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Abstract

Birds are exceptionally adept at controlling their body position. For example, they can coordinate
rapid movements of their body while stabilizing their head. Intriguingly, this ability may rely in part on
a mechanosensory organ in the avian lower spinal cord called the lumbosacral organ (LSO). However,
molecular mechanotransduction mechanisms have not been identified in the avian spinal cord. Here, we
report the presence of glycinergic neurons in the LSO that exhibit immunoreactivity for myosin7a and
epsin, molecules essential for function and maintenance of hair cells in the inner ear. Specifically, we find
glycinergic cell bodies near the central canal and processes that extend laterally to the accessory lobes
and spinal ligaments. These LSO neurons are reminiscent of glycinergic neurons in a recently-described
lateral spinal proprioceptive organ in zebrafish that detects spinal bending. The avian LSO, however,
is located inside a series of fused vertebrae called the synsacrum, which constrains spinal bending. We
suggest the LSO may be a modification and elaboration of a pre-existing mechanosensory spinal network
in vertebrates. A mechanistic understanding of its function may be an important clue to understanding
the evolution and development of avian locomotion.

1 Introduction

Animals must be able to sense the position of their body to execute targeted movements, especially in re-
sponse to environmental perturbations. Birds are often noted for their exceptional body-positioning abilities,
including keeping their head still while their body twists and turns in response to wind or a swaying perch.
As in other vertebrates, the vestibular organs of the inner ear and distributed proprioceptors affiliated with
the musculoskeletal system provide sensory inputs to the avian body positioning control system. Interest-
ingly, birds are also hypothesized to have a mechanosensory organ within their highly-modified lumbosacral
spinal cord, known as the avian lumbosacral organ (LSO), which may provide additional mechanosensory
information [11]. The LSO is found in all extant birds and may vary in morphology depending on a species’
locomotor habits [16]. However, the mechanotransduction mechanisms of the LSO remain unresolved.

It is becoming increasingly clear that vertebrates have spinal neurons that can provide sensory information
on body positioning by detecting spinal bending. For instance, edge cells detect stretch at the lateral margin
of the lamprey spinal cord [4]. Cerebrospinal fluid-contacting neurons (CSF-cNs) within the ependymal cells
surrounding the central canal—found across vertebrates—sense alterations to CSF flow in the central canal
due to spinal bending [1, 12]. Recently, a lateral glycinergic proprioceptive organ has been described in
zebrafish that detects stretching of neural tissue near intervertebral discs as the spine bends [13].

While these examples of spinal mechanosensory neurons all detect bending of the spine, the avian LSO
lies within the synsacrum, a rigid series of fused vertebrae that prevent the spinal cord from bending (Fig. 1A,
B, C, D). Indeed, the LSO has a striking set of specializations that make it anatomically distinct from the
rest of the spinal cord. First, a glycogen body sits within a dorsal split of the spinal cord. The central
canal passes through the base of the glycogen body such that the ependymal cells surrounding the central
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canal are fully encapsulated by glycogen body tissue (Fig. 1D, E). Second, the spinal cord has segmentally-
repeating, laterally-projecting accessory lobes, which are protrusions of neural tissue that roughly align
with transverse, canal-like recesses in the surrounding bone (Fig. 1D). Modified spinal membranes route
cerebrospinal fluid through these recesses [11]. Third, the entire neural structure is suspended within the
synsacrum by a modified dentate ligament. At the ventrolateral corners of the spinal cord, the accessory
lobes and the lateral dentate ligament adjoin the white matter (Fig. 1D, Fig. 2A, B, C). Based on these
anatomical specializations, the LSO is hypothesized to work by transducing cerebrospinal fluid flow through
mechanosensory neurons in the accessory lobes [10] or by acting as a preloaded vibratory structure [7].

While some cellular-level neuroanatomy of the LSO has been described, little is known about the molec-
ular features of putative mechanosensory cells. In 1905, Imhof [5] illustrated cells and processes particular to
the avian LSO, including around the central canal. Neurons within the accessory lobes produce a number of
neurotransmitters, including glycine, glutamate, and GABA, as well as the enzyme choline acetyltransferase
[9]. To date, no molecular mechanotransduction mechanism has been identified in the LSO.

Here, we describe neurons within the avian LSO that have molecular characteristics of known mechanosen-
sory cells and are well positioned to transduce mechanical signals. These results are critical evidence sup-
porting the hypothesis that the LSO has a role in proprioception and balance in birds.

2 Results

Immunohistochemical assays of the zebra finch LSO demonstrated medial neuronal cell bodies and ven-
trolateral processes that expressed the sodium- and chloride-dependent glycine transporter 2 (glyt2). The
glycinergic medial cell bodies tended to be found near the central canal but not within the ependymal cell
layer or the glycogen body that surrounds the central canal (Fig 1D and 1E). Further immunohistochemical
assays demonstrated that these medial glycinergic cells were also immunoreactive for myosin 7a (myo7a, Fig.
1E, 1F, and 1G), an atypical myosin essential for proper inner ear hair cell function [8] and neun/fox3, a
neuronal cell body marker (Fig 1H).

The glycinergic (glyt2+) ventrolateral processes traversed the gray matter to the white matter. Some
processes extended into the accessory lobes, and others terminated at the margin between the dentate
ligament and the spinal cord (Fig. 2A). These processes were also immunoreactive for myo7a (Fig. 2B and
2C). The processes within the accessory lobes were immunoreactive for both myo7a and espin antibodies,
which in transverse sections colocalized in an alternating pattern (Fig. 2D). Espin is an actin-bundling
protein, especially in sensory cells; [?, e.g.,]]sekerkova2011roles. Two different antibodies (from different
manufacturers) for myo7a colabeled cellular structures (Fig. 1F, Fig. 2B and C). It was unclear from our
sections whether these lateral processes extend from the medial cell bodies.

Discussion

The putative mechanosensory neurons in the avian LSO described here comprise a lateral group of neurons
that express glyt2, as in the lateral spinal proprioceptive organ of zebrafish [13]. We suggest these glyt2+
neurons in the avian LSO may be a modified version of the zebrafish lateral glycinergic proprioceptive organ.
Notably, there is evidence these lateral mechanosensory zebrafish cells initially develop from progenitors near
the central canal [13], which may be a developmental connection between the medial avian cells described
here and the zebrafish cells.

There is no clear connection between CSF-cNs and the glyt2+ cells reported here. While CSF-cNs can
be found ectopically (outside of the ependymal layer surrounding the central canal; [17, 6]), they are known
to be GABAergic across vertebrates [3]. Further, a recent transcriptome analysis of spinal dynophin-lineage
cells found a cluster with characteristics of CSF-cNs but comparatively low expression of glyt2 transcript
(SLC6A5; Fig. 2 in [15]).

Our observations that glycinergic neurons in the LSO have immunoreactivity for myo7a and espin are
critical evidence of their mechanosensory potential. Both myo7a and espin are found in inner ear hair cell
stereocilia, and myo7a is directly implicated in mechanotransduction in hair cells [8, 14]. In addition, espin
is also found in the cilia of CSF-cNs (as is the atypical myosin 3b; [2]).
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Figure 1: Glycinergic neuronal cell bodies near the the central canal of the avian lumbosacral organ (LSO)
display myosin7a immunoreactivity. (A) The synsacrum (fused to the pelvic bones) is highlighted within a
reconstructed CT scan of the zebra finch axial skeleton (Yale Peabody Museum specimen #125076). (B)
Dorsal and ventral views of the synsacrum, reconstructed from the CT scan. (C) A sagittal section through
the vertebral canal of the synsacrum CT scan shows the dorsal expansion of the vertebral canal that holds
the glycogen body. A parasagittal section shows transverse canal-like structures on the internal dorsal side
of the vertebral canal that roughly align with the accessory lobes (see [16]). (D) A diagram of the neural
tissue of the LSO based on dissection and histology observations and a contrast-enhanced CT scan (data
from [16]). (E) Cells near the central canal (middle) that are immunoreactive for both glyt2 and myoT7a. (F)
Higher-resolution image of the right cell from (E). (G) Labeling with two different myo7a antibodies (mouse
and rabbit). (H) neun/fox3 labeling within the myo7a+ cells. White arrow in the first panel of subfigure
(E) and (G) point to the ependymal layer surrounding the central canal. Upper right diagram in the first
panel of subfigures (E-H) indicates approximately where in the transverse section the image was taken.
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Figure 2: Lateral glycinergic processes are immunoreactive for proteins also present in inner ear hair cell
stereocilia. (A) Glyt2+ ventrolateral processes are immunoreactive for myo7a. Margin of spinal cord with
dentate ligament is at lower left; upper left is accessory lobe. (B & C) The accessory lobe processes (B)
and terminations at the dentate ligament (C) double-label with two different antibodies for myo7a (mouse
and rabbit). (D) Myo7a-immunoreactive processes in the accessory lobe also react with anti-espin. (A-
D) In composite images, blue is DAPI. Upper right diagram in the first panel of each subfigure indicates
approximately where in the transverse section the image was taken.

The fused vertebrae of the bird synsacrum do not allow the lower spine to bend; therefore, the CSF-cNs
and lateral proprioceptive spinal organ cannot function as they have been described in other vertebrates.
Rather, the neuronal processes in the accessory lobes may sense cerebrospinal fluid flow (as hypothesized and
summarized in [11]) while the processes at the junction between the spinal cord and the dentate ligament
may detect differential vibration among tissue types (according to the vibration/suspension hypothesis in
7).

Our finding of the presence of myo7a- and espin-immunoreactivity in LSO neurons is a starting point
that critically enables testing of cellular, organ, and organismal-level mechanotransduction mechanistic hy-
potheses. MyoT7a in particular may be a promising target for molecular manipulations. The ability of birds
to impeccably control their body position may have helped them diversify into a clade with multifunctional
locomotor specializations, including the capacity for terrestrial bipedalism as well as flight. Thus, contin-
ued research on the avian LSO may reveal foundational physiological and developmental mechanisms that
enabled the evolution and diversification of avian locomotion.


https://doi.org/10.1101/2022.01.28.478253
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478253; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3 Materials and Methods

Tissue preparation

The spinal column was harvested from (Taeniopygia guttata) individuals used for other experiments. Most
were post-fixed in 4% paraformaldehyde in phosphate buffer (PB) for 24h. Results from 7 individuals are
reported here. Two spinal columns were alternatively harvested from transcardially-perfused individuals. In
most samples, the LSO region of the spinal cord was dissected from the surrounding synsacrum bone and
placed in 20% sucrose in PB for a minimum of overnight. The region of the LSO surrounding the glycogen
body was then sectioned transversely at a cryostat in 4 alternating series with negative controls. For two
samples (labeled with mouse-antimyo7a + rabbit-antiglyt2 and mouse-antimyo7a + rabbit-antimyo7a), the
synsacrum bone was first decalcified using 12% EDTA neutralized with NaOH before the entire spinal column
was sectioned. We saw no difference in reported results between decalcified and undecalcified specimens, but
we note that anti-myo7a labeling seemed sensitive to extended time pre-freezing in other samples tested but
not reported here.

Immunohistochemistry

Sections were briefly dried then washed 3x in 0.1% Triton X-100 in phosphate buffered saline (PBST) before
they were blocked with 5% neutral goat serum (Abcam or Vector Labs). Sections were then incubated for
double-labeling experiments with primary antibody (AB) diluted in PBS, washed 3x in PBST, incubated
with secondary AB, then washed in PBST, PBS, and dH20 and incubated for 10 minutes in 1:1000 aqueous
DAPI (Biotium) prior to mounting with Fluoromount G (SouthernBiotech). Two timing protocols were
used: a short protocol with a 1h block, overnight incubation with primary Ab, and 2h incubation with
secondary Ab; and a long protocol with overnight block, 2 night incubation with primary Ab, and overnight
incubation with secondary Ab. For some Abs we altered dilutions across experiments (noted below) but we
saw no difference in reported results.

Primary Abs used were rabbit-antiglyt2 (Alomone AGT-012; 1:400 n=3 or 1:200 n=1; 13/14 immunogen
amino acids identical to T. guttata glyt2 according to BLAST-P search), mouse-antimyo7a (DSHB 138-1,
1:100 n=3 or 1:200 n=4; avian cross-reactivity listed by manufacturer), rabbit-antimyo7a (Proteus 25-6790,
1:400 n=3 1:500 n=2; avian cross-reactivity listed by manufacturer), rabbit-antiespin (Invitrogen PA5-55941,
1:200 n=>5; labeled interior side of ependymal cells in 7. guttata spinal cord, where espin+ apical tips of
CSF-cNs are located; 54/64 immunogen amino acids identical to T. guttata espin according to BLAST-
P search), rabbit-antineun/fox3 (Invitrogen 702022; 1:200 n=3 or 1:500 n=2; labeled cells in spinal cord
as expected). The double-labeling experiments were rabbit-antiglyt2 and mouse-antimyo7a (n=4); rabbit-
antimyo7a and mouse-antimyo7a (n=>5); rabbit-antiespin and mouse-antimyo7a (n=5); and rabbit-antineun
and mouse-antimyo7a (n=>5). Secondary Abs used were goat anti-mouse or goat anti-rabbit AlexaFluor
488, 568, and 647 (Invitrogen; 1:300). Slides were viewed and imaged on Nikon Eclipse epifluorescence and
Olympus FV1000 confocal microscopes.
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