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Abstract 

When environmental conditions are unfavorable, such as the complete absence of water or 

oxygen, high temperature, freezing or extreme salinity, some organisms can enter suspended 

animation (cryptobiosis)1. This reversible transition is preceded by execution of complex 

genetic and biochemical programs (preconditioning)2,3,4. Under laboratory conditions, however, 

animals have only been maintained in a viable cryptobiotic state for a short time. Here we show 

that desiccation followed by freezing allows C. elegans dauer larvae to retain full viability over 

very long periods (around 500 days). Consistent with this finding, recently nematode 

individuals have been reanimated from the Siberian permafrost5, that according to precise 

radiocarbon dating shows that they remained in cryptobiosis since the late Pleistocene, for 

about 46,000 years. Phylogenomic inference based on our high-quality genome assembly and 

morphological analysis demonstrate that these nematodes belong to a novel parthenogenetic 

species, which we named Panagrolaimus kolymaensis. Genome analysis revealed that the core 

of the molecular toolkit for cryptobiosis in P. kolymaensis and C. elegans is orthologous. To 

survive desiccation and freezing under laboratory conditions these two species display similar 

biochemical responses. Thus, nematodes possess extraordinarily robust adaptive mechanisms 

that potentially allow them to remain in suspended animation over geological time scales.  
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Main 

Organisms from various taxonomic groups can survive extreme and otherwise lethal conditions 

such as the complete absence of water or oxygen, high temperature, freezing or extreme salinity. 

The survival strategies of such organisms include a state known as suspended animation, or 

cryptobiosis, in which they reduce their metabolism to an undetectable level1. Spectacular 

examples of long-term cryptobiosis include a Bacillus spore that was preserved in the abdomen 

of bees buried in amber for 25 to 40 million years6, and a 1000 to 1500 years-old Lotus seed 

found in an ancient lake that was subsequently able to germinate7. Metazoans such as 

tardigrades, rotifers and nematodes are also known for remaining in cryptobiosis for prolonged 

periods8,9. In 2018, we discovered that nematodes from the Siberian permafrost could be 

revived to life after dwelling in permafrost for many tens of millenia5. 

Investigation of the molecular mechanisms that allow species to enter suspended 

animation was greatly facilitated by the finding that C. elegans, a well-established genetic 

model organism, can employ a metabolically quiescent stage known as a dauer larva to enter 

cryptobiosis24. It has been shown that C. elegans possess a general program to survive different 

kinds of abiotic stress3,4. However, so far, it has only remained possible to maintain larvae in 

this state for relatively short periods in the laboratory without significant reductions in viability.  

Here, we show that desiccation followed by freezing allows dauer larvae to retain full 

viability after prolonged periods in cryptobiosis. In parallel, we further investigated reanimated 

animals from permafrost. Precise radiocarbon dating indicates that they remained in 

cryptobiosis for about 46,000 years, since late Pleistocene. Genome assembly and 

morphological analysis define that these nematodes belong to new species (Panagrolaimus 

kolymaensis).  We show that P. kolymaensis utilise similar mechanisms as C. elegans to survive 

desiccation and freezing under laboratory conditions. Our findings suggest nematodes possess 

adaptive mechanisms to survive in suspended animation for an indefinite time.  

C. elegans dauer larvae can remain in a cryptobiotic state for prolonged periods of time 

Our previous work on C. elegans dauer larvae led to the identification of several biochemical 

pathways that are required for entry into cryptobiosis3,4,10. This process is facilitated by 

exposure to mild desiccation (98% RH, relative humidity, 4 days) known as preconditioning10, 

11 in which the transcriptome, proteome, and metabolic pathways undergo a specific 

remodelling that enhances survival3, 4, 10, 12,. Despite of preconditioning, the survival ability of 

desiccated dauer larvae at room temperature declines very rapidly, with most larvae dead after 

around 10 days (Fig.1a). Direct freezing at -80˚C, on the other hand, leads to almost instant 

death of the animals4. To test whether combining these conditions could extend the viability of 
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dauer larvae, we transferred the desiccated larvae to -80ºC. Remarkably, under these conditions, 

there was no significant decline in viability even after 480 days (Fig. 1a). Moreover, after 

thawing, the animals resumed reproductive growth and produced progeny in numbers similar 

to those of animals kept under control conditions (Fig. 1b). Since no reduction in survival has 

been observed at any point in extended experiments, these results suggest that the combination 

of anhydrobiosis and freezing can prolong the survival and reproductive ability of dauer larvae 

indefinitely. 

Discovery of reanimated nematodes from Permafrost: site and radiocarbon dating 

Our finding that C. elegans dauer larvae can remain viable for apparently indefinite periods 

following desiccation and freezing is surprising given that these nematodes are normally found 

in mild climatic zones. This ability, however, must be present in species that are exposed to 

harsher environment, for instance in polar regions or permafrost (perennially frozen sediments). 

Intensive research during the last decades has demonstrated that permafrosts are indeed unique 

ecosystems that preserve life forms at sub-zero temperatures over thousands of 

years13,14,15,1617,18. Interestingly, the possibility to exploit permafrost as a source for reanimating 

multicellular animals was already recognized in 1930s. P.N. Kapterev, as a GULAG prisoner, 

found a viable cladoceran crustacean Chydorus sphaericus preserved in the Transbaikalian 

permafrost for presumably several thousand years19,20. Unfortunately, this observation 

remained unnoticed for many decades.  

It is well known that several species of Panagrolaimus can undergo several forms of 

cryptobiosis, namely anhydrobiosis (life without water) and cryobiosis (life at freezing)10,11, 

21,22,23,24. As mentioned above, in 2018 we showed that nematodes from the Siberian permafrost 

with morphologies consistent with the genera Panagrolaimus and Plectus could be reanimated 

thousands of years after they had been frozen in the permafrost5. Several viable nematode 

individuals were found in two out of more than 300 permafrost samples of different ages and 

genesis collected by researchers from the Soil Cryology Lab, Pushchino, Russia, in the course 

of perennial paleo-ecological expeditions carried out in the coastal sector of the northeastern 

Arctic17. Detailed descriptions of the study site (outcrop Duvanny Yar, Kolyma River, Fig.2a), 

sampling and revitalizing procedures are provided in Supplementary Information. Like other 

late Pleistocene permafrost formations in the northeastern Arctic, Duvanny Yar comprises 

permanently frozen ice-rich silt deposits riddled with large polygonal ice wedges and divided 

by them into mineral blocks25,26 (Fig.2b). The sediments include sandy alluvial layers, peat 

lenses, buried paleosols and Pleistocene rodent burrows (Fig.2c). The burrow (P-1320), in 

which Panagrolaimus nematodes were found (Fig.2d), was taken from the frozen outcrop wall 
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about 40 m below the surface and about 11 m above river water level in undisturbed and never 

thawed late Pleistocene permafrost deposits. The fossil burrow left by arctic gophers of the 

genus Citellus consisted of an entrance tunnel and a large nesting chamber up to 25 cm in 

diameter 25.  

The sterility of permafrost sampling and age of cultivated biota were discussed in detail 

in several reviews27,13,28. Based on previous reports, the age of the organisms found in a burrow 

is equal to the initial freezing time and corresponds to the age of organic matter conserved in 

the syncryogenic sediments. This makes it possible to use radiocarbon dating of organic matter 

to establish the age of organisms. We performed accelerator mass spectrometry (AMS) 

radiocarbon analysis of plant material obtained from studied borrow P-1320, and determined a 

direct 14C age of 44,315±405 BP (Institute of Geography, RAS; sample IGANAMS 9137). 

Calibrated age range is 45,839 – 47,769 cal BP (95.4% probability) (Fig.S1). 

Reanimated animals belong to a novel parthenogenetic species Panagrolaimus 

kolymaensis sp.nov. 

The revived animal was cultivated in the laboratory for over 100 generations and initially 

described as Panagrolaimus aff. detritophagus5 based on morphology. We conducted a 

morphological analysis of the revived animal (Fig.3, S2, Table S1; See details of analysis in 

SI), which confirmed unambiguously that the animal belongs to the genus of Panagrolaimus, 

in agreement with a previous phylogenetic analysis of the 18S ribosomal RNA sequence5. 

However, due to the morphological uniformity of Panagrolaimus, unusual even for nematodes, 

morphology and molecular analysis of a single ribosomal RNA sequence is insufficient to 

describe a species. We found the species to be parthenogenetic, which further complicates 

description under many species concepts. 

To obtain comprehensive molecular data for determining the species using 

phylogenomics, we generated a high-quality genome assembly. Using PacBio HiFi sequencing, 

we generated 84X coverage in long reads (average length 14,425 bp). Our analysis of repeat 

and gene content is described in Supplementary Table 3. K-mer analysis of the reads clearly 

indicated that this animal has a triploid genome (Fig.4a), similar to other parthenogenetic 

Panagrolaimus species29. Despite the challenges that a triploid genome poses for assembly, we 

obtained a highly contiguous contig assembly of the three pseudohaplotypes that comprise a 

total of ~266 Mb and thus have a similar genome size as other parthenongenetic Panagrolaimus 

species29. The contig N50 value of all three pseudohaplotypes is 3.8 Mb. Since the three 

pseudohaplotypes exhibited a noticeable degree of divergence, we further investigated their 

homology by using the apparent homeologs in our gene predictions to align long continuous 
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contigs based on micro synteny (Fig. 4b). Links between the contigs clearly shows the triploid 

pattern of the genome. 

To place the species in the genus Panagrolaimus, we generated an initial phylogeny 

using the 18S and 28S genes using maximum likelihood before conducting a broader multi-

gene phylogenomic analysis using a concatenated, partitioned alignment of 60 genes and a 

coalescence-based approach using a broader set of 12,295 gene trees (see supplementary 

methods, Supplementary Table 4 and 5). These analyses retrieve the novel species as sister to 

all other sequenced Panagrolaimus species, but as an ingroup to Propanagrolaimus30 (Fig.4c; 

Fig.S3b-c). Thus, the phylogenetic placement provides strong evidence that this animal belongs 

to a novel species. Supporting this, there is substantial sequence divergence between this novel 

species, Panagrolaimus sp. PS1159 and Panagrolaimus sp. ES5, estimated in our concatenated 

alignment to be on average 2.06 and 2.11 amino acid substitutions per site, respectively. This 

divergence is consistent with previous data on ages of Panagrolaimus nematodes29, and more 

broadly with the divergence of nematodes in general, which can be hyper-diverse31,32. Our data 

also contradicts the assumption that parthenogenesis is monophyletic in the Panagrolaimus 

genus29 (Fig.3c). Based on the Kolyma River location where the animal was unearthed, we 

propose the following taxonomic classification and species name:  

Phylum Nematoda Potts, 1932 

Class Chromadorea Inglis 1983 

Suborder Tylenchina Thorne, 1949 

Family Panagrolaimidae Thorne, 1937 

Panagrolaimus kolymaensis sp. nov. 

C. elegans dauer larvae and P. kolymaensis utilize similar mechanisms to enter and 

remain in cryptobiotic state for prolonged periods  

The high-quality genome of P. kolymaensis allowed us to compare its molecular toolkit for 

cryptobiosis with that of C. elegans3,4,10,12 . We used orthology clustering and phylogenetics to 

investigate whether the genome of P. kolymaensis contains genes previously implicated in 

cryptobiosis in C. elegans. Our analysis showed that the P. kolymaensis genome encodes 

orthologs to a C. elegans trehalose phosphate synthase gene (tps-2) and to a trehalose 

phosphatase gene (gob-1) (Fig.S4c, supplementary file Orthology analysis). Furthermore, we 

found orthologs to all C. elegans enzymes required for polyamine biosynthesis, the TCA cycle, 

glycolysis, gluconeogenesis, and glyoxylate shunt (Fig.S4c, supplementary file Orthology 

analysis) suggesting that P. kolymaensis possesses a similar but not identical molecular tool kit 

as C. elegans to survive cryptobiosis.  
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          To survive extreme desiccation, C. elegans dauer larvae need to be first preconditioned 

at high relative humidity (98% RH) for 4 days10. During preconditioning, dauer larvae 

upregulate trehalose biosynthesis that ensures their survival to harsh desiccation10,12. We 

therefore tested whether preconditioning also facilitates survival of P. kolymaensis. Although 

a small proportion of P. kolymaensis individuals survive harsh desiccation and freezing without 

preconditioning (Fig.5a), similar to other panagrolaimid species11, mixed populations of P. 

kolymaensis survive harsh desiccation significantly longer (p<0.0001) following 

preconditioning (Fig.5a). Similarly, preconditioning and desiccation further enhanced survival 

of P. kolymaensis following freezing (-80°C). Furthermore, like C. elegans, P. kolymaensis 

upregulate trehalose levels up to 20-fold upon preconditioning (Fig.5b). We previously 

reported that, to upregulate trehalose levels upon preconditioning, C. elegans dauer larva 

dissipate their fat reserves (triacylglycerols) by activating the glyoxylate shunt and 

gluconeogenic pathway25. Upon preconditioning, we found that triacylglyceride (TAG) levels 

are significantly decreased in P. kolymaensis (Fig.S5a&b). To further investigate whether the 

acetyl-CoA derived from degradation of TAGs culminate in trehalose, we applied the 

previously developed method of metabolic labelling with 14C-acetate in combination with 2D-

TLC4,25. As shown in Fig.5c, preconditioning led to a huge increase of radioactivity in trehalose 

and also to a lesser extent in some amino acids (glycine/serine, phenylalanine; panels c and d). 

Interestingly, P. kolymaensis displayed an additional spot (Fig.5d, enumerated as 7), that was 

not found in C. elegans25, which we identified as trehalose-6-phosphate (Fig.S5c-h), an 

immediate precursor of trehalose, using mass spectrometry. Thus, in order to resist harsh 

desiccation, similar to C. elegans, P. kolymaensis utilizes glyoxylate shunt and consequently 

acetate derived from TAGs to synthesize trehalose. Detection of the immediate precursor 

(trehalose-6-phosphate) suggests the flux of metabolites is intense in the latter.  

Our findings indicate that by adapting to survival of the cryptobiotic state for short time 

frames in environments like permafrost, some nematode species gained the potential for 

individual worms to remain in the state for geological timeframes. This raises the question 

whether there is an upper limit to the length of time an individual can remain in the cryptobiotic 

state, potentially only limited by drastic changes to the environment such as strong fluctuations 

in ambient temperature, natural radioactivity or other abiotic factors. These findings have 

implications for our understanding of evolutionary processes, since generation times could be 

stretched from days to millennia, species ages might be much longer than anticipated, and long-

term survival of individuals of species can lead to the refoundation of otherwise extinct lineages. 

Finally, understanding the precise mechanisms of long-term cryptobiosis and cues that lead to 
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successful revivals can inform new methods for long term storage of cells and tissues and their 

transportation in space. 
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Methods 

Materials and C. elegans strains 

[1-14C] -acetate (sodium salt) from Hartmann Analytic (Braunschweig, Germany). All other 

chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). The Caenorhabditis 

Genetic Centre (CGC) provided daf-2(e1370) and E. coli NA22 strains. 

 

Genomic DNA isolation from Panagrolaimus kolymaensis nematodes  

P. kolymaensis nematodes were grown on several plates of NGM agar plated with E. Coli 

NA22 bacteria at 20°C. Worms were collected from the plates, washed with water at least three 

to five times by centrifugation at 1000 g to remove any residual bacteria and any debris. The 

worm pellet was dissolved in 5 volumes of worm lysis buffer (0.1M Tris-HCl pH=8.5, 0.1M 

NaCl, 50mM EDTA pH=8.0) and distributed in 1.5 ml of microcentrifuge tubes. These tubes 

are incubated at -80�C for 20 minutes. 100 ul of Proteinase ‘K’ (20 mg/ml) was added to each 

tube and they are incubated at 60�C overnight. 625 ul of cold GTC buffer (4M Guanidinium 

Thiocynate, 25mM Sodium citrate, 0.5% (v/v) N-lauroylsarcosine, 7%(v/v) Beta 

Mercaptoethanol) was added to the tube, incubated on ice 30 min and mixed by inverting every 

10 min. 1 volume of phenol–chloroform-isoamyl alcohol (pH=8) was added to the lysate and 

mixed by inverting the tube 10-15 times. Tubes were centrifuged for 5 min at 10,000 g at 4 °C 

to separate the phases. The upper aqueous phase was carefully collected into a fresh tube. One 

volume of fresh chloroform was added and mixed by inverting the tubes for 10-15 times and 

centrifuged for 5 min at 10,000 g at 4°C to separate the phases. One volume of cold 5 M NaCl 

was added, mixed by inverting the tubes and incubated on ice for 15 min. After incubation 

these tubes were centrifuged for 15 min at 12,000–16,000 g at 4 °C. The supernatant containing 

the nucleic acids were slowly transferred into a fresh tube. One volume of isopropanol was 

added to the tube, inverted few times and incubated on ice for 30 minutes. After incubation, 

the tubes were centrifuged at 3000 g for 30–45 min at 25°C and the supernatant was discarded 

without disturbing the pellet. The pellet was washed twice with 1 ml of 70% ethanol, tubes 

were centrifuged at 3000 g for 5 min and supernatant was discarded and incubated at 37°C for 

10-15 min to dry the pellet. The pellet was resuspended carefully in TE buffer. The quality and 

length of the high-molecular weight (HMW) genomic DNA (gDNA) was analyzed with pulse 

field gel electrophoresis.  
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Genome sequencing and assembly 

Long insert library has been prepared as recommended by Pacific Bioscienes according to the 

protocol ‘Procedure & Checklist-Preparing gDNA Libraries Using the SMRTbell® Express 

Template Preparation Kit 2.0’. In summary, RNAse treated HMW gDNA has been sheared to 

20Kb fragments on the MegaRuptorTM device (Diagenode) and 10 µg sheared gDNA have 

been used for library preparation. The PacBio SMRTbellTM library was size selected in two 

fractions (9-13kb, > 13kb) using the BluePippinTM device with cassette definition of 0.75% DF 

MarkerS1 3-10 kb improved Recovery. The second fraction of the size selected library has 

been loaded with 95 pM on plate on one Sequel SMRT cell (8M). Sequel polymerase 2.0 has 

been used in combination with the v2 PacBio sequencing primer and the Sequel sequencing kit 

2.0EA, runtime was 30 hours. We created PacBio CCS reads from the subreads.bam file using 

PacBio’s ccs command linetool (version4.2.0). We obtained 8.5Gb hiqh quality CCS reads 

(HiFi reads) with a N50 of 14.4 Kb. We ran HiCanu (version 2.2)33 to create the contig 

assembly. Blobtools (version 1.1.1,CITE)34 was used to identify and remove bacterial contigs. 

The final triploid contig assembly consists of 856 contigs has a N50 of 3.82 Mb and a size of 

266Mb. The mitochondrial genome was created with the mitoHifi pipeline (version 235 ) based 

on the assembled contigs and the closely related reference mitochondrial genome of 

Panagrellus redivivus (strain: PS2298/MT8872, ENAaccession: AP017464). The mitoHifi 

pipeline identified 49 mitochondrial contigs ranging from 13-32Kb. The final annotated 

circular mitochondrial genome has length of 17467 bp. 

To identify pseudohaplotypes in the P. kolymanensis sp. nov genome assembly, we selected 

the longest isoform of each predicted protein-coding gene in our assembly and in the C. elegans 

genome (downloaded from WormBase Parasite, release WBPS15) using AGAT (version 0.4.0) 

and clustered them into orthologous groups (OGs) using OrthoFinder (version 2.5.2). We 

identified OGs that contained three Panagrolaimus sequences (i.e. groups that were present as 

single-copy in all three pseudohaplotypes) and used these to identify trios of multi-megabase 

size contigs derived from the three pseudohaplotypes. We visualized synteny between the three 

pseudohaplotypes using Circos to plot the positions of each homeolog (version 0.69-8). 

 

Genome annotation 

We used RepeatModeler 1.0.8 (http://www.repeatmasker.org/ ) with parameter ‘-engine ncbi’ 

to create a library of repeat families. This library was used with RepeatMasker 4.0.9 to soft-

mask the Panagrolaimus genome. To annotate genes, we cross mapped protein models from 
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an existing Panagrolaimus as external evidence in the Augustus based pipeline36. We evaluated 

the completeness of our predictions using BUSCO on the gVolante web interface.  

 

Orthology analysis 

We conducted a gene orthology analysis using genomic data from Panagrolaimus kolymaensis, 

the plectid nematode species from the permafrost, as well as genomic data from WormBase 

Parasite (https://parasite.wormbase.org; accessed 17/12/2020): Caenorhabditis elegans, 

Diploscapter coronatus, Diploscapter pachys, Halicephalobus mephisto, Panagrellus 

redivivus, Panagrolaimus davidi, Panagrolaimus sp. ES5, Panagrolaimus sp. PS1159, 

Panagrolaimus superbus, Plectus sambesii, and Propanagrolaimus sp. JU765. For plectids, 

genomic resources are scarce. We therefore added transcriptome data of Plectus murrayi, 

Anaplectus granulosus, Neocamacolaimus parasiticus, and Stephanolaimus elegans. The latter 

three transcriptomes were kindly provided by Dr. Oleksandr Holovachov (Swedish museum of 

natural history). The Anaplectus granulosus, and Neocamacolaimus parasiticus transcriptomes 

have been published 37,38. All three transcriptomes were assembled de novo with Trinity39. The 

exact procedures are described in the respective publications37,38 . The Stephanolaimus elegans 

transcriptome was assembled in the same way as described for Neocamacolaimus parasiticus. 

The Plectus murrayi transcriptome was built from raw reads deposited at NCBI (https://sra-

downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-13/SRR6827978/SRR6827978.1;   

accessed 22.12.2020). The transcriptome was assembled using Galaxy Trinity version 2.9.140,39 

using all default options and including in silico normalization of reads before assembly. 

Transdecoder (conda version 5.5.0)41 was used to translate to amino acid sequence. Identical 

reads were removed with cd-hit version 4.8.142,43, and the Trinity 

get_longest_isoform_seq_per_trinity_gene.pl command41 (Trinity conda version 2.8.5) 

(Anaconda Software Distribution, Conda, Version 4.9.2, Anaconda, Nov. 2020) was used, to 

remove shorter isoforms. Amino acid translated longest isoforms from genomic data were 

extracted with AGAT (Dainat, https://www.doi.org/10.5281/zenodo.3552717) from genome 

assembly FASTA files and genome annotation GFF3 files, using the 

agat_convert_sp_gxf2gxf.pl command to convert all GFF3 files to the required GFF3 format, 

and the agat_sp_keep_longest_isoform.pl as well as the agat_sp_extract_sequences.pl 

commands to extract amino acid translated FASTA files. The headers and names of all FASTA 

files were modified to allow for simple species assignment of each sequence in subsequent 

analysis. The orthology analysis was conducted with OrthoFinder v. 2.5.144, 45 using default 

settings. For genes of interest, we constructed alignments with MAFFT v. 7.47546using the 
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localpair and maxiterate (1000) functions. We removed spurious sequences and areas that were 

not well aligned with Trimal v. 1.4.rev2247 (procedure stated in supplementary file Orthology 

analysis below each phylogeny). We then ran phylogenetic analysis with Iqtree2 v. 2.0.648, 

with -bb 1000 option, testing the model for each analysis (models eventually used stated in 

supplementary file Orthology analysis). We also checked for PFAM domains using 

Interproscan v. 5.50-84.049. Part of the analysis was performed on the HPC RRZK CHEOPS 

of the Regional Computing Centre (RRZK) of the University of Cologne. The phylogenies 

were visualized with Dendroscope 3.7.650 and figures were created with Inkscape 

{https://inkscape.org}. 

Phylogenomics 

Sequences of 18S and 28S genes from 44 taxa across the Propanagrolaimus, Panagrolaimus, 

Panagrellus and Halicephalobus genera were aligned (MAFFT L-INS-I v7.475)46, 

concatenated51 and used to infer a species tree using maximum likelihood via (IQTREE)52 and 

partitioned by best-fit models of sequence evolution for both53. Nodal support was determined 

using 1000 bootstrap pseudoreplicates. A further 60 genes from 101 taxa were used to confirm 

the taxonomic position using the supermatrix concatenation methods outlined above. Given the 

limitations of differential gene sampling, we expanded our phylogenomic analyses to include 

a coalescence approach using 12,295 ML gene trees inferred for orthogroups containing the 

target animal. Instances of multiple genes per species per group were treated as 

paralogs/orthologs and analysed using ASTRAL-Pro54. 

Desiccation survival assay 

C. elegans dauer larvae desiccation assays were performed as described in10 Panagrolaimus 

kolymaensis desiccation assays were performed with mixed populations of the worms.  

Exposure of nematodes to extreme environments  

Dauer larvae or Panagrolaimus kolymaensis nematodes were preconditioned and desiccated as 

described24 and then transferred to elevated temperature of 34�C, freezing (-80�C) and 

anoxia. Anoxic environment was generated in a desiccation chamber at 60%RH by flushing 

the Nitrogen gas into the chamber. The concentration of oxygen inside the chamber was 

monitored. After each timepoint they were rehydrated with 500 μl of water for 2-3 hours. 

Rehydrated worms were transferred to NGM agar plates with E. Coli NA22 as food. Survivors 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.28.478251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.28.478251


 13  

were counted after overnight recovery. Each experiment was performed on two different days 

with at least two technical replicates. 

Trehalose quantification from nematode lysates 

Trehalose measurements were performed as described in12. 

Radiolabeling, metabolite extraction and 2D‐TLC 

The above-mentioned procedures were performed according to previous reports4,12. 

Identification of trehalose-6-phosphate from TLC plates 

Normalised aqueous fractions from the non-preconditioned and preconditioned samples were 

separated by high performance thin layer chromatography (HPTLC), using 1-propanol-

methanol-ammonia (32%)-water (28:8:7:7 v/v/v/v) as first, dried for 15 min and 1-butanol-

acetone-glacial acetic acid–water (35:35:7:23 v/v/v/v) second dimension respectively. Using 

the trehalose as a standard on both dimensions of the TLC, the regions of interest were scrapped 

out from the TLCs. The scraped-out silica was extracted with 10 ml of 50% methanol twice. 

The fractions were combined, dried under vacuum and dissolved in 100 ul of Ms mix solution 

containing 4:2:1 (Isopropanol:Methanol:Chloroform) with 7.5 mM ammonium formate. Mass 

spectrometric analysis was performed on a Q Exactive instrument (Thermo Fischer Scientific, 

Bremen, DE) equipped with a robotic nanoflow ion source TriVersa NanoMate (Advion 

BioSciences, Ithaca, USA) using nanoelectrospray chips with a diameter of 4.1 µm. The ion 

source was controlled by the Chipsoſt 8.3.1 soſtware (Advion BioSciences). Ionization voltage 

was + 0.96 kV in negative mode; backpressure was set at 1.25 psi. The temperature of the ion 

transfer capillary was 200°C; S-lens RF level was set to 50%. FT MS spectra were acquired 

within the range of m/z 50–750 at the mass resolution of R m/z 200 = 140000; automated gain 

control (AGC) of 3×106 and with the maximal injection time of 3000 ms.  FT MS/MS spectra 

were acquired within the range of m/z 50–750 at the mass resolution of R m/z 200 = 140000; 

automated gain control (AGC) of 3×104 and with the maximal injection time of 30 s.  

Triacylglycerols measurement from Panagrolaimus kolymaensis lysates 

Non-preconditioned and preconditioned pellets were lysed in 200 ul of isopropanol with 0.5 

mm Zircornium beads twice for 15 min. The lysates were centrifuged at 1300 g for 5 min and 

20 ul of the lysate was used for protein estimation. The supernatant was carefully collected 
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without any debris and was dried in the desiccator. To dried samples 700 ul of 10:3 (v/v) 

MTBE/MeOH solution with internal standard (TG-d5 50:0) were added and left on a shaker 

for 1 hour at 1400 rpm and 4°C. 140 ul of water was added and left on shaker for 15 min at 

4°C. These samples were centrifuged at 13400 rpm for 15 min at 4°C. The upper organic 

fraction was collected and transferred to 1.5 ml glass vial and left for drying in the desiccator. 

The dried samples were reconstituted in appropriate volume of 300 ul of 4:2:1 (Isopropanol: 

Methanol: Chloroform) and volume corresponding to 1 µg protein was used for injection.  

                  LC-MS/MS analysis was performed on a high-performance liquid chromatography 

system (Agilent 1200 HPLC) coupled to a Xevo G2-S QTof (Waters). The samples were 

resolved on a reverse phase C18 column (Cortecs C18 2.7um from Waters) with 50:50:0.1:1% 

(Water:methanol:formic acid: 1M Ammonium formate) and 25:85:0.1:1% 

(Acetonitrile:Isopropanol:Formic acid:1M  Ammonium formate) as mobile phase. The 

following gradient program was used: Eluent B from 0 % to 100 % within 12 min; 100 % from 

12 min to 17min; 0 % from 17 min to 25 min. The flow rate was set at 0.3 ml/min. The samples 

were normalised according to the total protein concentration and the worm numbers. The TG 

species were extracted from Lipidmaps database and Skyline software was used to analyse the 

TG profile. 
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Figure 1. C. elegans dauer larvae can remain in a cryptobiotic state for prolonged periods 

of time. a) Desiccated daf-2 (e1370) dauer larvae survive to freezing (-80°C) for an extremely 

long period. Error bars indicate standard error of mean of two independent experiments with 

two technical replicates performed on two different days. b) Brood size of desiccated dauer 

larvae exposed to freezing remain similar to that non- desiccated dauer larvae. Average brood 

size is the mean of seven dauer larvae per each condition. Statistical comparison was performed 

by using non-parametric Kolmogorov-smirnov test n.s p>0.05. 
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Figure 2. Study site. 

a) Location of the Duvanny Yar outcrope on the Kolyma River, northeastern Siberia, Russia. 

b) view of the upper part of outcrop composed of ice wedges and permafrost silty deposits. c) 

lithostratigraphic scheme of deposits, showing location of studied rodent borrow (red circle). 

d) Fossil rodent burrow with herbaceous litter and seeds buried in permafrost deposits. m a.r.l. 

= meters above river level. 
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Figure 3. General morphology of Panagrolaimus kolymaensis sp. n., female. 

Scanning electron pictures (a, c), light microscopy photographs (e, f) and graphic presentations 

(b, d, g) of holotype: a, b) entire body, c, d) anterior ends, e) anterior body, f) perivulvar body 

region, g) tail. Abbreviations: l.f. – lateral field, ov – ovary, pro – procorpus of the pharynx, 

t.b. – terminal bulb of the pharynx, u – uterus with eggs, v – vulva, v.p. – ventral pore. Scale 

bars: a, d, e, f, g – 20 μm, b – 100 μm, c – 2 μm. 
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Figure 4. Genome assembly and phylogenomics reveals that the newly discovered 

Panagrolaimus kolymaensis species is triploid.  

a) Kmer spectra of the Panagrolaimus kolymaensis PacBio HiFi data. Kmers of length 19 were 

counted using Jellyfish. b) Circos plot showing the triploid structure of the Panagrolaimus 

kolymensis genome. The relationship between eight contigs, representing 39.9 Mb (15%) of 

the genome, is shown. Contig IDs are shown. Scale is in megabases (Mb). c) Inferred species 

tree for all taxa. The maximum likelihood tree inferred using a concatenated supermatrix (18S 

and 28S genes) with bootstrap support values is displayed. All genera are represented as 

monophyletic clades. Panagrolaimus kolymaensis is highlighted in red and basal to all other 

Panagrolaimus taxa. Internal nodes, where all subsequent branches represent identical 

sequences, are displayed with a black star.  
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Figure 5. C. elegans dauer larvae and P. kolymaensis utilize similar mechanisms to survive 

cryptobiosis. 

a) Survival rate of P. kolymaensis nematodes to desiccation and freezing (-80°C). Error bars 

indicate standard error of mean of two independent experiments with two technical replicates 

performed on two different days. Statistical comparison was performed using unpaired t test 

with Welch correction. n.s. p > 0.05, ****p < 0.0001. For desiccation (non-preconditioned) n 

= 289, freezing (non-preconditioned) n = 675, desiccation (preconditioned at 98%RH) n = 953 

and freezing (preconditioned at 98%RH) n = 1295. b) P. kolymaensis nematodes and daf-

2(e1370) dauer larvae upregulate trehalose levels upon preconditioning at 98%RH. Error bars 

indicate standard error of mean of two independent experiments with three replicates 

performed on two different days. Statistical comparison was performed using two-way 

ANOVA with Holm-Sidak’s multiple comparison test, ****p < 0.0001. c-d) 2D-thin layer 

chromatography of 14C-acetate labelled metabolites from P. kolymaensis that were non-

preconditioned and preconditioned at 98%RH. Enumerated spots indicate trehalose (1), 

glucose (2), glutamate (3), glutamine (4), serine/glycine (5) and phenylalanine (6). 

Representative images from at least two independent experiments performed on two different 

days.  
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Figure S1. Calibration of a radiocarbon (14C) date 

Radiocarbon date (44,315±405 BP) and calibrated age (45,839 - 47,769 cal BP) of plant 

material collected from buried borrow P-1320.  Radiocarbon ages were converted to calendar 

age equivalents with the OxCal V.4.4 program using the IntCal20 calibration curve55. Pink-

shaded area — radiocarbon date with standard deviation; grey-shaded area — radiocarbon date 

projection on the calibration curve with 95.4% probability. 
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Figure S2.  Morphology of Panagrolaimus kolymaensis sp. n., female.    

Graphic presentations of holotype (a,b) and SEM pictures (c-i): a) anterior body, b) female 

reproductive branch, c–e) anterior end of three different female specimens, f) anterior part of 

the lateral ridge, g) vulva, h) ventral excretory/secretory pore, i) posterior body with anus and 

lateral ridge. Scale bars: a,b - 50 μm, c-e - 3 μm, f, g, i - 10 μm, h - 5 μm. 
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Figure S3. Phylogenies inferred for genes sets using both concatenation and coalescence 

approaches.  

a) The ploidy level was analysed with Smudgeplot v0.2.156. KMC version 3.1.057 was used 

to count the 21-mers in the PacBio CCS reads. Then we ran smudgeplot.py to determine the 

lower and upper coverage cut-offs. These were determined to be 14 and 380. 21-mers with a 

coverage between 14 and 380 were filtered with kmc_tools. Then, we computed the k-mer 

pairs from the filtered 21-mers by running smudgeplot.py hetkmers. Finally, the produced a 

smudgeplot shows an estimated ploidy of 3. b) Species tree inferred for 12,295 gene trees using 

a coalescence approach. The species tree implemented using the coalescence approach with 

orthogroup gene trees is displayed. Novel species in this study are displayed in red. All nodes 

have a posterior probability of 1. c) Species tree inferred for 102 taxa. The maximum likelihood 

tree inferred using a concatenated supermatrix of 60 genes is displayed. Bootstrap values are 

only displayed for nodes with less than 100% support. The platyhelminth Macrostum lignano 

serves as an outgroup for rooting. The Ancestral panagrolaimus, basal to all others within the 

Panagrolaimus genera, is highlighted in red.  
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Figure S4. Combination of cryptobiotic states enhances survival of C. elegans dauer 

larvae.  

a) Desiccated dauer larvae manifest enhanced survival rate to heat stress (34°C). Error bars 

indicate standard deviation of two independent experiments with two technical replicates. b) 

Desiccated dauer larvae display enhances survival rate to anoxia. Error bars indicate standard 

deviation of two independent experiments with two technical replicates. Statistical 

comparison was performed by paired two tailed t-test. *p<0.05. c) P. kolymaensis possesses C. 

elegans gene orthologs to enzymes required for TCA cycle, glyoxylate shunt, glycolysis, 

gluconeogenesis, trehalose synthesis, and polyamine synthesis. Black filled circles: Ortholog 

presence suggested by orthogroup clustering, phylogenetic analysis, and domain architecture. 

White filled circles: No ortholog found via current analysis. Coloured filled circles: Presence 

of P. kolymaensis gene(s), related to a number of C. elegans genes (all genes of same colour) 

that are all co-orthologous to that gene (those genes). Label: C. elegans enzyme names and 

orthogroup that contains that gene according to our orthogroup clustering 
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Figure S5. P. kolymaensis reduces triacylglycerols (TAGs) levels and accumulates 

trehalose-6-phosphate upon preconditioning at 98%RH.  

a) 1D-Thin layer chromatography of acetate labelled organic fractions of non-preconditioned 

(1) and preconditioned (2) P. kolymaensis. b) Mass spectrometric quantification of TAG levels 

of non-preconditioned (1) and preconditioned (2) P. kolymaensis. Error bars indicate standard 

deviation of two independent experiments with two technical replicates. Statistical analysis 

was performed using unpaired t-test with Welch correction **p<0.001. c-d) non-

preconditioned and preconditioned mass spectrum of an empty region, e-f) spot 1 (trehalose), 

g-h) spot 7 (trehalose-6-phosphate) scraped out and extracted from the 2D-TLC. 
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