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Abstract 

Wisdom of the Crowd is the aggregation of many individual estimates to obtain a better collective 

one. This effect has an enormous potential from the social point of view, as it means that a decision 

may be taken more effectively by vote among a large crowd than by a small minority of experts. 

Wisdom of the Crowd has been demonstrated in a wide range of cognitive tasks, all of which involve 

rational thinking. Here we tested this effect in the context of drawing simple geometrical shapes which, 

while still enacting cognitive processes, mainly involved visuo-motor control. We asked more than 

700 school students to trace with their finger a predefined pattern shown on a touchscreen, and 

analyzed whether their individual trajectories could be aggregated in a way that improved the match 

with the original pattern. We found that this task has all the characteristics of the strongest examples 

of Wisdom of the Crowd: First, the aggregate trajectory can be up to 5 times more accurate than the 

individual ones. Second, this great improvement requires aggregating trajectories from different 

individuals (rather than different trials from the same individual). Third, the aggregate trajectory 

outperforms >99% of the individual trajectories. Fourth, when we split our dataset between young 

children (<10.5 years old) and older children, we find that older individuals outperform younger ones, 

as naively expected. However, a crowd of young children outperforms the average older individual. 

In sum, we demonstrate for the first time the Wisdom of the Crowd phenomenon in the realm of 

motor control, opening the door to further studies of human but also animal behavioral trajectories 

and their mechanistic underpinnings. 

 

Significance statement 

Wisdom of the Crowd is the aggregation of many individual estimates to obtain a better collective 

one. Thanks to a combination of mathematical, psychological and social factors, this collective 

estimate can be surprisingly accurate, even when it comes from a crowd of poorly informed 

individuals. Originally proposed in the context of simple tasks (such as estimating a number), a general 

version of this concept now pervades our society, from being a key reason behind the success of 

democracies to being explicitly used to generate collective high-quality knowledge, from Wikipedia to 

Stack Exchange. Despite this enormous practical success, academic research lags behind, with most 
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studies focusing on simple and narrow tasks. Here we apply the concept for the first time to a sensory-

motor task, testing whether the combination of many drawings traced by different subjects resembles 

the original template. This type of task is wildly different from previous studies of Wisdom of the 

Crowd, as it depends on continuous sensory-motor control, rather than explicit reasoning or discrete 

decision-making. We demonstrate that the effect is strong: The aggregate trajectories are more 

accurate than an overwhelming majority of the individual ones, and a crowd of young children 

outperforms the average teenager with more mature motor skills. 

 

Introduction 

The Wisdom of the Crowd (WOC) is the notion that the aggregate opinion of a diverse group of 

people may be more reliable than that of an expert. This idea gained great standing in the academic 

community in 1906, when Sir Francis Galton showed that the average of hundreds of individual 

estimates about the weight of an ox matched its actual weight within 1%--far more accurately than a 

highly skilled farmer (1). The potential of this effect was rapidly appreciated, but applications were 

limited for a long time, due to the practical difficulty of gathering and aggregating individual opinions. 

The rapid development of communication technologies since the 1990’s has removed that barrier, 

unleashing the potential of the WOC (2), which is now replacing individual experts in several realms, 

from collectively written Wikipedia articles that replace classical encyclopedia articles written by 

experts (3) to Stack Exchange posts written and voted by users that replace traditional manuals (4). 

These examples show the transformative potential of the WOC. 

However, to properly grasp the non-trivial scope of the WOC and to ensure its validity, it is critical to 

understand the effect deeply. In particular, two key questions must be answered. The first key question 

is how to extract a WOC estimate from a group of people. In the traditional paradigm, subjects were 

as diverse as possible (5), each subject made an independent estimate (they did not communicate with 

each other) (6), and opinions were aggregated by averaging all individual guesses (2). The condition of 

independence is traditionally regarded as crucial to guarantee that systematic individual errors cancel 

out when aggregating several individuals (2, 6). An example of the negative effect of broken 

independence arises when subjects are informed of the guesses of others, and are then allowed to emit 

their guess or to reconsider their previous one (7). However, quantifying social influence over each 

individual allows to find new aggregation measures that counteract this effect (8), and to take 

advantage of it to improve upon the crowd estimate (9). Moreover, it has been shown how the 

condition of independence can be relaxed (10), and how allowing subjects to discuss before arriving 

to a consensus estimate can lead to improvements both at the group and individual level (11, 12). 

Others have argued for maximal differences (negative correlations) between subjects as the essential 

requisite for the WOC (13), and therefore the detection of correlations is presented as a powerful tool 

to improve the collective estimate when it deviates from the true value (14). Finally, methods to find 

subgroups of individuals whose aggregated estimate may be better than the aggregated estimate of the 

whole crowd have been proposed, for example based on identifying expertise within the crowd (15). 

The second key question is what tasks can be performed more efficiently by a collective than by an 

individual. Classical demonstrations of the WOC consisted of guessing a number or choosing over a 
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set of discrete alternatives (2, 6). While a big part of research still follows this paradigm, many studies 

have successfully applied WOC to more complex tasks, such estimation of multi-dimensional 

quantities (16), collective guessing of a sentence (17), collective edition (3), forecasting in prediction 

markets and prediction polls (18, 19), correct tempo of a classical music piece (20), medical diagnosis 

(21, 22), or drug prescription (23). However, all these studies share a common characteristic: They 

focus on explicitly rational tasks, in which individuals need to make a conscious estimate. 

Here we investigated whether WOC can be applied to a task that depends on embodied motor control 

rather than high-order abstract cognition. To that end, we developed an experimental paradigm where 

we asked children to trace a series of predefined patterns on a tablet. Such a situation defies classical 

WOC studies because it is a complex motor task, which is difficult to parameterize or describe in 

simple terms, and whose errors are highly correlated (a deviation at any point in the line affects the 

future trajectory of the finger). It is also worth emphasizing that the task is intimately related to 

drawing, an important part of human culture and, with the appropriate experimental design and 

measuring tools, can be tested in naturalistic conditions beyond artificial laboratory settings. Although 

some studies have investigated collective problem-solving in tasks involving movement (24), our study 

is, to the best of our knowledge, the first one showing the implications of aggregating individual 

solutions to a sensory-motor task. 

We present experimental results from hundreds of subjects tracing with their fingers a series of well-

defined geometrical templates displayed on touchscreen tablets in a classroom setting. Using such “big 

behavioral data” (25) collected “outside the lab” (26), we examine the four main features that 

characterize the strong instances of WOC: (i) Whether individual trajectories of subjects can be 

aggregated to produce a more accurate description of the desired pattern, (ii) whether the 

improvement is a true “crowd” effect (requiring different individuals, as opposed to a single individual 

repeating the same task), (iii) whether the effect is strong enough so that the aggregate is more accurate 

than most of the individuals, and (iv) whether the effect is strong enough so that a crowd of low-skill 

individuals outperforms one high-skill individual. We find that all these conditions are met, providing 

the first evidence of Motor Wisdom of the Crowd. 

 

Results 

Collecting behavioral big data in a classroom setting 

We asked 797 school students with ages between 6 and 18 years old, to trace with their finger several 

shapes using a custom-made drawing app (Figure 1A). After a few minutes of practice to familiarize 

themselves with the app, subjects were invited to reproduce five different geometric curves with 

varying levels of complexity, from ellipses to four-fold rose figures. A template of each shape was 

shown in the screen of the tablet (Figure 1A), and subjects were instructed to trace fluidly and 

continuously for 30 seconds, not excessively fast so as to avoid systematically overshooting the 

template but not excessively slow so as to avoid halts and brief jerky movements in trying to perfectly 

match the template. In other words, to simply produce good-enough tracing. All shapes were closed 

curves that could be traced repeatedly in a single stroke, and almost every subject traced each template 

several times during the 30 seconds of each experimental curve (Figure 1B and Figure S1A). Our 
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experimental procedure allowed to test hundreds of children producing thousands of high-resolution 

trajectories (more than 24 hours of data) in naturalistic conditions (see Methods for more details).  

 

 

Figure 1. Description of the experiment and computation of errors. (A) One of the participants tracing on a tablet. 

The template was always present in thick black line on blue background. Participants were asked to trace the template with 

the index finger of their dominant hand continuously for 30 seconds. The procedure took place simultaneously in groups 

of 30 students in a classroom setting. (B) Example of template (black), and trajectories from three different subjects (blue, 

red, and green). (C) Method to compute errors and aggregate trajectories. Black lines represent the reference trajectory, 

which is divided in segments of equal length (limited by dashed lines). Each black dot is the median center of mass of the 

reference trajectory for each segment. Blue points: Experimental individual trajectories. The individual error is computed 

as the distance between the points for the individual trajectory and the respective centers of mass for the reference 

trajectory. Red points are the median center of mass of several individual trajectories (blue points) within the same segment. 

The Wisdom of the Crowd trajectory is formed with these averages (red line), and the error for the Wisdom of the Crowd 

is computed as the distance between these averages and the corresponding centers of mass of the reference trajectory. See 

Figure S1 for a detailed description of trajectory subsampling, aggregation of individual trajectories, and computation of 

trajectory errors. 
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Processing the trajectories to extract the Wisdom of the Crowd 

In order to estimate the WOC of the trajectories traced by our subjects, the first step consisted in 

splicing the full trajectory of each subject into individual trajectories that represent a single pass over 

the template. This task turned out to be complicated for some complex shapes, and especially for low-

accuracy trajectories that deviated very much from the template. To avoid biasing our results and 

increase the transparency of our analysis, we resorted to a simple approximate method: We determined 

that in most cases subjects traced each template at least 8 times, and divided the full trajectory of each 

subject into 8 segments of equal duration, which we then call “raw individual trajectories” (Figure 

S1B). While in most cases each raw individual trajectory contains more than a single pass over the 

template, this fact does not affect our conclusions and in fact strengthens them (see Methods).  

Next, we subsampled the templates and processed the raw individual trajectories to facilitate their 

further analysis. We first took a set of reference points along each template (Figure 1C and Figure 

S1C). We then took the raw individual trajectory, assigned each of its points to the nearest reference 

point on the template, and found the median center of mass of each group of points (Figure 1C and 

Figure S1D-H). In this way, we obtained a subsampled individual trajectory (which we simply call 

“individual trajectory”), with one experimental point corresponding to each reference point of the 

template. From now on, we will refer to these subsampled individual trajectories simply as “individual 

trajectories”.  

To compute WOC trajectories, we computed the median center of mass for the points associated to 

the same reference point from different individual trajectories (Figure 1C, right and Figure S1I-K).  

To quantify the accuracy of a trajectory (either an individual trajectory or a WOC trajectory), we 

computed the distance between each of its points and the corresponding reference point of the 

template (Figure 1C and Figure S1L), obtaining the distance between them for each small region. 

Then, we used the average of these errors to quantify the overall error for the whole trajectory (Figure 

S1M). 

We are now in position to establish whether the drawing task fulfills the four criteria of WOC 

mentioned above. 

 

Criterion i: WOC trajectories are more accurate than individual trajectories 

We first investigated the accuracy of individual trajectories. Participants cared about properly tracing 

the templates but were not particularly motivated to be accurate, as we instructed them to trace quickly 

and fluidly without being too concerned about accuracy. Furthermore, our dataset includes data from 

very young children to late teenagers, whose motor skills are at different maturation stages. 

Consequently, individual trajectories showed a lot of dispersion (Figure 2A, blue).  

In spite of this inaccuracy at the individual level, WOC achieves remarkable accuracy. We built WOC 

trajectories for all shapes by taking one individual trajectory from each subject and aggregating all of 

them (Figure 2A, red). Average error (across all patterns) decreased more than twofold, from 2.72 

mm for individual trajectories (Figure 2B) to 1.03 mm for WOC trajectories (Figure 2C). 

Improvement of WOC over individual trajectories was unequal over different portions of the 
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templates (Figure 2D). Despite not showing a definite structure, one can notice interesting differences 

in the local improvement along different parts of the templates. In ellipses, major improvements take 

place in the straightest parts of the curve, where tracing speed is typically faster. While three-petal 

flowers show their WOC maximal improvement at the edges, four-petal flowers have it where 

curvature is minimal (rather than at the inner high-curvature turns). In both cases, however, the 

improvement corresponds to the most distal parts of the template taken globally. In the lemniscate, 

the WOC shows an intriguing global top-bottom asymmetry.  

 

 

Figure 2: Wisdom of the Crowd in pattern tracing. (A) Original template (black dashed line), individual trajectories 

(blue), and WOC trajectory resulting from the aggregation of all individual trajectories (red). (B) Average error of individual 

trajectories for each region of the templates. (C) Error of the WOC trajectories for each region of the templates. (D) 

Improvement of the WOC over the individual trajectories for each region of the templates (i.e. average error of individual 

trajectories minus error of the WOC trajectory). 

 

Criterion ii: WOC accuracy improves with a diverse crowd 

Aggregating several trajectories from a single subject should also lead to an improvement in accuracy, 

an effect termed “the crowd within” (27). Therefore, the improvement reported here for the WOC 

trajectories might not require a diverse crowd, but just be a consequence of aggregating multiple 

datasets (regardless of whether they come from the same subject or from different ones). 

To elucidate whether our observation is a true effect of the crowd, we took advantage of the fact that 

each subject traced each pattern several times. While in the previous section we built our WOC 

trajectory from all of our subjects, here we studied how the error of the WOC trajectory changes as a 
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function of how many individual trajectories are aggregated. We also compared the case of aggregating 

trajectories from the same individual (cycles while the same person draws the same pattern) or from 

different individuals. While in both cases the error decreases as we aggregate more trajectories, this 

decrease is much more rapid when the trajectories come from different individuals (Figure 3A), thus 

better supporting the WOC in movement trajectories. 

 

 

Figure 3: A strong case of Wisdom of the Crowd. Each column corresponds to one template, in the same order as 

shown in Figure 2. (A) Average error of the aggregate trajectory, as a function of the number of individual trajectories that 

are aggregated. Blue: Aggregated trajectories belong to the same subject. Red: Aggregated trajectories come from different 

subjects. Pale patches represent the 95% confidence interval (calculated via bootstrap). (B) Histogram of errors for 

individual trajectories, compared with the error of the WOC trajectory (red line). (C) Average individual error for children 

and teens (blue), and error of the WOC trajectory for children and teens (red). Error bars represent the 95% confidence 

interval (calculated via bootstrap). 

 

This advantage of crowds over repeated trials of the same subject indicates that subjects tend to repeat 

their own errors. Different trajectories drawn by the same subject tend to deviate in the same regions 

and towards the same side, creating systematic biases. These biases are corrected when aggregating 

trajectories from different subjects, whose deviations are more balanced. 
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We also used this procedure to determine how many subjects are needed to achieve high accuracy. 

The error decreases monotonically as we add more trajectories from different subjects, dropping by 

almost half with only 10 subjects and starting to saturate after 50 subjects (Figure 3A, red).  

 

Criterion iii: WOC outperforms most individuals 

A mere improvement of accuracy as we aggregate more trajectories would seem insufficient to support 

our claim of a WOC effect in motor control. In fact, it is a mathematical necessity that the error of an 

aggregate trajectory must be equal or smaller than the average error of the individual trajectories (14, 

28).  

What makes WOC such an important effect is the magnitude of the improvement. While there is no 

absolute threshold to consider that the effect is strong enough, a classical criterion is that the WOC 

estimate must be better than an overwhelming majority of the individual estimates. This was the case 

for example in Galton’s original demonstration of the effect, in which the arithmetic mean of 

individual guesses was better than every single individual estimate (29). 

To investigate whether our WOC trajectories outperform the vast majority of individual estimates, we 

computed all individual errors for each template, and compared it with the error of the WOC estimate. 

In all cases the WOC estimate outperforms 99.5 % of the individual trajectories, except in one pattern 

in which it outperforms 95 % of the subjects (Figure 3B). Therefore, our dataset meets the criterion 

that the WOC estimate outperforms the vast majority of the individual estimates. 

 

Criterion iv: WOC of low-skill individuals beats the average high-skill individual 

The last criterion of strong WOC, which is critical for its practical applicability, is that a crowd of low-

skill individuals must outperform a single high-skill individual. To test this criterion, we first need to 

divide our population of subjects in groups with different expected skill levels. For tasks that require 

specific skills learned through education or professional training, high-skill subjects can be defined 

through their cultural level or profession. In the context of drawing, we considered testing professional 

painters and designers, but these professions usually have more to do with an aesthetic sense and the 

ability to master different drawing tools than with the motor control required to follow a predefined 

line with one’s finger. 

However, our empirical approach allowed us to sample a large population of maturing subjects of 

different ages. Such a rich dataset offered a practical criterion to separate subjects by skill level: Age 

stratification. Our results include subjects of ages from 6 to 18 years (Figure 4A), and motor control 

develops during this period (especially between 6 and 10 years of age) (30–33). Indeed, our results 

show that individual performance improves with age (Figure 4B). Therefore, we defined low-skill 

individuals as young children (<10.5 years), and high-skill individuals as older children (>10.5 years) 

whose motor skills are comparably more developed (while this threshold maximizes the difference in 

individual performance between the two groups, our results hold regardless of the threshold chosen, 

Figure S2).  
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Figure 4: Effect of age. (A) Number of subjects of each age in our dataset. (B) Average error of the individual trajectories 

(averaged over all segments of each template, over individuals with same age, and over the 5 templates), as a function of 

age. Error bars represent the 95% confidence interval (calculated via bootstrap). 

 

As a confirmation to this criterion, individual estimates are better for older children than for younger 

ones (Figure 3C, compare bars 1 and 2 of every template). The key question is then whether a crowd 

of young children outperforms the average older child. Remarkably, we found this to be true for every 

template (Figure 3C, compare bars 2 and 3 of every template). Therefore, our dataset meets the last 

criterion of the strongest versions of WOC: A crowd of low-skill individuals outperforms the average 

high-skill individual. 

 

High-skill individuals play little role in the Motor Wisdom of the Crowd 

We also found an interesting and unexpected result. When comparing the results from WOC estimates 

from old and young children, we found almost no difference. Only for 2 of the 5 templates the WOC 

estimates are better for older children than for younger ones (Figure 3C, compare bars 3 and 4 of 

every template). This result indicates that, when recruiting a crowd to perform a WOC estimate, there 

is no benefit in selecting high-skill individuals (34). In other words, one does not need to include 

(motor) “experts” to achieve the (motor) Wisdom of the Crowd. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.04.479103doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479103


10 
 

We also asked the question of whether different criteria to define high-skill or low-skill individuals 

could give different results. To answer this question, we simulated criteria that estimated individual 

skill with different accuracies, from those capable of selecting the very best individual, to benchmarks 

incapable of distinguishing skill. Our results turned out to be very robust: For a high-skill individual 

to outperform the crowd, the selection method must be able to identify accurately the top 1.73% 

performers (Figure S3). 

 

The method to aggregate trajectories has little impact on the results 

An important practical question is how to aggregate the individual responses to produce the WOC 

estimate (7, 14), and in particular whether to use the mean or the median, considering that the latter 

can counteract the effect of outliers (35, 36). All our previous analyses use the median to compute 

centers of mass, as we detected some subjects with very large deviations from the templates. We re-

did our analysis using the mean instead of the median and compared both methods, to find very little 

difference between them (Figure S4). This result indicates that, even though some subjects are clear 

outliers, the distribution of trajectories around the true pattern has relatively little skew (Figure 2A, 

note how the density of traces is nearly symmetric along the templates). 

 

Discussion 

Here we tested whether Wisdom of the Crowd can take place in a context far removed from those 

studied so far. By asking our subjects to trace a complex trajectory rather than estimating a number, 

we investigated a procedure that does not consist in making an explicit rational estimate but in 

performing an implicit embodied motor task. We tested hundreds of children drawing in a custom-

made tablet app, collecting a large amount of precise and quantitative data to test the effect of 

aggregating independent individuals for a better collective performance. 

We found that tracing geometrical patterns manifests all the characteristics of Wisdom of the Crowd: 

(i) accuracy improves when aggregating several trajectories, (ii) these trajectories must come from 

different subjects, (iii) the aggregate trajectory outperforms most individual ones, and (iv) a crowd of 

low-skill individuals outperforms the typical high-skill individual. Our results thus extend the concept 

of Wisdom of the Crowd from its classical application of quantity estimation to the realm of motor 

control and embodied cognition. 

Our findings suggest that Wisdom of the Crowd may be applicable with a greater generality than 

previously thought, because they address outstanding theoretical concerns: For the WOC estimate to 

be accurate, the individual estimates must follow a probability distribution whose average (either the 

mean or the median) matches the true value. A general concern was that the tasks typically chosen, 

such as number estimation, might share some characteristics that made them fulfil this requirement, 

which would not be met when trying to extend Wisdom of the Crowd to other contexts. Here we 

have tested Wisdom of the Crowd on a completely different context, in which the object to be 

estimated is not a number but a complex trajectory, and the estimation procedure is not a rational 

thought process but a motor task. Our results indicate that the conditions required for Wisdom of the 
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Crowd are met with great generality, and call for a more systematic exploration across tasks of different 

nature. 

The high accuracy of the motor Wisdom of the Crowd is surprising. Given the complex nature of the 

task, the extreme inaccuracy of some trajectories, and the fact that errors accumulate (a deviation at 

one point in the trajectory affects its future), we did not expect that simple aggregation of trajectories 

would result in such accurate estimations. This high accuracy opens the door to applying similar 

aggregation methods to other tasks with similar characteristics, such as finding the optimal trajectory 

of a vehicle (37) or in the context of skill improvement in amateur and professional athletes. 

Our results suggest a potential application in the study of human symbols.  Letters, numbers and other 

symbols are written differently by different people (38), and their shape changes significantly over time 

and from region to region (39). These changes are well documented qualitatively, and recent 

techniques have been developed to characterize them quantitatively (40, 41). These techniques are 

usually based on aggregating images, regardless of the trajectories that the writers followed to trace 

each symbol. Our results indicate that it would be possible to compute an average trajectory for a 

given symbol across a population. The methodology would need to be different to the one presented 

in this paper, with trajectory estimation and alignment posing important methodological challenges. 

But the surprisingly high accuracy found in our dataset indicates that aggregating symbols written by 

different people may provide an intelligible average tracing trajectory, which would facilitate the study 

of how handwriting changes in space and time. 

 

Methods 

Hardware. Thirty Android touch-screen tablets were used for the behavioral experiments. The tablet 
brand was Samsung Galaxy Tab A6 (size: 254 x 164 x 8mm, Android version 8.1.0 and API level 26). 
Prize per tablet was less than 200$. The display has a 10.1” PLS LCD screen, with dimensions 216 x 
135mm, and a resolution of 1920 x 1200px. The tablet has a capacitive touch-screen, and registers 
touch by a finger or a capacitive stylus, with resolution equal to the display resolution. Maximum 
screen refresh rate is 60Hz, and maximum sampling rate of touch events is close to 85Hz.  
 
Software. The app was programmed in Android Studio (version 3.3.2) in the Kotlin programming 
language (26), and tailored specifically for accuracy, efficiency and robustness in out-of-the-lab 
experiments with children. It can be freely downloaded (https://github.com/adam-
matic/KinematicCognition), and also edited for different experimental purposes. 
 
Experimental procedures. A total of 851 subjects participated in the experiment, most of which 

were school students between 6 and 18 years old (56% female, 10% left-handed, see Table S1 for 

number of adults). All experiments were performed during the 2019 Brain Awareness Week (from 

March 11 to 15, 2019). Students arrived in groups of about 30 individuals, belonging to the same 

school class. Classes belonged to several different schools in the area of Alicante, Spain. There were 

no specific selection criteria for schools and classes beyond their willingness to participate in our 

experiment and a more or less homogeneous sampling of ages and locations. Groups were assigned 

different time slots throughout the morning. The experiments took place in a regular small classroom 

(with a capacity for 30 students) in a building adjacent to the Instituto de Neurociencias de Alicante, 
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Spain. We used 30 tablets (a single tablet per children), placed on the tables in the classroom. Each 

experimental session had an overall duration of about 15 minutes.  

Students were invited to enter the classroom and sit down wherever they wished. Then, before starting 
the experiments, students were greeted and briefly told about the overall goal of the study (they already 
knew some details because they had an explanation of the activity days before by their teachers at their 
own local schools and, also, their parents had been previously informed and asked for written consent 
to record their children finger trajectories). The explanation was generic, namely, a brief and fun 
experiment was going to take place where they would simply need to draw and trace specific geometric 
figures in order as they would appear on the tablet screen, helping scientists, to study motor control 
(this fitted well in the Brain Awareness Week, since each group also received a related outreach talk, 
so that they could not only listen about scientific experiments but actually also participate in them). 
 
Students were requested to use the index finger of their dominant hand to draw and trace on the tablet 

screen (rather than using tablet pens). They were also asked to avoid touching the screen with the 

other hand, or to move the tablet from where it was placed when they entered the room. Before 

starting the experiment, they all tapped on the screen at the custom-made app logo of the experiment.  

First, a simple screen opened where they were asked whether their dominant hand was left or right, 

their age by scrolling on the date of birth, and their gender. After the information is complete, the app 

allows two options: “Practice” or “Experiment”.  

Second, the participants did a trial exercise before the actual experiment, where similar curves 

appeared as to the ones they would encounter later. This part was key for them to familiarize with the 

tasks they would need to accomplish next. In particular, they were instructed not to separate the finger 

from the screen until each task was over, and to perform fluid movements, avoiding delineating too 

slow or too fast. They could at this point ask questions, before the experiment took place.  

Third, after such trials, oral instruction prompted the students to start all the “Experiment” part at the 

same time. The experimental part consisted of a series of exercises, or tasks, all automatically 

concatenated with brief pauses in between. In this way, we avoided having to verbally interrupt the 

whole classroom with various unnecessary (and potentially distracting and confusing) instructions 

(specially for the younger children) to start the many different drawing and tracing tasks. Moreover, 

although sitting next to each other, the performance of each participant was purely individual, since 

every student was concentrated in their own tablet, not paying attention to their neighbor’s.  

Three different classes of tasks were presented to the participants: tracing, tracking and scribbling. 
Every class comprised different exercises, each one with a duration of 30 seconds, with a 7-second 
pause in between. Thus, the whole motor control experience was brief, avoiding distractions or loss 
of interest by the children. A visual summary of the experimental dataset can be found here: 
https://youtu.be/rz-TWk_6HSU. 
 
In this study we only analyzed the first class of task (tracing), where participants had to delineate with 

their finger a black curve on a blue screen. The curves shown were an oval (or ellipse), a thinner oval 

(larger eccentricity), three-petal and four petal-flowers (both based on Huh’s pure frequency curves 

(42)), and an infinite symbol (lemniscate). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.04.479103doi: bioRxiv preprint 

https://youtu.be/rz-TWk_6HSU
https://doi.org/10.1101/2022.02.04.479103


13 
 

When the experiment finished, students were thanked again, and invited to leave the room to continue 

enjoying the Brain Awareness Week parade at the Instituto de Neurociencias. Experimental 

procedures were approved by the Institutional Review Board (under project registration number 

2019.111.E.OIR) and followed the required guidelines on participation and personal data protection. 

Data cleaning. We removed anomalous data following three criteria: (1) Trajectories that lasted less 

than 25 seconds. (2) Trajectories whose standard deviation (in either the horizontal or vertical 

dimension) was less than half the standard deviation of the points of the template. (3) Trajectories 

with jumps between two consecutively recorded points greater than 1/4 of the dimensions of the 

touchscreen, which in most cases were due to a malfunctioning by the tablet or the subject touching 

the screen with both hands simultaneously. See Table S1 for the number of full trajectories originally 

stored, the number of trajectories that did not meet each of the filtering criteria (some trajectories did 

not meet more than one criterion), and the number of trajectories that were finally used for the 

analysis. In sum, a total of 3485 trajectories were analyzed, each with a duration longer than 25 

seconds, which yields an estimate of a total of more than 24 hours of high-resolution quantitative 

measurements of human drawing in naturalistic conditions. 

Definition of individual trajectories. Each subject traced the template repeatedly during the 30 

seconds allotted for the task, so each trajectory contains several passes over the template. The ideal 

definition for “individual trajectory” would be a single pass over the template, but finding the exact 

point in which the trajectory finishes one pass and starts the next is problematic: When the trajectory 

is a very poor approximation to the template, it is unclear when we should consider that an individual 

trajectory has ended. Therefore, attempts to divide the trajectories in this way would either force us 

to discard the less accurate trajectories, or could result in systematic biases affecting differently the 

high- and low-accuracy trajectories. 

For this reason, we chose a simple definition of individual trajectory: We divided each trajectory in 8 

segments of equal duration, and we took each of these segments as an individual trajectory. While this 

is only an approximation, it has the advantage of being a simple and transparent method and avoiding 

biases among trajectories of different accuracy.  

Because of this approximate definition, in many cases an individual trajectory contains only part of 

the template or more than one pass over some parts of the template. In most cases subjects completed 

more than 8 full passes over the whole template (even for the most complex shapes) so on average 

our individual trajectories contain more than one pass. We made this choice to be conservative: Since 

our individual trajectories in fact contain more than one pass over each template (on average), the 

individual errors we report are underestimated (a more accurate definition of individual trajectories 

would remove the aggregation that is taking place in the regions with more than one pass, which 

reduced the error). Therefore, the effect of Wisdom of the Crowd in our dataset is, if anything, 

underestimated. 

Subsampling of individual trajectories. Raw individual trajectories contained between 200 and 215 

points. Before any analysis, we sub-sampled the templates into a set of reference points (50 reference 

points for the two ellipses and 100 reference points for the rest). Then, we sub-sampled the raw 

individual trajectories to ensure that each point of a subsampled individual trajectory corresponded to 

one reference point of its corresponding template. We did this by finding the median center of mass 
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of all points of the raw individual trajectory nearest to each reference point of the template (similar 

results are obtained by using the arithmetic mean instead of the median, as shown in Figure S4). See 

Figure S1 for a step-by-step description of this process. The term “individual trajectory” always refers 

to the sub-sampled one (we use “raw individual trajectory” to name the original trajectory before sub-

sampling). 

Aggregation of individual trajectories. To aggregate several individual trajectories (regardless of 

whether they belonged to the same subject or to different subjects), we computed the median center 

of mass of the points of each individual trajectory corresponding to the same reference point in the 

template (Figure 1C). The final result is an aggregate trajectory that has the same number of points 

as the number of reference points of the template (see Figure S1). 

Computation of errors. To compute the error of any trajectory (either an individual trajectory or an 

aggregated one), we found the Euclidean distance between each of its points and the corresponding 

reference point of the template (Figure 1C and Figure S1). These distances are used to represent the 

colors in Figure 2B-D, showing the average error for each region of each template across all the 

trajectories. The total error of a trajectory is computed as the arithmetic mean of all the distances to 

the reference points.  

To compute the average error when aggregating individual trajectories from the same subject (Figure 

2E, blue lines), we created all possible sets with a given number of individual trajectories from each 

subject. For example, when aggregating 3 individual trajectories, for each subject there are 56 different 

combinations out of the total of 8 individual trajectories, so there are 56 different sets of 3 individual 

trajectories per subject. The error for the template is determined as the average of the errors over all 

sets of each subject, and then over all subjects. 

To compute the average error when aggregating individual trajectories from different subjects (as for 

example in Figure 2E, red lines), it would not be possible to compute all possible combinations (there 

would be too many). Therefore, we performed a random sample: We randomly drew the desired 

number of subjects from the database, and for each subject we randomly chose one of the individual 

trajectories. Then, we aggregated the individual trajectories, and computed the error of the aggregate 

one. We repeated this process 10000 times, and computed the arithmetic mean of all errors. 

To compute the average error across templates in Figure 3, we first computed the expected error for 

each of the 5 templates, and then computed the arithmetic mean of these 5 error values. 

Computation of confidence intervals. To compute the confidence intervals for the errors of 

individual and aggregated trajectories (Figures 2E and 2G), we used bootstrap (43). First, we created 

“virtual experiments” by randomly drawing subjects with repetition until we reach the total number 

of subjects. Therefore, each virtual experiment consisted of the same number of subjects, but due to 

the random sampling some of our original subjects may be missing, and some subjects may be present 

more than once. Then, we recreated all our analysis on each of these virtual experiments. We repeated 

this full process with 500 virtual experiments, and our confidence intervals represent the region that 

contain 95% of these results.  
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