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ABSTRACT1

When listening to continuous speech, the human brain can track features of the2

presented speech signal. It has been shown that neural tracking of acoustic features3

is a prerequisite for speech understanding and can predict speech understanding4

in controlled circumstances. However, the brain also tracks linguistic features5

of speech, which may be more directly related to speech understanding. We6

investigated acoustic and linguistic speech processing as a function of varying7

speech understanding by manipulating the speech rate. In this paradigm, acoustic8

and linguistic speech processing are affected simultaneously but in opposite9

directions: When the speech rate increases, more acoustic information per second10

is present. In contrast, linguistic information decreases as speech becomes less11

intelligible at higher speech rates. We measured the EEG of 18 participants who12

listened to speech at various speech rates. As expected and confirmed by the13

behavioral results, speech understanding decreased with increasing speech rate.14

Accordingly, linguistic neural tracking decreased with increasing speech rate, but15

acoustic neural tracking increased. This indicates that neural tracking of linguistic16

representations can capture the gradual effect of decreasing speech understanding.17

In addition, increased acoustic neural tracking does not necessarily imply better18

speech understanding. This suggests that, although more challenging to measure19

due to the low signal-to-noise ratio, linguistic neural tracking may be a more direct20

predictor of speech understanding.21

Keywords: neural coding, natural speech, speech rate, EEG, acoustic hearing, linguistic22

representations23

24

Significance statement: An increasingly popular method to investigate neural speech25

processing is to measure neural speech tracking. Although much research has been done26

on how the brain tracks acoustic speech features, linguistic speech features have received27
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less attention. In this study, we disentangled acoustic and linguistic characteristics of neural28

speech tracking via manipulating the speech rate. A proper way of objectively measuring29

auditory and language processing paves the way towards clinical applications: An objective30

measure of speech understanding would allow for behavioral-free evaluation of speech31

understanding, which allows to evaluate hearing loss and adjust hearing aids based on32

brain responses. This objective measure would benefit populations from whom obtaining33

behavioral measures may be complex, such as young children or people with cognitive34

impairments.35
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1 INTRODUCTION

Understanding speech relies on the integration of different acoustic and linguistic properties36

of the speech signal. The acoustic properties are mainly related to sound perception,37

while the linguistic properties are linked to the content and understanding of speech. When38

listening to continuous speech, our brain can track both the acoustic and linguistic properties39

of the presented speech signal.40

Neural tracking of acoustic properties of natural speech has been the subject of many41

studies. Particular emphasis has been placed on recovering the temporal envelope, i.e., the42

slow modulations of the speech signal, from the brain responses, so-called neural envelope43

tracking. The temporal envelope is essential for speech understanding (Shannon et al.,44

1995), and neural envelope tracking can be linked to speech intelligibility (e.g. Ding and45

Simon, 2013; Vanthornhout et al., 2018; Lesenfants et al., 2019; Iotzov and Parra, 2019;46

Verschueren et al., 2020). However, only taking acoustic speech properties into account to47

investigate neural speech tracking would underestimate the complexity of the human brain,48

where linguistic properties also play an essential part, as reviewed in detail by Brodbeck49

and Simon (2020).50

In addition to acoustic properties, there is growing interest in retrieving linguistic51

properties from brain responses to speech. Broderick et al. (2018) used semantic52

dissimilarity to quantify the meaning carried by words based on their preceding context.53

They report that the brain responds in a time-locked way to the semantic context of each54

content word. Additionally, neural tracking is also observed to linguistic properties derived55

from the probability of a given word or phoneme, i.e., word or phoneme surprisal (Brodbeck56

et al., 2018; Weissbart et al., 2019; Koskinen et al., 2020). Recently Gillis et al. (2021b)57

combined several linguistic neural tracking measures and evaluated the potential of each58

measure as a neural marker of speech intelligibility. After controlling for acoustic properties,59

phoneme surprisal, cohort entropy, word surprisal, and word frequency were significantly60

tracked. These results show the potential of linguistic representations as a neural marker of61
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speech intelligibility. In addition, this underlines the importance of controlling for acoustic62

features when investigating linguistic neural processing, as acoustic and linguistic features63

are often correlated (Brodbeck and Simon, 2020).64

We investigated whether neural speech processing can capture the effect of gradually65

decreasing speech understanding by manipulating the speech rate. In this study, we focused66

on acoustic and linguistic speech processing. By changing the speech rate, we manipulate67

acoustic and linguistic speech processing simultaneously but in opposite directions: When68

increasing the speech rate, more phonemes, words, and sentences, and thus more acoustic69

information per second is present. In contrast, linguistic information decreases because it70

becomes more challenging to identify the individual phonemes or words at high speech rates,71

causing decreased speech understanding. We hypothesize that neural tracking of acoustic72

features will increase with increasing speech rate because more acoustic information will73

be present. However, linguistic speech tracking will decrease with increasing speech rate74

because of decreasing speech understanding. The effect of speech rate on neural responses75

to speech has already been investigated. However, all these studies only investigated brain76

responses to the acoustic properties of the speech signal (Ahissar et al., 2001; Nourski77

et al., 2009; Hertrich et al., 2012; Müller et al., 2019; Casas et al., 2021). No study, to78

our knowledge, reported on how speech rate affects linguistic speech processing and the79

potential interaction between both. In addition, no consensus has been reached on the effect80

of speech rate on acoustic neural tracking. For example, Nourski et al. (2009) reported81

that phase-locked responses decrease with increasing speech rate, similar to Ahissar et al.82

(2001) and Hertrich et al. (2012). However, in the same data, Nourski et al. (2009) also83

reported that time-locked responses to the envelope (70-250 Hz) could still be found at very84

high speech rates where speech is no longer understood.85

We investigated how linguistic and acoustic speech tracking are affected when86

speech understanding gradually decreases. Analyzing neural speech tracking to different87
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characteristics of the presented speech allows us to identify neural patterns associated with88

speech understanding.89

2 MATERIAL AND METHODS

2.1 Participants90

Eighteen participants aged between 19 and 24 years (4 men and 14 women) took part in the91

experiment after having provided informed consent. Participants had Dutch as their mother92

tongue and were all normal-hearing, confirmed with pure tone audiometry (thresholds ≤93

25 dB HL at all octave frequencies from 125 Hz to 8 kHz). The study was approved by the94

Medical Ethics Committee UZ Leuven / Research (KU Leuven) with reference S57102.95

2.2 Speech material96

The story presented during the EEG measurement was ‘A casual vacancy’ by J.K. Rowling,97

narrated in Dutch by Nelleke Noordervliet. The story was manually cut into 12 blocks98

of varying length randomly selected from the following list: 4 min, 5 min, 8.5 min, 12.599

min, 18 min, and 23 min. After cutting the story, the story was time-compressed with100

the Pitch Synchronous Overlap and Add algorithm (PSOLA) from PRAAT (Boursma101

and Weenink, 2018) to manipulate the speech rate. Six different compression ratio’s (CR)102

were used: 1.4, 1.0, 0.6, 0.4, 0.28, 0.22 with corresponding speech rates varying from103

≈ 2.6 syllables/second (CR=1.4) to ≈ 16.2 syllables/second (CR=0.22). The fastest CR104

(CR=0.22) was applied to the longest part (23 min), the one but fastest CR (CR=0.28) to105

the one but longest part (18 min), and so on. This way, all story parts were compressed or106

expanded to ≈ 5 minutes. These blocks had slightly different lengths because word and107

sentence boundaries were taken into account while cutting the story, which is important for108

the linguistic analysis. Every speech rate was presented twice to obtain 10 minutes of speech109

at the same rate. The story was presented in chronological order. For each stimulus block,110

we determined the number of syllables using the forced aligner of the speech alignment111
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component of the reading tutor (Duchateau et al., 2009) and CELEX database (Baayen112

et al., 1996). The number of syllables uttered for each speech block was then divided by113

the duration of the speech block in seconds to obtain the speech rate.114

After each part of the story, content questions were asked to maximize the participants’115

attention and motivation. In addition, speech intelligibility was measured after each block116

by asking the participants to rate their speech understanding on a scale from 0 to 100%117

following the question ‘Which percentage of the story did you understand?’. A short118

summary of the story was shown in the beginning of the experiment to enhance intelligibility119

as some participants started with more difficult speech rates.120

2.3 Experimental setup121

2.3.1 EEG recording122

EEG was recorded with a 64-channel BioSemi ActiveTwo EEG recording system at a123

sample rate of 8192 Hz. Participants sat in a comfortable chair and were asked to move as124

little as possible during the EEG recordings. All stimuli were presented bilaterally using125

APEX 4 (Francart et al., 2008), an RME Multiface II sound card (Haimhausen, Germany),126

and Etymotic ER-3A insert phones (Illinois, USA). The setup was calibrated using a 2 cm3127

coupler of the artificial ear (Brüel & Kjær 4152, Denmark). Recordings were made in a128

soundproof and electromagnetically shielded room.129

2.4 Signal processing130

2.4.1 EEG processing131

We processed the EEG in 5 consecutive steps. Firstly, we drift-corrected the EEG signals132

by applying a first-order highpass Butterworth filter with a cutoff frequency of 0.5 Hz133

in the forward and backward direction. Then, we reduced the sampling frequency of the134
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EEG from 8192 Hz to 256 Hz to reduce computation time. Artifacts related to eyeblinks135

were removed with a multichannel Wiener filter (Somers et al., 2018). Subsequently, we136

referenced the EEG signals to the common average signal. Lastly, we removed the power137

line frequency of 50 Hz by using a second-order IRR notch filter at this frequency with a138

quality factor of 35 to determine the filter’s bandwidth at the -3dB.139

2.4.2 Stimuli Representations140

This study aims to investigate acoustic and linguistic neural tracking at different speech141

rates. To examine acoustic tracking, we estimated neural tracking based solely on acoustic142

representations of the stimulus, namely the spectrogram and acoustic edges. To investigate143

linguistic neural tracking, we created two models: a model to control speech acoustics,144

which consisted of acoustic and lexical segmentation representations, and a model that145

included linguistic representations on top of these acoustic and lexical segmentation146

representations. All speech representations used in the analysis are visualized in Figure 1.147

The spectrogram representations were calculated based on the low-pass filtered speech148

stimulus (zero-phase low-pass FIR filter with a hamming window of 159 samples). We149

low-pass filtered the stimulus at a cut-off frequency of 4 kHz as the insert earphones also150

low-pass filter at this frequency. Subsequently, we calculated the spectrogram representation151

from this filtered stimulus using the Gammatone Filterbank Toolkit (Heeris, 2014, center152

frequencies between 70 and 4000 Hz with 256 filter channels and an integration window of153

0.01 second). By using a Gammatone Filterbank, the estimated filter outputs are closer to154

the human auditory response (Slaney, 1998). We combined the filter outputs by averaging155

them into eight frequency bands with center frequencies of 124 Hz, 262 Hz, 455 Hz, 723 Hz,156

1098 Hz, 1618 Hz, 2343 Hz, and 3352 Hz. To calculate the acoustic edges representations,157

we took the derivative of the spectrogram’s response in each frequency band and mapped all158

its negative values to 0. Lastly, we reduced the sampling frequency of these representations159

to the same sampling frequency as the EEG, namely 256 Hz.160
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Figure 1. Speech representations at acoustic, lexical and linguistic level We visualized
the speech representations used in this study for all three levels: acoustic (averaged across
frequency bands; top box; blue), lexical (middle box; orange), and linguistic (bottom box;
red) for the lowest speech rate (SR = 2.6 syllables/sec, left) and highest speech rate (SR =
16.2 syllables/sec; right) for the first 10 seconds of the speech material.

To determine linguistic neural tracking, we carefully controlled for neural responses161

related to acoustic and lexical characteristics of the speech. As pointed out by Brodbeck and162

Simon (2020); Gillis et al. (2021b), it is important to control for these characteristics163

when investigating linguistic neural tracking, as otherwise spurious linguistic neural164

tracking can be observed due to the high correlation between linguistic and acoustic165

representations. To evaluate linguistic neural tracking, we determined the added value of166

linguistic representations by subtracting the performance of the model containing acoustic167

and lexical segmentation characteristics of the speech from the performance of the model168

that included the same representations together with the linguistic representations. We used169

four linguistic representations: phoneme surprisal, cohort entropy, word surprisal, and word170
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frequency, which according to Gillis et al. (2021b), have an added value over and beyond171

acoustic representations.172

All linguistic representations are one-dimensional arrays with impulses at the onsets173

of phonemes or words. The amplitude of an impulse represents the amount of linguistic174

information conveyed by the phoneme or word. To obtain the timing of the phonemes175

and words, we used the forced aligner of the speech alignment component of the reading176

tutor (Duchateau et al., 2009). Similar to linguistic representations, lexical segmentation177

representations are one-dimensional arrays. However, the impulses’ amplitudes are one and178

thus independent of the amount of linguistic information.179

Phoneme surprisal and cohort entropy are two linguistic representations that describe the180

linguistic content of a phoneme. Phoneme surprisal is thought to be a measure of phoneme181

prediction error as it represents how surprising a phoneme is given the previously uttered182

phonemes. It is calculated as the negative logarithm of the inverse conditional probability of183

the phoneme given the preceding phonemes of the word. Another linguistic representation184

at the phoneme level is cohort entropy derived from the cohort of words congruent with185

the already uttered phonemes. More specifically, it is calculated as the Shannon entropy of186

this active cohort of words, reflecting the degree of competition between them. To calculate187

both representations, we used a custom pronunciation dictionary that maps a word to its188

phoneme representation. This dictionary was created by manual and grapheme-to-phoneme189

conversion and contained the segmentation of 9157 words. The word probabilities were190

derived from the SUBTLEX-NL database (Keuleers et al., 2010). The linguistic information191

of the initial phoneme was not modeled in these representations. More details regarding192

phoneme surprisal and cohort entropy, as well as the mathematical determinations, can be193

found in Brodbeck et al. (2018).194

The linguistic information conveyed by a word is described by word surprisal and word195

frequency. Similar to phoneme surprisal, word surprisal is thought to model a word’s196

prediction error. It reflects how surprising a word is given its preceding words. We used197
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a 5-gram model to determine the negative logarithm of the conditional probability of the198

word given the preceding words. Therefore, a word’s surprisal is estimated given its four199

preceding words. Word frequency was derived from the same 5-gram model but without200

including previous words, describing the word’s unigram probability.201

2.4.3 Determination of Neural Tracking202

To determine neural tracking, we used a forward modeling approach, estimating how the203

brain responds to specific speech characteristics. The temporal response function (TRF)204

describes the relationship between the presented stimulus and measured EEG. It also205

allows us to predict the EEG responses associated with the speech stimulus. By correlating206

the predicted EEG responses with the measured EEG responses, we obtain a prediction207

accuracy per EEG channel. This prediction accuracy is a measure of neural tracking.208

We used the boosting algorithm (David et al., 2007) implemented by the Eelbrain Toolbox209

(Brodbeck, 2020) to estimate the TRF and obtain the prediction accuracy. We used an210

integration window of -100 to 600 ms, i.e., the neural response is estimated ranging from211

100 ms before activation of the stimulus characteristic to 600 ms after its activation. We212

use a broad integration window to ensure that the model captures the brain responses to the213

linguistic representations, which occur at longer latencies. As each speech rate condition214

was presented twice, we estimated the TRF on the concatenation of these two blocks per215

speech rate, i.e., ten minutes of data. Before the TRF estimation, the data is normalized by216

dividing by the Euclidean norm per channel. We applied this normalization for the stimulus217

and EEG data individually. Then the boosting algorithm estimates the associated response218

behavior using a fixed step size of 0.005. We derived the TRF and prediction accuracy per219

channel using a cross-validation scheme: the TRF was estimated and validated on partitions220

unseen during testing of the TRF to obtain the prediction accuracy. More specifically, we221

used 10-fold cross-validation, implying the data was split into ten equally long folds, of222

which eight folds are used for estimating the TRF, one fold for validation, and one fold for223
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testing. The obtained TRFs and prediction accuracies are then averaged across the different224

folds. Note that the validation fold is required to determine the stopping criterion: we used225

an early stopping based on the `2-norm, i.e., estimation of the TRF is stopped when the226

Euclidian distance between the actual and predicted EEG data on the validation partition227

stops decreasing. The resulting TRFs are sparse. Therefore, to account for the inter-subject228

variability and obtain a meaningful average TRF response across subjects, we smoothed229

the TRFs across time by convolving the estimated response with a hamming window of 50230

ms in the time dimension.231

To determine the acoustic tracking of the speech, we purely used acoustic representations.232

Therefore, we determined the prediction accuracy and TRFs based on the spectrogram233

and acoustic edges. Regarding the linguistic tracking of speech, we investigated the added234

value of these linguistic representations. To determine the added value, we subtracted235

the prediction accuracies of two different models. Firstly, we estimated a baseline model236

consisting of acoustic and lexical segmentation representations. Secondly, we estimated237

a combined model which included linguistic representations on top of the acoustic and238

lexical segmentation representations. By subtracting the prediction accuracy obtained with239

the baseline model from the prediction accuracy of the combined model, we can examine240

the added value of the linguistic representations after controlling for the acoustic and lexical241

segmentation representations.242

We used two predetermined channel selections to investigate the effect of acoustic and243

linguistic tracking. The neural responses to acoustics are significantly different from those244

to linguistic content and therefore require a different channel selection. We used a frontal245

channel selection for acoustic neural tracking based on Lesenfants et al. (2019) and a central246

channel selection for linguistic neural tracking as reported by Gillis et al. (2021b).247

These channel selections were used to visualize the TRFs and to determine associated peak248

latency and amplitudes. To determine the peak characteristics, we set a preset time window249

based on the TRF averaged across subjects (see Table 1). Within this time window, we250
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Table 1. Time windows selected per speech representation to determine the peak
characteristics

Speech representation Time window(s) Channel selection
Spectrogram
Acoustic edges

0 to 90 ms,
110 to 200 ms frontocentral

Phoneme surprisal
Cohort entropy 200 to 300 ms central

Word surprisal
Word frequency 350 to 450 ms central

normalized the TRF per channel by dividing the TRF by its `2-norm over time to decrease251

across subject variability and averaged the TRF across the channel selection. Depending252

on a positive or negative peak, we determined the maximal or minimal amplitude and its253

corresponding latency to obtain the peak amplitude and latency. If the peak latency was the254

same as the beginning of the window, indicating the end of the previous peak, we discarded255

the peak from the analysis (see Table 2).256

Table 2. Number of peaks detected per speech representation per speech rate with nmax =
18 (= amount of participants).

2.6 syll/sec 3.6 syll/sec 6.2 syll/sec 9.0 syll/sec 12.9 syll/sec 16.2 syll/sec

Spectrogram - peak 1 n = 15 n = 17 n = 18 n = 18 n = 18 n = 18
Spectrogram - peak 2 n = 14 n = 16 n = 18 n = 15 n = 13 n = 11
Acoustic edges - peak 1 n = 17 n = 17 n = 18 n = 18 n = 18 n = 18
Acoustic edges - peak 2 n = 18 n = 17 n = 16 n = 10 n = 8 n = 8
Phoneme surprisal n = 17 n = 18 n = 17 n = 16 n = 15 n = 18
Cohort entropy n = 17 n = 16 n = 16 n = 15 n = 18 n = 17
Word surprisal n = 15 n = 16 n = 15 n = 18 n = 16 n = 17
Word frequency n = 16 n = 15 n = 13 n = 14 n = 15 n = 17
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2.5 Statistics257

Statistical analysis was performed using MATLAB (version R2018a) and R (version 3.4.4)258

software. The significance level was set at α=0.05 unless otherwise stated.259

To evaluate the subjectively rated speech understanding results we calculated the260

correlation between speech rate and rated speech understanding using a Spearman rank261

correlation. In addition, we fitted a sigmoid function on the data to address the relation262

between rated speech understanding and speech rate using the minpack.lm package (Elzhov263

et al., 2016) in R. For further statistical analysis, we selected speech rate (and not264

subjectively rated speech understanding) as a main predictor. We opted for this because a265

subjective rating is very subject-dependent: some participants will give a higher estimate of266

their speech understanding than others at the same level of speech understanding. Thirdly,267

we investigated a homogeneous group of participants’ neural responses: all normal-hearing268

participants between 19 and 24 years old. Therefore we do not expect large differences in269

speech understanding between participants at a particular speech rate.270

To determine whether the topographies or the TRFs were significantly different from zero,271

we performed non-parametric permutation tests (Maris and Oostenveld, 2007). For the272

analysis of the acoustic TRFs, we limited the window of interest to the time region between273

0 and 200 ms. As speech is more difficult to understand, the latency of the neural responses274

to acoustic representation increases. These effects are most prominent in a time region of 0275

to 200 ms (Verschueren et al., 2020; Mirkovic et al., 2019; Kraus et al., 2020), explaining276

the rationale to limit the time window of interest. However, no time window of interest was277

set to determine the significance of the linguistic TRFs. We are not aware of any studies that278

assess the effect of linguistic tracking when speech comprehension becomes challenging.279

Therefore we chose not to specify a time window of interest when investigating the neural280

responses to linguistic representations. As observed in previous literature, linguistic TRFs281
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are associated with negative responses in central areas. Therefore, we applied this test in a282

one-sided fashion, i.e., we determined where the TRF was significantly negative.283

To asses the relationship between speech rate, neural speech tracking and speech284

understanding, we created a linear mixed effect (LME) model using the LME4 package285

(Bates et al., 2015) in R with the following general formula:286

neuralMeasure ∼ rate(+rate2)(+understanding) + random = participant287

where “neuralMeasure” refers to neural speech tracking, TRF amplitude or TRF latency,288

depending on the model being investigated and “rate” refers to the speech rate the speech289

was presented at. Speech rate was also added as a quadratic effect, “rate2”, as we do not290

expect neural speech tracking will decrease or increase linearly indefinitely with increasing291

speech rate. Lastly, “understanding”, referring to rated speech understanding, was added to292

the model to investigate whether speech understanding is able to explain additional variance293

on top of speech rate. An additional random intercept per participant was included in the294

model to account for the multiple observations per participant. “Rate2” and “understanding”295

are added between brackets to the general formula because these factors were only included296

if they benefited the model. We controlled this by calculating the Akaike Information297

Criterion (AIC) for the model with and without “Rate2” and “understanding”. The model298

with the lowest AIC was selected and its residuals plot was analyzed to assess the normality299

assumption of the LME residuals. Unstandardized regression coefficients (beta) with 95%300

confidence intervals and p-value of the factors included in the model are reported in the301

results section.302

3 RESULTS

3.1 Effect of speech rate on speech understanding303

Figure 2 shows that when speech rate increases, rated speech understanding decreases304

(r=-0.91, p<0.001, Spearman rank correlation). To model the data, we fitted a sigmoid305
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function between speech understanding and speech rate. The function shows a plateau306

until 6 syllables/sec (=±1.5 times the rate of normal speech). When the speech rate further307

increases, speech understanding drops. Because speech understanding and speech rate are308

highly correlated, we select speech rate for further analysis in function of neural speech309

tracking. As mentioned above, speech rate is more reliable than the subjectively rated310

speech understanding scores since it is objectively derived from the acoustic stimulus.311

Figure 2. Rated speech understanding in function of speech rate. The dots show speech
understanding per participant for every participant specific speech rate. The boxplots show
the participants’ results for the averaged speech rates (based on compression ratio). The red
line is the sigmoid function fitted on the data over participant.

3.2 Effect of speech rate on neural processing of speech312

To obtain the results in this section, we created two models: an acoustic model and a313

linguistic model as explained in detail in section 2.4.3.314
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3.2.1 Acoustic neural tracking315

First, we investigated the acoustic model containing acoustic edges and the spectrogram.316

Figure 3.A shows how accurately the acoustic model can predict the speech signal for every317

electrode used. To better quantify this result, we selected the frontocentral channels based318

on Lesenfants et al. (2019) (channels are highlighted in red in the inset of figure 3.B) and319

averaged them per subject. This resulted in one neural tracking value per speech rate per320

subject. Neural tracking of this frontocentral channel selection increased with increasing321

speech rate (p<0.001, b=7.61x10−3, CI(95%): ±1.59x10−3, LME, table 3). However,322

as visualized on the right in figure 3.A this increase is not monotonous, but quadratic323

(p<0.001, b=-3.28x10−4, CI(95%): ±8.41x10−5, LME, table 3). Finally, adding speech324

understanding as an extra predictor to the model does not improve the model (AICSR =325

-623, AICSR + understanding = -605).326

Table 3. Linear Mixed Effect Model of prediction accuracies and amplitude and latency of
the TRF peaks in function of speech rate for the acoustic model

Acoustic model Rate Rate2

β CI(95%) p β CI(95%) p

Prediction accuarcy 7.61x10−3 ±1.59x10−3 <0.001 -3.28x10−4 ±8.41x10−5 <0.001

Spectrogram p1 ampl 3.95x10−2 ±8.00x10−3 <0.001 -1.45x10−3 ±4.20x10−4 <0.001
lat 1.02x10−3 ±5.35x10−4 <0.001 does not improve AIC

p2 ampl -6.64x10−3 ±1.77x10−3 <0.001 does not improve AIC
lat -9.81x10−5 ±7.55x10−4 NS does not improve AIC

Acoustic edges p1 ampl 2.33x10−2 ±1.05x10−2 <0.001 -1.33x10−3 ±5.54x10−4 <0.001
lat 1.05x10−3 ±4.58x10−4 <0.001 does not improve AIC

p2 ampl -3.92x10−3 ±1.83x10−3 <0.001 does not improve AIC
lat 2.37x10−3 ±2.84x10−3 NS does not improve AIC

Every line represents a different model. NS = not significant, ampl = TRF amplitude, lat = TRF latency, p1 = peak 1, p2 = peak 2

To better understand the obtained quadratic tendency of neural tracking as a function of327

speech rate, we analyzed the acoustic features separately using TRFs. Figure 3.B visualizes328
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the averaged TRF of the frontocentral channels for the spectrogram (left panel) and for the329

acoustic edges (right panel). For both speech features, two significant positive peaks appear330

around 70 and 150 ms (horizontal bars show the TRF parts significantly different from zero).331

The topographies of these peaks are shown underneath the TRFs. More detailed analysis on332

both peaks is done by calculating the maximum value for every participant per speech rate333

between 0 and 90 ms (= peak value 1) and between 110 and 200 ms (= peak value 2). We334

investigated the amplitude and the latency of these peak values as a function of speech rate as335

shown in Figure 4. The amplitude of peak 1 increases quadratically with increasing speech336

rate for the spectrogram feature (SR: p<0.001, b=3.95x10−2, CI(95%): ±8.00x10−3; SR2:337

p<0.001, b=-1.45x10−3, CI(95%): ±4.20x10−4; LME; table 3) and acoustic edges (SR:338

p<0.001, b=2.33x10−2, CI(95%): ±1.05x10−2; SR2: p<0.001, b=-1.33x10−3, CI(95%):339

±5.54x10−4; LME; table 3). In contrast, the amplitude of peak 2 decreases with increasing340

speech rate (spectrogram: p<0.001, b=-6.64x10−3, CI(95%): ±1.77x10−3; acoustic edges:341

p<0.001, b=-3.92x10−3, CI(95%): ±1.83x10−3; LME; table 3). Interestingly, the second342

peak for the acoustic edges even disappears when the speech rate is 9 syllables/sec or higher343

and speech understanding drops below 80% (Figure 3.B, horizontal bars show the TRF344

parts significantly different from zero). For the latency analysis of peak 2 for acoustic edges,345

we thus only include the latency of the peaks in the 3 easiest speech rate conditions, as no346

peaks (and latencies) can be found anymore at higher speech rates. The latency of peak347

1, for both speech features, increases with increasing speech rate (spectrogram: p<0.001,348

b=1.02x10−3, CI(95%): ±5.35x10−4; acoustic edges: p<0.001, b=1.05x10−3, CI(95%):349

±4.58x10−4; LME; table 3), while the latency of peak 2 shows no significant relation with350

speech rate (spectrogram: p=0.80, b=-9.81x10−5, CI(95%): ±7.55x10−4; acoustic edges:351

p=0.11, b=2.37x10−3, CI(95%): ±2.84x10−3; LME; table 3).352

3.2.2 Linguistic neural tracking353

Next to acoustic neural tracking, we also investigated the effect of speech rate on linguistic354

neural tracking (see section 2.4.3 for more details). Figure 5.A (left panel) shows how355
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accurately the linguistic model can predict the speech signal over subjects per speech rate per356

channel. The channels in the cluster which drives the topography from 0 are annotated with357

grey markers. The higher the speech rate, the fewer channels have significant neural tracking.358

To quantify this, we averaged the prediction accuracy over a central channel selection based359

on Gillis et al. (2021b) (channels are highlighted in red in the inset of figure 5.B), resulting360

in one neural tracking value per speech rate per subject. As shown in figure 5.A (right),361

neural tracking significantly drops monotonically with increasing speech rate (p=0.008,362

b=-4.59x10−5, CI(95%):±3.31x10−5, LME, table 4). Interestingly, this is the opposite363

trend from the acoustic model in section 3.2.1. Finally, adding speech understanding as364

a predictor does not improve the linguistic model (AICSR = -1175, AICSR + understanding =365

-1151).366

To thoroughly investigate the neural responses to the linguistic features, we examined the367

TRFs of the central channel selection. Figure 5.B visualizes the averaged normalized TRF368

in the central channel selection for the different linguistic features per speech rate. The grey369

zone is where, based on Gillis et al. (2021b), we would expect a neural response. Significant370

responses can be found in the lower speech rates when speech can still be understood for371

all features. In the higher speech rates, where speech understanding is worse or absent,372

the linguistic neural response also disappears (Figure 5.B, horizontal bars show the TRF373

parts significantly different from zero). The topographies of these responses are shown374

in Figure 5.B underneath the TRFs. Interestingly, the topographies switch from central375

negativity when speech is understood to frontal negativity when speech understanding is376

worse or absent. To investigate whether the amplitude or latency of these peaks is related to377

speech rate, we calculated the minimum value for every participant within the grey zone378

(= peak value). For all linguistic features the peak amplitude shrinks significantly with379

increasing speech rate as shown in Figure 6 (Phoneme surprisal: p<0.001, b=6.81x10−3,380

CI(95%): ±2.82x10−3; Cohort entropy: p=0.008, b=4.21x10−3, CI(95%): ±3.07x10−3;381

Word surprisal: p<0.001, b=6.46x10−3, CI(95%): ±3.09x10−3; Word Frequency: p<0.001,382

b=6.44x10−3, CI(95%): ±3.00x10−3; LME; table 4). In other words, when speech becomes383
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faster and more difficult to understand, the peak amplitude of the linguistic features384

decreases until it finally disappears when the speech rate is 9.0 or 12.9 syllables/sec,385

or higher, and speech understanding is dropping below 90%. Similar to the analysis of the386

second peak for acoustic features, we only include the latency of significant peaks. Phoneme387

surprisal shows a significant increase of peak latency with increasing speech rate (p=0.015,388

b=5.47x10−3, CI(95%): ±4.20x10−3; LME; table 4). Cohort entropy, word surprisal and389

word frequency, on the other hand, reveal no significant effect of speech rate on peak latency390

(Cohort entropy: p=0.18, b=3.59x10−3, CI(95%): ±5.11x10−3; Word surprisal: p=0.23,391

b=-3.33x10−3, CI(95%): ±5.38x10−3; Word frequency: p=0.95, b=-1.09x10−4, CI(95%):392

±3.06x10−3; LME; table 4).393

Table 4. Linear Mixed Effect Model of prediction accuracy and amplitude and latency of
the TRF peaks in function of speech rate for the linguistic model

Linguistic model rate rate2

β CI(95%) p β CI(95%) p

Prediction accuarcy -4.59x10−5 ±3.31x10−5 0.0081 does not improve AIC

Phoneme surprisal ampl 6.81x10−3 ±2.82x10−3 <0.001 does not improve AIC
lat 5.47x10−3 ±4.20x10−3 0.015 does not improve AIC

Cohort entropy ampl 4.21x10−3 ±3.07x10−3 0.008 does not improve AIC
lat 3.59x10−3 ±5.11x10−3 NS does not improve AIC

Word surprisal ampl 6.46x10−3 ±3.09x10−3 <0.001 does not improve AIC
lat -3.33x10−3 ±5.38x10−3 NS does not improve AIC

Word frequency ampl 6.44x10−3 ±3.00x10−3 <0.001 does not improve AIC
lat -1.09x10−4 ±3.06x10−3 NS does not improve AIC

Every line represents a different model. NS = not significant, ampl = TRF amplitude, lat = TRF latency

4 DISCUSSION

We aimed to investigate whether neural speech processing can capture the effect of gradually394

decreasing speech understanding by manipulating the speech rate. With increasing speech395
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rate, we found that neural tracking of the acoustic features increased, while neural tracking396

of the linguistic features decreased.397

4.1 Effect of speech rate on acoustic neural processing of speech398

We found an increase of acoustic neural tracking with increasing speech rate and thus399

decreasing speech understanding, confirming our hypothesis. When speech becomes faster,400

the model is better at predicting acoustic speech features.401

This increase of acoustic neural tracking with decreasing speech understanding seems402

discrepant with previous research trying to link acoustic neural tracking to speech403

understanding using, for example, speech-in-noise paradigms (Vanthornhout et al., 2018;404

Verschueren et al., 2020; Ding and Simon, 2013; Iotzov and Parra, 2019; Etard and405

Reichenbach, 2019). The experimental paradigm could explain this discrepancy. Previous406

studies used, for example, noise to manipulate speech understanding. In those cases,407

decreased neural tracking was accompanied by a decrease in speech understanding and an408

acoustically degraded speech signal. Because speech understanding and signal-to-noise409

ratio are highly correlated, it is challenging to unravel to what extent the decreased neural410

tracking is driven by decreased speech understanding or the signal-to-noise ratio used to411

vary speech understanding. In this study, we manipulated speech understanding by speeding412

up the speech signal and preserving its signal-to-noise ratio, in contrast to the speech in413

noise studies. We hypothesize that the brain mainly responds to acoustic boundaries, i.e.414

onsets of sounds, which are more prominent in the faster speech presented in this study,415

explaining the increasing tendency. When presenting speech in noise, acoustic boundaries416

can be masked and, therefore, more challenging to observe. Therefore, it is difficult to417

attribute this decrease in acoustic neural tracking: a decrease in speech understanding or a418

decrease in neural detection of acoustic boundaries, or a combination of both?419

In addition, because the speech is sped up, the duration of the silences in between words420

or sentences inherently decreases, which increases the amount of speech data allowing421
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the model to improve its estimate of the TRF and obtain higher prediction accuracies.422

However, this increase of acoustic neural tracking and speech rate is not linear but quadratic,423

saturating, and even decreasing at very high speech rates. This may be due to the stimulus424

characteristics. When increasing the speech rate, the spectrogram and acoustic edges contain425

more and more peaks. Possibly these peaks are occurring so fast after each other making it426

difficult for the brain to perceive them still (see Figure 1). A different hypothesis is related427

to the motor cortex. When participants listen to the speech, they tend to mimic the speech428

in their brain, activating neural activity in motor areas (Casas et al., 2021). However, most429

speakers cannot produce speech as fast as 16.2 syllables/sec. Hence, the corresponding430

mouth movements are unnatural, which implies that the listener cannot mimic the speech431

in their brain anymore, decreasing the related responses in the motor areas and thus brain432

responses to the acoustic speech features in general.433

To better understand the observed quadratic tendency of acoustic neural tracking with434

increasing speech rate, we investigated the TRFs of the speech features separately. Two435

significant peaks with opposite behavior could be observed for both acoustic features. The436

first peak is the largest, and its amplitude increases quadratically with increasing speech437

rate, similar to the previously discussed neural acoustic tracking results. On the other438

hand, the second peak amplitude decreases with increasing speech rate. This discrepancy439

is intriguing as it suggests that both peaks have different underlying brain processes as440

confirmed by literature (Picton, 2011; Brodbeck and Simon, 2020). Peak 1 occurs relatively441

fast, around 50 ms, and is probably mainly related to the acoustics of the incoming442

speech and thus benefits from an increased speech rate. Peak 2, on the other hand, occurs443

somewhat later, around 150 ms, and could, in addition to the acoustics, be influenced by444

top-down processing related to speech understanding and attention (Ding and Simon, 2012;445

Vanthornhout et al., 2019). Besides the amplitude, we also investigated the latencies. The446

latency of the first peak increases with increasing speech rate. Increased latencies are often447

observed in more complex conditions with a higher task demand, like for example lower448

stimulus intensity, vocoded speech or speech in noise (Mirkovic et al., 2019; Verschueren449
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et al., 2021; Kraus et al., 2020). The latency of the neural responses can also be related to450

neural processing efficiency (Bidelman et al., 2019; Gillis et al., 2021a). In more detail, a451

larger latency indicates that more processing time is required to process the same speech452

characteristics, showing reduced neural processing efficiency. More words and phonemes453

need to be processed as the speech rate increases, resulting in a more challenging condition454

to process the incoming speech.455

4.2 Effect of speech rate on linguistic neural processing of speech456

When speech becomes faster, speech understanding drops. Interestingly, this same decrease457

can be observed in linguistic neural tracking (in contrast to acoustic neural tracking, section458

4.1). To the best of our knowledge, this is the first study that evaluates linguistic neural459

tracking when manipulating the level of speech understanding as a gradual effect. The460

studies of Brodbeck et al. (2018) and Broderick et al. (2018) using a two-talker paradigm461

are most comparable. They compared two conditions, i.e., intelligible and attended speech462

versus unintelligible and ignored speech, but not the spectrum in between. Nevertheless,463

their findings converge with our results and support our hypothesis of linguistic neural464

tracking as a neural marker of speech understanding. When the speech is not understood or465

ignored, the brain does not track the linguistic aspects of the speech, while for intelligible466

speech linguistic tracking is present.467

To better understand the observed decrease of linguistic neural tracking with increasing468

speech rate, we investigated the TRFs of the speech representations separately. We observed469

a characteristic negative peak for each linguistic representation as observed in previous470

literature (e.g. Brodbeck et al., 2018; Gillis et al., 2021b; Weissbart et al., 2019). For471

the phoneme-related features, phoneme surprisal and cohort entropy, this peak occurs472

around 250 ms. For the word-related features, word surprisal and word frequency, this peak473

occurs somewhat later, around 350 ms. The difference in timescale between both feature474

groups could be linked to the different speech processing stages (phonemes versus words)475
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they represent (Van Canneyt et al., 2021). Regarding the topographies of these peaks, the476

understandable speech conditions are associated with a typical topography, similar to the477

classical N400 responses characterized by central negative channels. As speech becomes478

less understandable, i.e., the speech rate increases, the associated topography disappears.479

For all speech features, the amplitude of this negative peak decreases with increasing480

speech rate until it disappears at speech rates as high as 9.0 tot 12.9 syllables/sec. Gillis481

et al. (2021b) already showed that these linguistic representations have an added value482

above and beyond acoustic and lexical representations. However, the authors did not483

compare intelligible to unintelligible speech. Here, we elegantly showed that as the speech484

becomes less understandable but remains audible and acoustically intact (in contrast to485

speech in noise studies or vocoder studies), the characteristic negative peak decreases and486

finally disappears. Altogether, our results suggest that these characteristic negative peaks to487

linguistic representations could be neural correlates of speech understanding.488

4.3 Conclusion489

Using a speech rate paradigm, we map how the level of speech understanding affects490

acoustic and linguistic neural speech processing. When speech rate increases, acoustic491

neural tracking increases, although speech understanding drops. However, the amplitude492

of the later acoustic neural response decreases with increasing speech rate, suggesting493

influence of top-down processing related to speech understanding and attention. In contrast,494

linguistic neural tracking decreases with increasing speech rate and even disappears when495

speech is no longer understood. Altogether, this suggests that linguistic neural tracking496

could possibly be a more direct predictor of speech understanding compared to acoustic497

neural tracking.498
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Figure 3. Effect of speech rate on acoustic tracking Panel A: visualization of the average
prediction accuracy across participants for each speech rate. The annotated grey channels
indicate the cluster which drives the significant difference from 0. How acoustic tracking,
averaged across frontocentral channels, changes according to the speech rate is shown on
the right. Panel B: Normalized TRFs of the spectrogram and acoustic edges. The bold
horizontal lines indicate where the TRFs are significantly different from 0 (the same color
as the TRF of the considered speech rate). The topographies below show the associated
peak topographies in the TRF.
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Figure 4. Effect of speech rate on the amplitude and latency of acoustic
representation Each row shows the effect of speech rate on latency (left plot) and the
amplitude (right plot) of the neural response to spectrogram (top row) and acoustic edges
(bottom row) for respectively the first and second identified peak as indicated on Figure 3.
The blue line shows the model’s prediction for each speech rate; the shaded area indicates
the confidence interval of the model’s prediction. The non-significant models are shown in
grey. Remark that we only include the latency of significant peaks for the latency analysis.
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Figure 5. Effect of speech rate on linguistic tracking Panel A: visualization of the added
value of linguistic representations across participants for each speech rate. The annotated
grey channels indicate the cluster which drives the significant difference from 0. How
linguistic tracking, averaged across central channels, changes according to the speech
rate is shown on the right. Panel B: The associated normalized TRFs for the linguistic
representations. The bold horizontal lines indicate where the TRFs are significantly different
from 0 (the same color as the TRF of the considered speech rate). The topographies below
indicate the associated peak topographies to the TRF in the grey shaded area. The horizontal
arrow underneath the topographies indicates the increasing speech rate.

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.04.479105doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Effect of speech rate on the amplitude and latency of linguistic
representation Each row shows the effect of speech rate on latency (left plot) and the
amplitude (right plot) of the neural response to phoneme surprisal (top row), cohort entropy
(second row), word surprisal (third row) and word frequency (bottom row). The blue line
shows the model’s prediction for each speech rate; the shaded area indicates the confidence
interval of the model’s prediction. The non-significant models are shown in grey. Remark
that we only include the latency of significant peaks for the latency analysis.
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