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ABSTRACT 

 

The evolution of drug-resistant pathogenic microbial species is a major global health concern. 
Naturally occurring, antimicrobial peptides (AMPs) are considered promising candidates to 
address antibiotic resistance problems. A variety of computational methods have been developed 
to accurately predict AMPs. The majority of such methods are not microbial strain-specific 
(MSS): they can predict whether a given peptide is active against some microbe, but cannot 
accurately calculate whether such peptide would be active against a particular microbial strain. 
Due to insufficient data on most microbial strains, only a few MSS predictive models have been 
developed so far. To overcome this problem, we developed a novel approach that allows to 
improve MSS predictive models (MSSPM), based on properties, computed for AMP sequences 
and characteristics of genomes, computed for target microbial strains. New models can perform 
predictions of AMPs for microbial strains that do not have data on peptides tested on them. We 
tested various types of feature engineering as well as different machine learning (ML) algorithms 
to compare the predictive abilities of resulting models. Among the ML algorithms, Random 
Forest and AdaBoost performed best. By using genome characteristics as additional features, the 
performance for all models increased significantly—on average by 7%—relative to models 
relying on AMP sequence-based properties only.  Our novel MSS AMP predictor is freely 
accessible as part of DBAASP database resource at https://dbaasp.org/tools?page=genome-
prediction 
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1. INTRODUCTION  

One class of molecules that are considered as promising candidates to treat the problems linked 
with antibiotic resistance are antimicrobial peptides (AMPs). Over the years, many 
computational methods, including machine learning and artificial intelligence, were trained on 
diverse AMP datasets, and evaluated for their performance. [1]. The importance of large, well-
balanced datasets, as well as powerful computational methods and informative descriptors has 
been reviewed in [1]. Several drawbacks of AMP datasets used in the existing AMP prediction 
tools are discussed in [2]. Understanding what physico-chemical and statistical descriptors 
(features) of peptides are essential for including in the analysis, remains critical both for better 
understanding of AMP's mechanisms of action and improving the resulting models prediction 
quality. AMP prediction algorithms used a variety of machine learning methods, including 
support vector machines (SVM), fuzzy K-nearest neighbours (FKNN), random forest (RF), 
neural networks (NN). Based on these methods, various online prediction services have become 
available. Some of these tools allow for simultaneous analysis using various machine learning 
approaches for AMP prediction, which becomes especially significant when all models agree on 
a prediction [3,4]. To improve the performance for non-consensus cases, the ensemble models 
have been proposed [5,6], whose predictions are based on combining the outputs of different 
models (such as SVM and random forest), weighed by derived parameters. However, given the 
scarcity of data on AMPs, such composite models may have a tendency to overfit the training 
set, with the questionable performance outside of it.  

Despite the improvements in predictive algorithms, most methods share the same conceptual 
issues. First, during the model development, they do not take into account the information on 
target strains, although the antimicrobial potency of AMPs strongly varies on strain-specific 
bacterial envelope types. Second, for models training, most of the methods use the peptides with 
incomplete or non-existent experiment-based information on their antimicrobial activities. These 
drawbacks lead to overall uncertainty in the interpretation of prediction results. For instance, Lee 
at all. [7] have developed a SVM classifier-based predictive model of AMP, that has shown 
excellent performance against the blind test set, with a prediction accuracy of 91.9%, specificity 
of 93.0%, and sensitivity of 90.7%. At the same time, a detailed analysis of the algorithm’s 
predictions has shown that the features, learned by the support vector machine, do not correlate 
with antimicrobial activity, but with a peptide’s ability to generate the negative Gaussian 
membrane curvature. Consequently, the authors have coined their SVM classifier as a general 
detector of membrane activity in peptide sequences but not as a true predictor of antimicrobial 
activity. It is worth noting, that training sets used in the development of the majority of available 
predictive methods use AMPs of arbitrary length. Yan, Bhadra et al. [8] have explored four state-
of-the-art AMP prediction methods to test whether they can be used for predicting short-length 
AMPs. Prediction accuracy, achieved with the help of these models was between 65% and 73%, 
which is significantly worse than the previously reported accuracy of 90% –95% for models 
trained on peptides of any length. 
The majority of AMP databases do not provide information about antimicrobial activity against 
particular strains (at least in a convenient-for-analysis form). DBAASP is one exception from 
this `rule’, providing reports about antimicrobial activity against particular strains, extracted 
from scientific publications. Recognizing this advantage, many strain-specific predictive models 
have been trained on datasets from DBAASP [9-15].  For example, a method developed by 
Speck-Planche and coworkers [9,10] uses a multi-target approach and discriminant analysis to 
predict antimicrobial activity against different bacterial strains. Another MSS AMP prediction 
method described in [11] uses a random forest algorithm for recognizing antimicrobial activity as 
well as identifying molecular descriptors underpinning antimicrobial activity of investigated 
peptides. For some strains, very small amount of data is available and thus the prediction results 
for these strains may not be reliable. Wang et al. [16], using a bidirectional LSTM recurrent 
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neural network classifier, attempted to design novel AMP sequences with potential activity 
against E.coli. Another example of open access predictions resource is described in [12], where 
Gull and Mina offer a web server for predicting AMP with activity against particular strains [12].  
The authors tried to overcome the problem of insufficient training data by using the target 
microbe’s genome information along with the sequence-based parameters. This is, to our 
knowledge, the only algorithm where the authors include the information about target microbes 
in the model to generate MSS AMP predictions. Compositions of mono, di-, tri- and tetra-
nucleotides have been used as genomic features. Only the amino acid compositions have been 
used as peptide descriptors for the model. Yet another example is described in [15], where the 
authors developed model using a Siamese network architecture to learn from pairs of AMPs to 
predict how their activity differs against 10 different genera of bacteria. 
In our previous paper [17], a predictive model for linear AMPs active against Escherichia coli 
ATCC 25922 has been described, which relies on a semi-supervised machine-learning approach 
with a density-based clustering algorithm. Subsequently, prediction models for some other 
microbial strains were developed as described in [18]. To support and further the involvement of 
research community in computer-aided studies of AMPs, we implemented our current model as 
open access, on-line prediction tool, available on DBAASP website. 
  
Using informative descriptors of microbial organisms as features could allow not only to 
improve the performance of MSS AMP predictive models in general, but to perform predictions 
for cases when experimental data is insufficient or absent. The main question then becomes, how 
should a microbe strain be described to include this feature(s) in the model? The most 
convenient description would be using behavior of microbial strain against particular set of 
AMPs (one example would be using susceptibilities of the microbe for a set of AMPs [17]). 
However, obtaining a statistically reliable set of peptides that have been tested on a wide 
spectrum of microbes is currently challenging, to say the least. Therefore, we considered at 
purely genome-based statistical descriptors that are easily computed for any available genomic 
sequence.  
Genome-based characteristics of microbes can be divided into absolute characteristics 
(compositions of oligonucleotides in the genomic sequence) and comparative characteristics 
(describing similarity between genomes). Furthermore, similarity-based characteristics can be 
divided into 2 classes: the first class includes characteristics that are based on similarity between 
particular genes which are widely used as phylogenetic markers, such as 16S RNA [19], DNA 
gyrase [20] and others. The second class includes characteristics which reflect similarity between 
full genomes. The second class of characteristics reflect (computer-assessed) pairwise genome-
sequence-based similarity and were coined as the overall genome related index (OGRI) [20]. 
Average nucleotide identity (ANI) [22] and digital DDH (dDDH) [23] are most widely used 
OGRI for delineation of bacterial species. To our best knowledge, similarity-based 
characteristics of genomes have not been previously used as features in training MSS AMP 
predictive models.  
 
In this work, we perform a comparative analysis to find the `best’ combination among the 
various sets of features and machine learning approaches to generate MSS AMP predictive 
models. Our comparative analysis has been conducted on special benchmarks, created with the 
help of the DBAASP data. 
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2. METHODS 
 

 
2.1 Machine learning approaches and algorithms  

 
Six ML algorithms have been chosen from the Weka workbench 
(https://www.cs.waikato.ac.nz/~ml/weka/) and trained on the DBAASP data in order to reveal 
the most stable and accurate AMP prediction algorithm. These are: Random Forest, LibSVM, K-
nearest neighbours, RealAdaBoost, Multilayer Perceptron (Neuron network), Dl4jMlpClassifier 
(Deep neural network-based classifier). The models’ default parameters have been used for 
training, except for RealAdaBoost where as base classifier Random Forest has been chosen. All  
models have been evaluated with the help of 10-fold cross validation. 
 
 

2.2 Microbial strains 
 

Microbial strains (MS), that have been used to gather information on susceptibilities for AMPs 
have been chosen based on availability of data in DBAASP [24] and Genbank [25]. MSs for 
which there is data on genome sequences have been divided into two groups: ones for which data 
on susceptibility available in DBASSP is enough to build a good predictive model, and ones that 
don't have enough data to train a separate predictive model, but present high threat for healthcare 
[26] — the data from this second group has been combined with the data from the first one to 
train a genome-based predictive model. Examples of strains that have enough data on interaction 
with the AMPs are: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and 
Pseudomonas aeruginosa ATCC 27853 (Table S1) . Strains that are considered as major problem 
for healthcare and that are included in our training set, are: Klebsiella pneumoniae ATCC 
700603, Salmonella typhimurium ATCC 14028, Enterococcus faecalis ATCC 29212, 
Acinetobacter baumannii ATCC 19606 and Bacillus subtilis ATCC 6633. Majority of the latter 
group are part of ESKAPE pathogens [27]. 
 

2.3 Genome-based characteristics of microbial strains 
 
Genome -based characteristics of MS can be divided into absolute and comparative. Mono-, di-, 
tri- and tetra-nucleotide compositions of the genome are an absolute characteristic, which is 
often used to assess level of similarity between species [28-33]. They encode the genome by 
means of 4, 16, 64 and 256-dimensional vectors, respectively. We have used a combination of 
mono+di, mono+tree and mono+tetra nucleotide compositions as well, because GC content 
difference has large influence on microbial classification using oligonucleotide frequency [33] 
and mono nucleotide composition reflects GC content. Such combinations encode genomes 
using 20, 68 and 260-dimensional vectors, respectively. It is widely believed, that the most 
effective way to delineate microbial species based on  their genomes' similarity is by making use 
of comparative characteristics, such as ANI [22] and dDDH [23]. ANI and dDDH are assessed 
between the pairs of genomes. According to [34], dDDH yielded higher correlations with 
experimental values of DDH than ANI, and therefore we have used dDDH in our comparative 
analysis. To encode the strains chosen for assembling the training set (see Table 1), five 
reference genomes have been selected from GenBank [25]. They are the genomes of Escherichia 
coli str. K-12, Staphylococcus aureus subsp. aureus NCTC 8325, Pseudomonas aeruginosa 
PAO1, Bacillus subtilis subsp. spizizenii ATCC 6633 and Mycobacterium tuberculosis H37Rv. 
The first four species (two Gram- and two Gram+) represent the most-often-used species in 
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experiments for defining antimicrobial activity of peptides and there are large volumes of data 
for them in the database. Mycobacterium tuberculosis are Gram-indeterminate bacteria with 
well-studied genomes [35].  Selected strains are presented in GenBank as reference genomes 
(RG) for the corresponding species and therefore they have been chosen as reference for 
assessing comparative genome-based attributes. Each strain from table 1 has been encoded using 
5 comparative attributes, becoming a 5-dimensional vector whose components dDDH j (j 
=1,…,5) have been assessed by the Genome-to-Genome Distance Calculator (GGDC) [23].  
 

2.4 AMPs, chosen for training sets 
 
The following filters have been used to DBAASP database to select peptides for creating training 
sets: length 9-30, no amino acid modifications, no inter-chain bonds, no N-terminal 
modifications.  The number of peptides included in the training set for each microbial strain is 
given in Table 1.  
 
To define a peptide’s class, its MIC value has been used. MIC is a widespread measure of the 
potency of AMP. The threshold for definition of an AMP as "active" is not strictly defined across 
different resources. For instance, APD database [36] that stores information on active AMPs uses 
the following criterion:  MIC < 100. We used this threshold as a starting point for our own 
classifications, defining an AMP as not active in cases when MIC > 100. To define an AMP as 
active, we had to take into consideration the peculiarities of the broth microdilution method, 
which is a major method for the assessment of MIC.  Broth dilution method is characterized by 
large error rates [37]; uncertainty of the assessment can be equal to two dilutions. Therefore, as 
the criterion of activity we have used the following threshold: MIC < 25.  Consequently, our 
training sets have been created by adopting the following thresholds of antimicrobial activity: 
MIC < 25 μg/mL for the positive samples and MIC > 100 μg/mL for the negative ones [17]. 
 
 
 

2.5 Sequence-based characteristics of AMPs. 
 

The majority of computational approaches for studying AMPs use five major types of features 
for description of their structures: (1) composition features (2) position features (3) structure 
features (4) physicochemical properties and (5) similarity features. Moreover, some features may 
belong to several types. We used the following sequence-based characteristics of AMP : 
Normalized Hydrophobic Moment (NHM), Normalized Hydrophobicity(NH), Net Charge(NC) , 
Isoelectric Point (IP), Penetration Depth, (PD), Tilt Angle(TA), Linear Moment (LM), Cyclic 
Linear Moment (CLM),  Propensity to in vitro Aggregation (PIA), Propensity to ppII coil (PII), 
Angle Subtended by the Hydrophobic Residues (AH), Amphiphilicity Index(AI), Propensity to 
Disordering (PD), : Composition of Arg (CR), Composition of Trp (CW), Composition of Lys 
(CK), Composition of Pro (CP), Composition of Hys (CH), Composition of Gly (CG),  Peptide 
Length (PL).  

The majority of these features (such as NHM, NH, NC, IP, PIA, PL) have been widely used in 
model development, including our own previous works. A detailed discussion of these features 
can be found in [38]. PD, TA, AH, AI and PII are features that we have used in AMP predictive 
model development in the past [24,38]. Using compositions of selected amino acids (such as CR, 
CW, CK, CP, CG, CH) as features is linked with the statistically reliable abundance of these 
amino acids in the sequences of AMP, and consequently with their key role in antimicrobial 
activity [39]. Amphipaticity of AMP together with helical distribution of amino acids can be 
reached by simple linear segregation of hydrophobic and hydrophilic amino acids along the 
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polypeptide chain. We have therefore used two features to describe linear separation of 
hydrophobic and hydrophilic residues along the chain. These are Linear Moment (LM) and 
Cyclic Linear Moment (CLM). Their definition is presented below: 
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Where N – peptide length, +

kh = kh if kh >0, or 0 if kh ≤0; −
kh = - kh if kh <0, or 0 if kh ≥0; kh  − 

element of the Kyte−Doolittle hydrophobic scale for the k-th residue [40]; +
kh = +

+Nkh , −
kh = −

+Nkh  
 

2.6 Training sets 
 

2.6.1 Sequence-based training set 
 

For each MS, the sequences of AMPs tested against it have been gathered from DBAASP and a 
training set of SQ type has been created. 8 trainig sets, SQi  (i=1-8), have considered, where i = 1 
corresponds to Escherichia coli ATCC 25922,  i = 2 – Pseudomonas aeruginosa ATCC 27853, i 
= 3 – to  Klebsiella pneumoniae ATCC 700603,  i = 4 – to Salmonella typhimurium ATCC  
14028,  i = 5 – to Acinetobacter baumannii ATCC 19606, i = 6 – to Staphylococcus aureus 
ATCC 25923, i = 7 – to Enterococcus faecalis ATCC 29212, and i = 8 – to Bacillus subtilis 
ATCC 6633. Such training sets unite instances (vectors of the sequence-based attributes) 
characterizing two classes of AMPs: active against particular microbial strain (positive set) and 
non-active against it (negative set). 
 
 
 

2.6.2 TS+APS – based training set 
 

  To overcome the problem of insufficient data encoding of a pairs of "Target strain - AMP 
sequence"  (TS+APS) has been performed and instances  as vectors of attributes characterizing  
target strain and AMP have been used. To develop TS+APS-based MSSPMs the various genome 
features (GF) have been used. Correspondingly, the following training sets have been created: 
SQTSi j (i=1,..8) where index i corresponds to MSs and j corresponds to GFs. Here, i=1,…,8 
defines 8 MS in the same correspondence as in the previous paragraph. Index j=1,..,9 defines 
GFs. The values of this index from 1 to 7 corresponds to oligonucleotide compositions of 
genome: mono, di, tri, tetra, mono+di, mono+di+tri and mono+di+tri+tetra-nucleotide 
compositions respectively. Moreover, j = 8, 9 correspond to features based on similarity between 
the query and reference strains (SF): j = 8 corresponds to genome similarity index dDDH and j = 
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9 corresponds to the index that relies on similarity between DNA gyrase (gyrB) genes. For each 
j-th GF, six TS+APS-based MSSPMs have been developed using six different ML algorithms. 
Because 9 sets of strains-based attributes (features) have been considered to describe the 
genome, 9 combined training sets (SQTScj  j=1,9) have been used for model development. The j-
th combined set SQTScj is created by uniting the j-th SQTSi j set of eight MSs, that is, SQTScj 
=SQTS1j∪ SQTS2j ∪…∪ SQTS8j. 
 
 

2.7    Evaluation of the Quality of the Prediction 
 

The following metrics have used to evaluate the quality of the prediction: 
 
ACC = (TP + TN)/(TP + FN + TN + FP) 
BAC= (TP/(TP + FN)+ TN/(TN + FP))/2 
 
Where ACC is accuracy, BAC is balance accuracy, TP is true positive, TN is true negative, FP is 
false positive, and FN is true negative. 
 

3. RESULTS  
 
We have examined different ML algorithms for the development of MSS predictive models 
(MSSPM) for AMPs. The efficiency/precision of the model depends on the quality of the 
training set used in the learning process. We have followed two different approaches to create 
training sets for training MSSPMs. The first corresponds to choosing AMPs for which data on 
activity against certain microbial strains is available, and building training sets for them (sets of 
SQ type) by encoding sequences of the chosen AMPs. In case of strains with insufficient data, on 
the other hand, it is more reasonable to go the second way, which entails encoding information 
on microbial strains and adding it to the AMP sequence information to create samples for the 
training set. Instances that carry information on different pairs of TS+APS form training sets of 
SQTS type, where AMPs have been tested against the target strain from the pairs. SQ and SQTS 
training sets have been used to train various ML algorithms in order to reveal the most efficient 
combination “ML algorithm -  type of encoding’’ (ML-TE). 
 
 
 
 
 
 

3.1 Comparison of only AMP sequence-based MSSPMs 
 

Six ML algorithms have been considered.  Each trained on the eight training sets, created with 
the help of data on different MSs. Data on sequences of AMPs, tested on each MS has been used 
to create the eight training sets, SQi (i=1-8). The correspondence of i-th (SQi) training sets to 
particular MS and numbers of peptides in each learning (training) set are presented in the Table 
1.  
Each training set has been used to train each of the six different ML algorithms to reveal the 
most stable and accurate MSSPM. The quality of each MSSPM has been evaluated with the help 
of 10-fold cross validation. Traditional metrics have been used to assess MSSPMs performance. 
We define the models based solely on AMP sequences as belonging to the first group of 
MSSPMs and call them MSSPM_G1. Combination of eight training sets with six ML 
approaches gives 48 MSSPMs, and therefore MSSPM_G1 unites 48 models. Performance of 
each MSSPM is summarized in Table 2. One can see from this table that there is no single ML 
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algorithm that works equally well (above 80% accuracy) for all training sets. Nevertheless, the 
predictive models developed using two ML algoritms — Random Forest and RealAdaBoost - 
show decent performance for majority of the datasets, with typical difference in accuracy 
between Random Forest-based and RealAdaBoost-based classifiers around 2 ± 1.3 %. For all 
strains except Enterococcus faecalis ATCC 29212, the accuracies of MSSPMs based on 
RealAdaBoost are higher than 80%. 
The models based on the LibSVM algorithm were quite inefficient for almost all datasets. It is 
perhaps worth noting, that the sets SQ3, SQ4, SQ5, SQ7, SQ8 are not very large and consequently 
our conclusions regarding efficiency of the models trained on them should be considered 
preliminary.  
 

3.2 Comparison of TS+APS - based MSSPMs 

 
Nine genome features (GF) have been used to encode microbial strain genomes and, together 
with AMP sequence encodings, create instances for TS +APS - based datasets. Seven of nine GF 
describe genome's oligonucleotide composition and two give genome’s similarity with another 
genome. Each training set consists of data on all MS. Therefore, they are referred to as combined 
sets (SQTScj  j=1,9). The datasets differ only by the encoding of MS genomes. Because 9 sets of 
MS-based features were considered, 9 combined datasets have been used to train the models. 
With six different machine learning algorithms, this makes 54 different models. To test the 
models’ performance, 10-fold cross validation has been performed. The given group of 54 
MSSPMs will be referred to as MSSPMs G2.  The accuracies of MSSPM G2 models are 
presented in Table 3, whose entries can be interpreted as prediction accuracies, averaged over 
different microbial strains. The accuracies for each particular strain can also be assessed using 
the corresponding SQTSij dataset as the test set. We have done so for a subset of MSSPMs G2 
group, namely the sets of models G25, G28 and G29 each containing 6 different ML models, 
trained on the SQTSc5, SQTSc8  and  SQTSc9 datasets respectively.  The performance of these 
models has been assessed on the sets SQTSij with i=1,…,8, where the index i counts strains, and 
the index j corresponds to the given GF (j = 5, 8 and 9 for SQTSc5 ,  SQTSc8  and  SQTSc9 
respectively). The total number of accuracy values computed is thus 18(the number of models) x 
8(number of test sets for each model)), which sums up to 144 assessments. These values are 
presented in Fig. 1 and in the Table S2.   
 
Taking into account the problem of insufficient data for many MS, we decided to develop other 
MSSPMs by training models on what we call i-SQTScj  training sets, where we have used the 
following definition:  i-SQTScj = SQTScj – SQTSij . That is, we train the model by removing 
instances encoding a particular TS + APS pair (represented by the index i) and use these 
instances as the blind test set (repeating this procedure 8 times for each genome feature, 
represented by the index j). The corresponding group of MSSPM (6 ML algorithms, trained on 
8x9 different datasets) is referred to as MSSPM G3 below. Similarly to the case of MSSPM G2 
discussed above, the performance of the subset G35, G38 and G39 of these models has been 
assessed on the test sets i-SQTScj with  i=1,…,8. The results are presented in Table S3.   
 

3.2.1 Oligonucleotide composition-based predictive models 

 
Seven kinds of oligonucleotide composition-based features have been considered to assess their 
impact on the performance of the six algorithms that form the base of our MSSPMs. The 
considered compositions are mono, di, tri and tetra-nucleotide compositions separately, as well 
as the following combinations of these compositions: (mono+di, mono+di+tri, mono+di+tri+ 
tetra). In Table 3, the performance metrics of the resulting 7 (training sets) * 6 (algorithms) = 42 
models are presented. Again, all accuracies are derived from 10-fold cross-validation. It is clear 
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from the results presented in Tables 2 and 3, that including additional information on genomes of 
microbial strains into the training sets improves performance of the corresponding MSSPM. 
Although these 42 models do not differ significantly from each other in terms of performance, 
the quality of models based on mono and di-nucleotide compositions was, on average, slightly 
better. Among the ML algorithms, Random Forest and RealAdaBoost demonstrated better 
performance, similar to our results with peptide-based features only.  
 
Taking into account all of the above, we decided to use mono+di - nucleotide composition-based 
models to compare with inter-strain similarity-based predictive models. 
 

3.2.2 Inter-strain similarity-based predictive models  

An alternative way to encode target strain genome is by using features that describe  inter-strain 
similarity (SF). SF were represented as 5-dimensional vectors showing similarity between target 
genome and five (RGs).  

The SQTSc8 and SQTSc9 sets have been created on the basis of encoding TS genomes with 
similarity features such as similarity indexes dDDH and gyrB gene similarity, assessed between 
TS and RG. Tables S1-S2 and Fig. 1-2 give accuracies and balance accuracies of predictive 
models based on various machine learning algorithms, trained on SQTSc8 and SQTSc9 datasets. 
In addition, the best model among oligo-nucleotide composition-based sets (trained on the 
SQTSc5) have been included as well.  

Comparison of predictive models from MSSPM_G1 and MSSPM_G2 groups, built on two 
different encodings (AMP sequence-based and TS+APS-based respectively) demonstrated that 
addition of the TS genome-based attributes had positive effect on prediction accuracy (the 
accuracy increases by 3 to 17 percent depending on the precise strain with the increase of 5-7% 
for most strains, see Fig. 4). Balance accuracies for models from the MSSPM_G2 group vary 
from 84 to 92 % for different strains.  

To see what the impact of missing data on a particular strain in a model’s training set is on the 
model's performance, we can compare balance accuracies of the models from MSSPM_G2 and 
MSSPM_G3 (the latter group corresponds to models, trained on data with missing information 
about particular strains - see the definition above). The performance of models from these two 
groups are given in Fig. 1 and Fig. 2 respectively. To make comparison more reliable, only 
strains with abundant data were picked as test sets for the two sets of models (Table 1). Strains 
Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Staphylococcus 
aureus ATCC 25923 were used for these purposes. The results show that balance accuracies of 
models from MSSPM_G3 on the given test sets (81-83%) are about 7% lower than balance 
accuracies of the models from MSSPM_G2 on the same test sets (88-90%). (We emphasise once 
again, that in the given procedure, models from the group MSSPM_G3 were tested on data that 
they haven’t `seen’ at their training time.) Therefore, we can conclude that our models’ 
prediction results should be quite reliable for (the majority of) new strains for which the data on 
antimicrobial activity is lacking. 

We should perhaps note that there is no single genome-based set of features that lead to 
significantly better performance compared to the others. As to the ML algorithms, Random 
Forest and RealAdaBoost still give the best prediction results, just as they did for the case of 
purely sequence-based  predictive models.  

3.3 Comparison of MSSPMs with other available tools 
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We have surveyed available tools that predict AMPs against particular microbial strains or 
species and compared them to the best models developed in the current work. Four predictive 
tools [5,12-14] have been selected. The algorithm from ref. [12] provides a score of the 
effectiveness of a peptide sequence against various microbial species. However, from this score 
it is not clear if the peptide is active against particular strain or not and so we did not use this tool 
for comparison. Three remaining algorithms [5,13-14] perform prediction of anti-tubercular 
peptides. Among these, only two offer on-line prediction capability [12,14]. Akbar et al., 
mentioned [5] that the source code for their model is publicly available in a github repository, 
but the corresponding link appears to be broken. Therefore, we decided to compare our best 
models — those based on the RF and RealAdaBoost algorithms and trained on the SQTSc5, 

SQTSc8 and SQTSc9 datasets — with the models presented as anti-tubercular peptide prediction  
tools: AntiTB [13] and Atb [14]. AntiTB server offer four models for prediction (AntiTB_MD 
SVM ensemble, AntiTB_RD SVM ensemble, AntiTB_MD Hybrid and AntiTB_RD Hybrid) 
that differ by the corresponding training sets and ML algorithms. Atb server, on the other hand, 
offers two models (Atb_MD and Atb_RD) that have been trained on what is referred to as 
`MD’ and `MR’ datasets. We have to note, that the MD and MR training sets have been shared 
between models from both of the above-mentioned tools (AntiTB and Atb). MD and MR have a 
shared positive set, created on the basis of data from the AntiTB database [41], while the 
negative sets are different, created on the basis of SWISS-PROT [42] and DBAASP [24] 
respectively. It is worth noting that negative sets consist of peptides not tested against TB.    

To perform the comparison, a benchmark test set (BTS) has to be chosen. According to our 
definition, laid out in the method section, a set of anti-TB peptides, forming the positive set for 
BTS must consist of AMPs tested on Mycobacteria TB (M.tb) and having MIC < 25 μg/mL. The 
data on separate strains of M.tb is scarce, therefore we have used data on two strains of M.tb 
from DBAASP, namely H37v and lux, and peptides that have MIC < 25 against one of these 
strains has been involved in the positive set of BTS. Negative set consists of peptides that have 
been tested on H37v and lux strains and that have MIC > 100 for both. Consequently, we have 
created a benchmark test set, which consist of 74 peptides: 38 active peptides for the positive set 
and 36 non-active peptides for the negative set.   M.tb -specific predictive models of AMP, 
together with other models developed and described in this work have been tested on the given 
BTS (Table 4). It is worth noting that the positive set from the BTS is a truly blind test set for 
our MSSPMs (because our MSSPMs have not seen this data at training time), while it is not for 
anti-tubercular peptide predictive models AntiTB and Atb.  
 

The test results show that anti-tubercular AMP prediction servers’ performance in the prediction 
of the active AMP (i.e. sensitivity) is higher than our models' performance. However, AMP 
models underperform when non-anti-M.tb peptide is to be predicted.  Consequently, the 
specificities and accuracies of the anti-M.tb AMP prediction tools are markedly lower than the 
same characteristics of our models. 

These results can be explained as follows. Learning on the positive training sets allows anti-
tubercular AMP prediction methods to learn shared features of AMPs.  These shared features are 
thought to be linked with the capability to be active against an "averaged" membrane [7]. 
Therefore, the trained model predicts all membrane-active peptides as AMP, although it is not 
correct, because in reality not all membrane-active peptides are AMPs. If the model doesn't 
know these additional important properties, it can't separate membrane-active non-AMPs from 
AMPs. When randomly selected `putative non-AMP sequences’ (that is, reasonably supposed to 
be non- membrane active) have been used as a negative training set, the developed models 
distinguish membrane-active peptides from non-membrane-active ones, with high efficiency. But 
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the same model fails when it is necessary to distinguish non-active against a particular strain but 
membrane-active peptide from AMP active against the same strain.  

As a disclaimer, the definition of a `putative non-AMP sequence’ might be unavoidably 
incomplete: even if it can be proven that a certain AMP is not active against n different 
microbes, it can still turn out to be active against some (n+1)-th microbe, which has not been yet 
tested. Consequently, for a model to be capable of distinguishing non-active against a particular 
strain but membrane-active peptide from AMP, it has to be trained on a set that contains non-
AMP (including membrane-active ones), tested on a particular strain.  

We have to emphasise, that natural AMPs evolve in a certain habitat, aiming to be active against 
a particular microbial set. At the same time, they might not be active against others. Moreover, 
synthetic non-AMPs were designed with an aim for them to be active against a particular set of 
microbes, but without success. Therefore, many peptides from databases, that were assessed on 
antimicrobial potency and turned out not active carry some features shared with AMP and 
consequently with membrane-active peptides. Therefore, training on the negative training set that 
consists of experimentally proven non-AMPs will give the model knowledge on the features of 
membrane-active but non-AMP peptides that distinguish them from AMP.  

This is why all models trained on “putative non-AMP” sets without specifying the target, that is 
the particular strain (type of membrane) they have to interact with, fail when non-AMP peptides 
have to be predicted.  Many peptides can be active against a biological membrane in general, but 
only particular ones can have appropriate effect on a particular membrane. 

 

4. CONCLUSION 

To overcome the problem of drug-resistance, new paradigms and approaches are needed. One 
approach is to learn the lessons from AMPs, a class of natural molecules that have the experience 
to combat pathogenic microbes without known risk of the development of resistance.  
Computational approaches are widely used to aid and complement the effort to develop new 
peptide-based antibiotics. Recent innovations in ML algorithms and the availability of better 
quality AMP datasets have caused proliferation of ML-aided prediction methods that aim to 
perform rational design of antibiotics possessing new mechanisms of action. Xu et all [1] in their 
work survey more than 30 approaches for AMP identification and try to evaluate the predictive 
performance of the tools based on an independent test dataset. Predictive performance of the 
majority of methods on the test sets used is high, but some drawbacks of the approaches make 
them less applicable to target-oriented design of AMP.  The major drawback is that all predictive 
models surveyed in [1] have been trained in non-microbial-strain-specific training sets. This is a 
problem, as the potency of peptides (widely presented as MIC), and consequently their class, is 
exclusively determined on the microbial strain level. Therefore, positive training sets consisting 
of AMPs, active against some microbial strains but not active against others will fail to provide 
comprehensive learning (essentially because AMPs carry uncertainty in the definition of the 
class of peptide). Even more problematic is creation of a statistically reliable, experimentally 
proven negative training sets. It is reasonable to suppose that patterns, learned on the non-
microbial-strain-specific training sets are only sensitive to shared features of the AMP, for 
instance features linked with the activity against “average” membrane, but knowledge on the full 
set of features necessary to perform antimicrobial action against certain strain (i.e. particular 
membrane) is absent. 
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Development of predictive models, based on the microbial strain-specific training sets is 
complicated due to insufficient data on the majority of microbial strains. To overcome the 
problem of insufficiency of data, we have developed microbial strain-specific predictive models 
relying on the attributes characterizing both the AMP sequences and target microbial-strain 
genomes at the same time.  Prediction accuracies of models trained on datasets involving TS 
genome-based attributes have risen on average by 7% with respect to models relying on AMP 
sequence information only. Among ML approaches, Random Forest and RealAdaBoost give the 
best prediction results. Our models allow to perform prediction of AMPs against microbial strain 
with insufficient data.  
 
The current performance of the models can be improved in multiple ways: i) by expanding the 
volume of data for the training set ii) by increasing the number of reference genomes and iii) by 
developing a new encoding system aiming to describe AMP sequence and TS genome more 
comprehensively. We invite researchers to use our on-line prediction tool and plan to continue 
upgrading it as outlined above. 
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FIGURE LEGENDS 
 

Figure 1. Balance accuracies for the models from three subgroups of the MSSPM G2 group: a) 
G25, b) G28 and c) G29 (abbreviations are described in Section 3.2).  
Test sets SQTSij were created based on data corresponding to a particular pair (i,j):  i-th strain 
and j-th GF. The first index takes on the following values: i=1,…8, with  i =1 corresponding to 
Escherichia coli ATCC 25922, i = 2 – Pseudomonas aeruginosa ATCC 27853, i = 3 – to  
Klebsiella pneumoniae ATCC 700603, i = 4 – to Salmonella typhimurium ATCC 14028, i = 5 – 
to Acinetobacter baumannii ATCC 19606, i = 6 – to Staphylococcus aureus ATCC 25923, i = 7 
– to Enterococcus faecalis ATCC 29212, and i = 8 – to Bacillus subtilis ATCC 6633. The second 
index takes on the values j=5, 8, 9, where j = 5 corresponds to mono+di nucleotide compositions 
and j = 8, 9 correspond to SF: j = 8 corresponds to genome similarity index dDDH and j = 9 
corresponds to index that relies on similarity between gyrB genes; SQTScj = SQTS1j ∪ SQTS2j 
∪…∪ SQTS8j. BAC was evaluated using 10-fold cross-validation. 
 
Figure 2. Balance accuracies for the models from three subgroups of the MSSPM G3 group: a) 
G35, b) G38 and c) G39 (abbreviations are described in Section 3.2).  
Test sets SQTSij were created based on data corresponding to a particular pair (i,j):  i-th strain 
and j-th GF. The first index takes on the following values: i=1,…8, with  i =1 corresponding to 
Escherichia coli ATCC 25922, i = 2 – Pseudomonas aeruginosa ATCC 27853, i = 3 – to  
Klebsiella pneumoniae ATCC 700603, i = 4 – to Salmonella typhimurium ATCC  14028, i = 5 – 
to Acinetobacter baumannii ATCC 19606, i = 6 – to Staphylococcus aureus ATCC 25923, i = 7 – 
to Enterococcus faecalis ATCC 29212, and i = 8 – to Bacillus subtilis ATCC 6633. The second 
index takes on the values j=5, 8, 9, where j = 5 corresponds to mono+di nucleotide compositions 
and j = 8, 9 correspond to SF: j = 8 corresponds to genome similarity index dDDH and j = 9 
corresponds to index that relies on similarity between gyrB genes. BAC was evaluated using 10-
fold cross-validation. 
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Table 1. Strains selected for the comparative analysis. 
 

Strains Learning Set * Number of AMP  Number of active AMP 

Escherichia coli ATCC 25922 SQ1 1478 858 

Pseudomonas aeruginosa ATCC 27853 SQ2 1031 519 

Klebsiella pneumoniae ATCC 700603 SQ3 175 75 

Salmonella typhimurium ATCC  14028    SQ4 275 158 

Acinetobacter baumannii ATCC 19606    SQ5 174 128   

Staphylococcus aureus ATCC 25923 SQ6 1152 651 

Enterococcus faecalis ATCC 29212 SQ7 335 183 

Bacillus subtilis ATCC 6633  SQ8 245 168 

 
*One letter indexing-  1,2, 3, 4, 5, 6,7,8 correspond Escherichia coli ATCC 25922; Pseudomonas aeruginosa ATCC 27853; 
Klebsiella pneumoniae ATCC 700603; Salmonella typhimurium ATCC 14028; Acinetobacter baumannii ATCC 19606;  
Staphylococcus aureus ATCC 25923;  Enterococcus faecalis ATCC 29212 and Bacillus subtilis ATCC 6633,   respectively. 
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Table 2. Accuracies attained by six ML algorithms, trained on SQi datasets(i=1,8) 

 

Training set RF* SVM* KN* RA* MP* DM* 

SQ1 79.24 61.96 79.50 81.24 73.03 72.59 

SQ2 82.24 69.64 77.78 83.41 77.01 73.03 

SQ3 87.21 78.31 81.13 83.37 82.50 83.13 

SQ4 81.48 67.55 84.36 84.05 81.28 77.02 

SQ5 73.44 63.74 76.14 72.66 78.70 69.11 

SQ6 80.64 64.16 78.02 82.24 75.05 71.52 

SQ7 77.17 63.68 74.81 76.73 75.52 73.01 

SQ8 81.98 54.97 79.48 81.68 79.64 81.06 

*RF -Random Forest; SVM – LibSVM; KN – K-nearest neighbours; RA – RealAdaBoost; MP – 
MultilayerPerceptron; DM – Dl4jMlpClassifier. 
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Table 3. Performance of oligonucleotide composition-based predictive models based on 10-fold 
cross-validation (the largest value is highlighted in bold) 
 

Training 
set RF* KN*  RA* SVM* MP* DM* 

SQTSc1 87.189 80.5676 88.176 74.3163 77.7709 72.7534 

SQTSc2 86.8805 80.0123 88.1555 75.036 76.4754 72.7534 

SQTSc3 84.2484 80.0123 86.2225 77.8737 76.0642 72.3216 

SQTSc4 82.5211 80.0123 83.1174 76.2492 65.1861 70.0185 

SQTSc5 86.4898 80.0123 88.3611 73.6994 76.2698 72.7946 

SQTSc6 83.467 80.0123 85.0298 73.4937 74.6247 71.6841 

SQTSc7 81.9247 80.0123 82.9735 74.6658 68.9903 68.9903 
*RF -Random Forest; KN – K-nearest neighbours; RA – RealAdaBoost; SVM – LibSVM; MP – 
MultilayerPerceptron; DM – Dl4jMlpClassifier. 
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Table 4. Performances of different predictive models on the MT-DS set for Benchmark test  

Predictive models Sensitivity 

(%) 

Specificity 

(%) 

Balance 

Accuracy (%) 

Accuracy 

(%) 

Ref: 

AntiTB_MD SVM ensemble
*
  97.37 38.89 68.13 68.92 [13] 

AntiTB_RD SVM ensemble
*
  97.37 47.22 72.30 72.97 [13] 

AntiTB_MD Hybrid method
*
 97.37 36.11 66.74 67.57 [13] 

AntiTB_RD Hybrid method
*
 100.00 30.56 65.28 66.22 [13] 

Atb_MD
*
 97.37 47.22 72.30 72.97 [14] 

Atb_RD
*
 97.37 25.00 61.18 62.16 [14] 

Random Forest on SQTSc5 89.47 86.11 87.79 87.84 This 

work 

RealAdaBoost on SQTSc5 92.11 86.11 89.11 89.19 This 

work 

Random Forest on SQTSc8 94.74 88.89 91.81 91.89 This 

work 

RealAdaBoost on SQTSc8 92.11 88.89 90.50 90.54 This 

work 

Random Forest on SQTSc9 92.11 88.89 90.50 90.54 This 

work 

RealAdaBoost on SQTSc9 92.11 88.89 90.50 90.54 This 

work 

 

*
AntiTB – server from [13], Atb – server from [14], MD – data for the negative set from DBAASP, RD – 

data for the negative set from SWISS-PROT 
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