than Graphium 214 

eurypylus, Papilio fuscus, and Ypthima arctous (Fig. 3), while Graphium eurypylus and 215 

Ypthima arctous have higher connectivity along the eastern coast than the other species (Fig 216 

3), although those species are found across a similar geographic range. 217 
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 218 

Fig 3. Functional connectivity of the species (a) Catochrysops panormus (b) Graphium 219 

eurypylus, (c) Papilio fuscus, and (d) Ypthima arctous under present-day conditions.  220 

 221 

Most species (43 out of 59) showed consistent, ongoing declines in functional connectivity 222 

between the present and 2090 (Fig. 4). For Arhopala eupolis, Candalides erinus, Cephrenes 223 

augiades, Jamides phaseli, Nacaduba biocellata, Oreixenica ptunarra, Papilio fuscus, 224 

Trapezites symmomus, and Vanessa kershawi (9 out of the 59 species) the percentage of 225 

change between future scenarios 2050 and 2090 are similar (Fig 4). While for Charaxes 226 

sempronius, Cressida cressida, Famegana alsulus, Hypolycaena phorbas, Junonia hedonia, 227 

Pelopidas lyelli, and Zizeeria karsandra (7 out of the 59 species) the percentage of positive 228 

changes is higher in the year 2090 than in 2050 (Fig 4).  229 

Although the percentage of change between future scenarios 2050 and 2090 are similar, for 230 

the Oreixenica ptunarra (Fig. 4) functional connectivity is still predicted to decrease, 231 
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particularly along the north-west and eastern parts of its range (Fig. 5a-c). And while the 232 

percentage of positive changes is higher in the year 2090 than 2050 for Pelopidas lyelli and 233 

Famegana alsulus (Fig 4) functional connectivity is predicted to increase along the southern 234 

part of the range for Pelopidas lyelli (Fig. 5d-f) and along the north-eastern part of the range 235 

for Famegana alsulus (Fig. 5g-i) 236 

 237 

Fig 4. Percentage of negative and positive changes in functional connectivity for each 238 

Australian butterfly species, grouped by family, under future scenarios (a) 2050 and (b) 2090. 239 
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 240 

Fig 5. Functional connectivity of the species (a-c) Oreixenica ptunarra, (d-f) Pelopidas lyelli, 241 

and (g-i) Famegana alsulus under present conditions and future scenarios (for 2050 and 242 

2090).  243 

 244 

Changes in functional connectivity were predicted to occur both along the periphery of a 245 

species’ geographical range and within the core. For example, functional connectivity was 246 

predicted to be lost along the north-east range for Geitoneura klugii and Heteronympha 247 

Penelope (Fig. 6) as well as within the core of their ranges. In some cases, functional 248 

connectivity is also predicted to increase along the edges, for example, there is an increase 249 

along the south-west of the island of Tasmania for the Geitoneura klugii (Fig. 6a, b).  250 
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 251 

Fig 6. Functional connectivity of Geitoneura klugii (a-b) and Heteronympha penelope (c-d) 252 

under present conditions and future scenarios.  253 

 254 

4. Discussion 255 

Butterflies are an ecologically important and conspicuous pollinating taxon that is threatened 256 

by habitat loss/fragmentation and climate change (Miao et al. 2020; Warren et al. 2021). 257 

These threats can be mitigated by conserving and promoting functional connectivity, making 258 

it crucial that ecologists seek to identify such areas. Overall, our analysis predicts that 259 

functional connectivity will show an overall decrease, with most butterfly species 260 

experiencing a higher percentage of negative changes than positive; a trend that worsens over 261 

time. Below we highlight how modelling can assist in the decision making of where 262 

ecological corridors and stepping-stone habitats should be prioritised. 263 
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Under present conditions, the mean cumulative current is overall predicted to be higher along 264 

areas with core habitats or focal nodes (i.e., areas with high habitat suitability); a finding 265 

common to studies of other taxa such as African elephants (Roever et al. 2013), birds 266 

(Grafius et al. 2017), and ungulates (Malakoutikhah et al. 2020). The differences and 267 

similarities in functional connectivity between butterfly species with similar (estimated) 268 

ranges can be attributed, in large part, to their habitat preferences. For example, C. panormus 269 

(functional connectivity predicted to decrease; Fig 4) occur in open eucalyptus forest and 270 

savannah woodland, whereas G. eurypylus (functional connectivity predicted to decrease; Fig 271 

4) occur in monsoon forest, rainforest, and even urban gardens (Braby 2000). As another 272 

relevant contrast of species with similar-sized geographic ranges but different responses are, 273 

P. fuscus, (functional connectivity predicted to remain similar between 2050 and 2090; Fig 4) 274 

being found in coastal and subcoastal lowlands rainforest and monsoon forest, compared to Y. 275 

arctous (functional connectivity predicted to decrease; Fig 4), which prefers coastal and 276 

subcoastal woodlands and open forest (Braby 2000).   277 

Overall, we predicted the functional connectivity of most butterfly species in Australia to 278 

decrease over the coming decades, albeit with a few exceptions. Our predictions are similar to 279 

studies that predicted several non-butterfly taxa such as the Sichuan snub�nosed monkey 280 

(Zhang et al. 2019b), ungulates (Malakoutikhah et al. 2020; Liang et al. 2021), and the 281 

Himalayan brown bear (Mukherjee et al. 2021) to experience a future decrease in functional 282 

connectivity due to climate change in different parts of the world.  To our knowledge, this is 283 

the first attempt to predict the combined impacts of land-use, land-cover, and climate change 284 

on the functional connectivity of butterflies.   285 

The mean cumulative circuit-theory ‘current’ is overall predicted to be highest along areas 286 

with the best habitat suitability for a given species. The predicted decrease in functional 287 

connectivity for most species is expected because climate change is predicted to change the 288 
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geographic distributions of butterflies (Adhikari et al. 2020; Minachilis et al. 2021). Overall, 289 

most of the changes are predicted along the edges of a species range, because populations 290 

along boundaries are generally inhabiting the limits of their physiological tolerances 291 

compared to those at the core, leaving them more vulnerable to climate change (Parmesan et 292 

al. 2000). These changes could also be due to land-use and land-cover change which is 293 

observed (Zhang et al. 2019a; Wang et al. 2020) and predicted (Li et al. 2017) to result in loss 294 

of forest areas which could have negative impacts on species depending on such habitats. 295 

Overall land-use and land-cover change have a negative impact on biodiversity in Australia 296 

including on butterflies (Thackway 2018; Davidson et al. 2021; Kutt et al. 2021).  297 

Given the continental scale of the study area and the number of species assessed, there were a 298 

few limitations to the study. Spatial scale can influence functional connectivity models 299 

(Laliberté and St-Laurent 2020) and while 1-km spatial resolution predictors are available, 300 

the extent of the study area and the high computational requirements forced us to use a 301 

coarser resolution of 5 km. The accuracy of the habitat suitability models can be influenced 302 

by several factors, including the temporal equilibrium (or lack thereof) between data points 303 

(species observations) and the geophysical and landscape predictors, as well as the interaction 304 

between the spatial scale of the predictors and attributes of the species (Dormann 2007). 305 

Validating functional connectivity models is a challenging process (Laliberté and St-Laurent 306 

2020), with suggested methods including field observations by scientists or automated field 307 

recorders (e.g., camera traps, acoustic recorders), along with accurate GPS data (Grafius et al. 308 

2017; Finch et al. 2020; Laliberté and St-Laurent 2020). However, in this study, we used 309 

citizen science data to build and validate the models, because of the scale of the study area 310 

and the number of species studied, which has the advantage of volume, but the constraint of a 311 

lower-level of precision and quality control.  312 

 313 
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5. Conclusion  314 

Butterflies are an important pollinating group, but the functional connectivity for several 315 

species are predicted to decrease across Australia in the coming decade due to the combined 316 

impacts of land-use, land-cover and climate change. Conservation efforts are being made to 317 

improve ecological corridors and stepping-stone habitat-restoration programs to promote 318 

functional connectivity, in some cases these efforts include invertebrates such as bees (e.g., 319 

Miranda et al. 2021) in other cases the focus is only on vertebrate taxa (e.g., Jones et al. 320 

2021). We advocate conservation efforts should include butterflies and other pollinating taxa 321 

as well. The availability of our results as a spatial dataset, along with analogous findings from 322 

other taxa, will assist in identifying priority conservation areas. Future studies on butterflies 323 

should consider (1) collecting dispersal data, to build better connectivity models given that 324 

radio telemetry for butterflies is now becoming a logistically viable option (Wang et al. 325 

2019), (2) improving the resistance layer by including spatial data that contains food plants 326 

that caterpillars feed upon and butterflies pollinate (Kass et al. 2020), and (3) focussing on 327 

species most threatened (Geyle et al. 2021), to develop more targeted, species-specific 328 

conservation efforts.  329 

 330 
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