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Abstract
The steepness of dominance hierarchies provides information about the degree of competition within animal
social groups and is thus an important concept in socioecology. The currently most widely-used metrics
to quantify steepness are based on David’s scores (DS) derived from dominance interaction networks. One
serious drawback of these DS-based metrics is that they are biased, i.e., network density systematically
decreases steepness values. Here, we provide a novel approach to estimate steepness based on Elo-ratings,
implemented in a Bayesian framework (STEER: Steepness estimation with Elo-rating). Our new metric has
two key advantages. First, STEER is unbiased, precise and more robust to data density than DS-based
steepness. Second, it provides explicit probability distributions of the estimated steepness coefficient, which
allows uncertainty assessment. In addition, it relies on the same underlying concept and is on the same scale
as the original measure, and thus allows comparison to existing published results. We evaluate and validate
performance of STEER by means of experimentation on empirical and artificial data sets and compare
its performance to that of several other steepness estimators. Our results suggest that STEER provides a
considerable improvement over existing methods. We provide an R package EloSteepness to calculate the
new steepness measure, and also show an example of using steepness in a comparative analysis.
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Introduction
Analyzing dominance relationships, dominance ranks and dominance hierarchies is a staple in studies of
animal behavior. Results of such analyses feature prominently in the description of social structure in many
animal species, spanning vertebrates as well as invertebrates.

One key aspect in this context is hierarchy steepness, which can be defined as “the size of the absolute
differences between adjacently ranked individuals in their overall success in winning dominance encounters”
(de Vries et al., 2006, p. 585). A hierarchy is considered steep if these differences are large, and a shallow
hierarchy is one in which these differences between individuals are small. Hierarchy steepness is therefore
often also referred to as dominance gradient (e.g., Barrett et al., 1999), and systems with steep hierarchies
are often termed despotic while shallow systems are referred to as egalitarian, or less despotic (Sterck et al.,
1997; Vehrencamp, 1983). Steepness is particularly relevant for questions related to socioecology, dominance
styles, biological markets and phylogenetic covariation of social traits (Amici et al., 2020; Balasubramaniam
et al., 2012a; Flack & de Waal, 2004; Schino & Aureli, 2008; Sterck et al., 1997; van Schaik, 1989).

For example, Balasubramaniam et al. (2012a) investigated variation in hierarchy steepness in groups of
nine species of macaque (genus Macaca). They found evidence for a strong phylogenetic signal in hierarchy
steepness, which is exceptional given the generally low magnitude of phylogenetic signals in behavioral traits
(Blomberg et al., 2003; Kamilar & Cooper, 2013). Their results also fit a wider literature on phylogenetic
covariation in a suite of behavioral traits in this genus (Balasubramaniam et al., 2012b; Matsumura, 1999;
Thierry et al., 2000, 2008). This result helped to reconcile the influence of both, phylogenetic history and
environmental factors, in shaping variation in behavioral patterns across species (Balasubramaniam et al.,
2012a).

Quantifying hierarchy steepness has predominantly been done with one index (‘classic steepness,’ de Vries
et al., 2006). This index, however, suffers from one important drawback. Specifically, the steepness index
decreases as data density decreases, i.e., the more dyads that have no observed interactions in the dominance
network, the shallower the hierarchy steepness (e.g., figure 2 in Klass & Cords, 2011) (see also figure A1). In
other words, the higher the proportion of unknown relationships in a data set (the sparser the data set is),
the smaller the steepness index becomes (see also Balasubramaniam et al., 2012a).

A new or improved index that does not suffer from this issue is therefore desirable. Any such index should
have at least the following properties. First, it should indeed capture the phenomenon it is supposed to
capture, i.e., the average difference in power differentials among individuals. Second, it should be robust to
data density and observation effort. An additional desirable feature would be that the index also assesses the
uncertainty arising from observation effort. Here we propose a novel index to quantify hierarchy steepness
that meets all three of these criteria. We begin by briefly describing the original steepness index of de Vries
et al. (2006), followed by a description of our proposed novel index.

Classic steepness based on David’s scores
Formally, steepness has been quantified as the slope of a regression of cardinal dominance scores of individuals
on their ordinal dominance ranks, where the cardinal dominance scores are typically normalized David’s
scores (de Vries et al., 2006). Calculating classic steepness (per de Vries et al., 2006) starts from a square
matrix in which dyadic dominance interactions are tabulated. These raw interaction frequencies are then
transformed into dyadic win/loss proportions (Pij). For example, if the dyad AB interacted 10 times, and A
won 9 of these interactions, the winning proportion of A is PAB = 0.9, and for B it is PBA = 1 − PAB = 0.1.
Losing proportions are calculated analogously. These winning and losing proportions are then summed for
each individual, being weighted by the winning and losing proportions of the opponents (see de Vries et al.
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(2006) for more details). The result of this procedure is a single score for each individual (David’s score,
David, 1987; Gammell et al., 2003) where high values indicate high success (“high rank”) and low scores
indicate low success (“low rank”). During the next step, David’s scores are then normalized such that the
scores of all individuals range between 0 and n− 1, where n is group size. To derive the steepness metric,
a simple linear regression is fit between scores and ordinal ranks of the scores (figure 1 in de Vries et al.
(2006), see also figure 3). The absolute value of the slope coefficient of this model then is the steepness metric.
Because of the normalization step, steepness ranges between 0 and 1.

A variant of this approach also suggested by de Vries et al. (2006) uses dyadic proportions that are corrected
for chance (Dij), rather than the pure dyadic winning proportions Pij to derive David’s scores. Throughout
the evaluation of our new method, we consider both variants of classic steepness.

Elo-rating based steepness
Our approach to obtain a steepness index follows the same general logic: We use dyadic interactions to derive
normalized individual dominance scores, which are used to fit a simple regression model, the slope of which
then is the steepness metric. The key new feature is that the individual scores are derived from Elo-ratings
rather than being based on David’s scores.

In brief, Elo-rating in its original form updates individual ratings after single observed dyadic interactions,
where interaction winners increase their ratings and losers decrease their ratings (Albers & de Vries, 2001;
Elo, 1978; Goffe et al., 2018; Neumann et al., 2011). The magnitude of change in the ratings depends
on the expected outcome of the interaction, which in turn depends on the rating difference between the
two interactants prior to the interaction. For example, if individuals A and B interact and prior to their
interaction, A had a much larger rating than B, the expectation is that A is very likely to win the interaction,
and conversely B is very unlikely to win. If A indeed wins the interaction then the updated ratings will
change very little for A and B, if at all. If, contrary to the expectation, B wins the interaction, ratings will
change substantially.

In addition to the expected outcome, the exact amount by which ratings change depends on the parameter k,
which determines the maximum amount of change in ratings after a single interaction (Franz et al., 2015;
Goffe et al., 2018). Typically, k is unknown and set to some arbitrary value like 100 (e.g., Neumann et al.,
2011) (see also below).

Importantly, the Elo-rating algorithm treats interactions sequentially, i.e., individual ratings are updated
after each interaction in the temporal order in which they occur/are observed. This constitutes a major
difference to static methods like David’s score where the sequence of interactions is ignored. However, since
we want to compare the performance of our Elo-rating-based method to that of static methods, we employ
a randomization approach. For this, we translate static interaction matrices into randomized sequences in
which the interactions may have occurred. This is necessary because the actual sequence of interactions is
not available in static networks, which is the case when matrices are the data source (see also Sánchez-Tójar
et al. (2018) and Clark et al. (2018)).

For our purposes, we take advantage of the fact that with Elo-rating, we can express the expected winning
probability for any individual with any potential opponent at any point in the rating process, which is simply
a function of the differences in ratings between the two individuals. Importantly, these expected winning
probabilities are defined regardless of whether two individuals actually interacted.

It is also important to note that there is no consensus about the exact shape of the relationship between
rating difference and winning probability (e.g., Franz et al., 2015; Goffe et al., 2018; Neumann et al., 2011;
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Sánchez-Tójar et al., 2018), although all implementations have in common a sigmoidal shape. Here we follow
Goffe et al. (2018)1 and define the expected winning probability of A against B as

pAB = 1
1 + exp(EloB − EloA)

For example, consider the four individuals in figure 1. The ratings in the top row are the ratings after all
interactions in the sequence have been evaluated. Here A has the highest rating among the four individuals
and we can calculate A’s expected winning probabilities with the three remaining individuals. Since A’s
rating is the highest rating of all individuals, all its winning probabilities are larger than 0.5 (dashed red
arrows in figure 1), and in fact turn out to be all larger than 0.8. For example, for individuals A and C, with
ratings of 1.82 and −0.81 respectively, we find that

pAC = 1
1 + exp(−0.81 − 1.82) = 0.93

Individual C, on the other hand, is expected to win only against one other individual (D) and is expected to
lose against A and B. This translates into one expected winning probability larger than 0.5 and two smaller
than 0.5 (full golden arrows in figure 1).

These expected winning probabilities are then tabulated (center left panel in figure 1) per individual and
opponent. When summing the winning probabilities per individual we obtain cumulative winning probabilities.
These cumulative winning probabilities are akin to normalized David’s scores in that they range between 0 for
an individual that has winning probabilities of 0 against all other individuals and n− 1 for an individual that
is expected to win against all other individuals, where n is group size. More formally, we define individual i’s
cumulative winning probability ci as

ci = (
n∑

j=1

1
1 + exp(rj − ri)

) − 0.5

where ri is individual i’s rating at the end of the interaction sequence, rj is individual j’s rating at the
end of the interaction sequence and n is the group size. We need to subtract 0.5 from this sum to account
for the winning probability when i = j, i.e., the winning probability of individual i against itself, which is
1/(1 + exp(0)) = 0.5 and irrelevant.

With these cumulative winning probabilities at hand, we fit a regression model analogously to de Vries et al.
(2006) with cumulative winning probabilities as a function of ordinal ranks of cumulative winning probabilities.
The absolute value of the regression slope then is the steepness index (see also figure 3).

Tackling uncertainty
So far, we defined Elo-based steepness as a point estimate. There are however several sources of uncertainty
for obtaining this estimate. First, we usually do not know the ratings of all individuals at the start of the
interaction sequence. Second, we do not know the value of k, which determines how much exactly ratings
change after each interaction. Both these issues have been addressed before Goffe et al. (2018), and we
follow Goffe et al. (2018), who adopted an explicitly Bayesian approach to estimate start ratings and k from
the available interaction data, rather than setting them to arbitrary values. Consequently, all quantities of

1Note that there is a typo in their equation, which we corrected here. Their expression (equation 7) is actually pBA, i.e., the
winning probability of B against A. We corrected this by switching EloA and EloB in the equation’s denominator.
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Figure 1: From individual ratings to cumulative winning probabilities. From individual ratings (top panel),
rating differences are calculated. These differences translate (right plot) into dyadic winning probabilities,
which can be tabulated (left matrix). Winning probabilities are then summed for each individual to derive
cumulative winning probabilities (bottom panel). Two individuals are highlighted (A in dashed red, C in full
gold).

interest, such as start ratings and k can be seen as probability distributions rather than fixed point estimates.
The same is true for to the expected dyadic winning probabilities and, in extension, to the cumulative winning
probabilities of individuals.

One additional source of uncertainty concerns the actual sequence in which the interactions occurred. Recall
that we translate static matrices, i.e., interactions that were aggregated over some time frame, into “dynamic”
interaction sequences in order to apply Elo-rating (Clark et al., 2018; Sánchez-Tójar et al., 2018). As we often
do not know the actual sequence, we simply use randomized versions of sequences in which the interactions
could have occurred. The resulting multiple probability distributions can then simply be combined.

The concept is illustrated in figure 2. Beginning from an interaction matrix we obtain cumulative winning
probabilities. In contrast to figure 1, these are now distributions rather than point estimates, stemming from
MCMC samples. The final step in obtaining steepness is then to rank the cumulative winning probabilities
and fit a simple linear regression. This procedure is applied in each of the MCMC samples separately and
results in a probability distribution of steepness values.

Figure 2 shows that observation effort directly informs how uncertain we need to be regarding the steepness
estimates. Distributions shown in the bottom row vs. the top row of figure 2 have the exact same win/loss
ratios, but differ with respect to observation effort: the bottom row has twice the number of observed
interactions. With more observed interactions the resulting distributions become narrower, as they should.
The more information (here: observed interactions) we have, the less uncertain we can be about our estimates.
Another way of looking at this is that the cumulative winning probability distributions in the lower panel
overlap much less compared to the upper panel.

It is also noteworthy that using the Bayesian Elo-model in this context handles ambiguous cases very naturally.
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In the example here, individuals d and e have a tied relationship, i.e., they both won and lost the same
number of interactions with each other. As a result, their cumulative winning probability distributions overlap
to a very large extent.2
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Figure 2: From interaction matrix to steepness distribution via cumulative winning probability distributions.
The interactions were modeled with 10 randomized sequences and 4,000 MCMC samples each. In the center
column the 40,000 samples are combined to display cumulative winning probabilities of individuals. In the
steepness distribution in the right column, the 10 randomizations are depicted individually via the grey lines
and combined via the yellow area. The lower panel replicates the upper panel with the difference that it is
based on doubling the observed interactions.

In summary, our new steepness measure follows an analogous approach as classic steepness by using
standardized scores of individuals as the source to estimate the steepness slope (figure 3). In contrast
to classic steepness though, these individual scores represent probability distributions of cumulative winning
probabilities derived from Elo-ratings. We therefore refer to it as STEER: steepness estimation with Elo-rating.
STEER captures uncertainty on multiple levels: first, the uncertainty arising from the sequence itself, i.e., by
randomizing the order in which interactions are considered; second, from the actual rating process, i.e., by
using Bayesian estimates of k and start ratings (Goffe et al., 2018).

2This has direct consequences for the steepness model: in about 50% of MCMC samples d has a higher cumulative winning
probability than e and hence d’s ordinal rank in those samples is 4 as opposed to e’s rank 5. In the remaining MCMC samples,
the ranking of the two is reversed.
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Figure 3: Elo-based steepness and classic steepness. Classic steepness (right column) is calculated with Pij

David’s scores and represents a point estimate. Two individuals have the same David’s score and hence have
a tied rank and therefore are slightly jittered vertically for visual purposes. Elo-based steepness carries over
uncertainty deriving from, amongst others, data density. The lower panel has twice the number of interactions
observed compared to the top panel, which informs the Bayesian Elo steepness, but has no effect on classic
David’s score steepness.

Evaluation of the new method
We used two complementary approaches to evaluate the performance of STEER in comparison to the original,
classic, steepness measure and three other options to quantify steepness.

First, we looked at reliability by assessing how well the different methods recovered some underlying (‘true’)
steepness value. We used two ways of defining ground truth. For the artificial data, we knew ground truth
because we set the steepness parameter during data generation (see below and figure A2). For the empirical
data, this approach was not possible and we resorted to using steepness derived from Pij David’s scores as
ground truth. For comparison, we also used the latter approach to evaluate method performance for the
artificial data. An ideal method would have had a correlation ρ = 1 (‘precise’) and a regression slope β = 1
(‘unbiased’) when looking at the relationship between ground truth and the results of the different methods
to assess steepness.

Second, we investigated how well the different methods dealt with sparse data. Here, we performed a removal
experiment, in which we increased the proportion of unknown relationships incrementally in a given data set
by removing interactions, and subsequently quantified the relationship between steepness and the proportion
of unknown relationships in each data set (see figure A3). This approach provided insights into the robustness
of the different methods with respect to data density. Specifically, we started by assessing the proportion of
unknown relationships in the initial network. Then we removed interactions from the network until one more
dyad had no interactions, which corresponds to an increase in the proportion of unknown relationships, and
stored the resulting matrix. Then we repeated the removal procedure until we reached a matrix with 70%
unknown dyads (which represents a fairly empty/sparse network) and stored each intermediate matrix. For
example, a matrix with 10 individuals and hence 45 dyads, with all dyads initially observed, could have 31
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dyads removed until reaching 70% unknown dyads. This would result in 32 matrices (31 removal steps + the
initial matrix). In order to speed up computation, whenever the number of resulting matrices was larger than
12, we randomly selected 12 matrices and discarded the remaining ones.

The quantity of interest in this experiment was the relationship between steepness and the proportion of
unknown relationships. For doing this, we separately fitted a linear regression for each data set (set of up to 12
matrices) and for each steepness algorithm. The steepness value was the response variable and the proportion
of unknown relationships was the predictor variable. The slope of this regression provided information on
how a method responds to unknown relationships.

A perfect method would produce the same steepness measure regardless of the proportion of unknown
relationships, and hence the slope would be zero, i.e., a method returns (on average) the same steepness for
each value of unknown relationships. If the slope is positive, the steepness value becomes larger with increasing
unknown relationships, i.e., sparser matrices. If the slope is negative, the steepness value becomes smaller
with increasing unknown relationships. This latter pattern is what we expected for the classic steepness
metrics, and we expected it to be more pronounced, i.e., more negative, in the Pij-based steepness compared
to the Dij-based steepness.

Data sets
We used two data sets, which we describe in more detail below. The first was a set of artificially generated
matrices. The second was a set of empirical data sets, i.e., matrices extracted from published sources.

Artificial data sets

We generated 1,000 artificial dominance interaction matrices. First, we set a group size between 5 and 25,
which corresponds to the range of the majority of published dominance interaction matrices. Then we set
the number of interactions dependent on group size with ninteractions = nx

group size, where x was a random
number from a uniform distribution ranging between 1.8 and 2.8. For a matrix with five individuals, this
lead to interaction numbers ranging between 19 and 91, and for the largest groups with 25 individuals to
between 329 and 8208 interactions. The starting steepness for each matrix was set to a random, uniformly
distributed, number between 0.2 and 1 (figure A2).

We also introduced two kinds of biases in how interactions were distributed across dyads. First, interaction
frequency depended on how close two individuals were in rank. This parameter ranged from all dyads having
the same underlying propensity to interact regardless of rank distance to situations where individuals of
adjacent ranks interacted more frequently than pairs of individuals with large rank distances (e.g., Jennings
et al., 2006; Seyfarth, 1976). The second bias allowed individuals interacting from equally often to some
individuals interacting more often than others.

Empirical data sets

We compiled a database that contained 978 published dominance interaction matrices. Of these, we only
kept those that met the following criteria: The number of individuals was at least five, the proportion of
unknown relationships was less than 0.5 and all individuals were observed in at least one interaction. After
this selection process 670 unique matrices remained (Neumann, 2022b).

Algorithms used
In addition to our new steepness measure, we also subjected five other algorithms/variants to our evaluations.
The first were the two versions of classic steepness, based on Dij and Pij winning proportions as described
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above (de Vries et al., 2006). We refer to these two as DSDij and DSPij .

The third steepness metric was based on a Bayesian version of David’s scores, which we also developed in the
course of this study and describe in more detail in the appendix. We refer to this method as DSBayes.

The fourth algorithm was based on repeatability of Elo-ratings (Sánchez-Tójar et al., 2018). Here an
interaction matrix is translated into a large number, typically 1000, of randomized interaction sequences.
Each sequence is then subjected to the Elo-rating algorithm, which results in a set of multiple ratings for each
individual. For these ratings, repeatability is calculated (also known as the intra-class correlation coefficient,
Nakagawa & Schielzeth, 2010), which serves as steepness estimate (Sánchez-Tójar et al., 2018). We refer to
this method as Elorpt.

The final algorithm was simply the proportion of interactions that go against the rank order (upward steepness).
To this end, an ordinal ranking of individuals is produced first. Here we use classic David’s score to produce
this ranking. Then the interaction matrix is reordered according to the obtained ranking. The upward
steepness is just the proportion of interactions below the diagonal divided by the total number of interactions.
It is noteworthy to say that this index can, at least theoretically, be zero if the produced ranking is completely
false, i.e., the initially produced ranking is the opposite of the ‘true’ ranking and there are no entries above
the diagonal in the dominance matrix.

All algorithms share the same scale, i.e., they all range between 0 and 1 where 0 indicates a shallow hierarchy
and 1 indicates a maximally steep hierarchy. This feature makes the comparison between the different
methods straight-forward.

Software
All data were generated and analyzed with the EloSteepness (Neumann, 2022a) and EloRating (Neumann
& Kulik, 2020) packages, which are based on Stan (accessed through rstan and cmdstanr (Stan Development
Team, 2020)) and Rcpp (Eddelbuettel & Francois, 2011). Steepness based on repeatability was obtained
from the aniDom package (Farine & Sánchez-Tójar, 2021). All data we used and generated are in the
EloSteepness.data data package (Neumann, 2022b).

Results

Recovering ground truth
All methods showed a fairly tight and, with the exception of Elorpt, linear relationship between the estimated
steepness and the steepness we set during the data generation (figure 4). Upward steepness consistently
produced higher steepness values than expected, although the relationship was still a linear one.

For the empirical data sets we did not know the ground truth and we resorted to using Pij David’s score
steepness as ground truth instead (figures 5 and 6). To be conservative, we used only data sets that had less
than 5% unknown relationships, and for comparison we also applied this analysis to the artificial data. Since
ground truth is unknown for the empirical data sets, the results presented in figures 5 and 6 have to be taken
with some caution, because of the problems associated with the classic steepness measures pointed out above.

For both the empirical and the artificial data, our new method produced on average the most accurate and
least biased results, i.e., the recovered steepness showed a tight linear relationship with the ground truth.
The remaining methods showed much stronger biases, either underestimating (classic steepness and Bayesian
DS steepness) or overestimating (upward steepness), and in the case of Elorpt also showing a non-linear
relationship with the ground truth.
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Figure 4: Relationship between estimated steepness and ground truth for 1000 artificial data sets. Ground
truth here refers to steepness as we set it during the generation of the artificial data. Only data sets with less
than 5% of unknown relationships are included. β is the slope estimate from a regression accross all data sets
and ρ is the correlation coefficient (both should be ideally 1).
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truth here refers to steepness as estimated with Pij David’s scores. Only data sets with less than 5% of
unknown relationships are included.
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Figure 6: Relationship between estimated steepness and ground truth for 1000 artificial data sets. Ground
truth here refers to steepness as estimated with Pij David’s scores. Only data sets with less than 5% of
unknown relationships are included.

Handling sparse data sets/removal experiment

All steepness methods based on David’s scores, including Bayesian David’s scores, showed a strong negative
dependence (as expected) on the proportion of unknown relationships (figures 7 and 8), i.e., steepness
decreased the sparser a data set became, which resulted in negative slopes (as depicted in the figures). In
contrast, the two Elo-rating-based methods (including STEER) and the simple upward steepness showed on
average little dependence on unknown relationships.
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Figure 7: Dependence of steepness on unknown relationships with artificial data. A perfect method would
have no dependence, i.e., slope of 0. All n = 1000.
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Figure 8: Dependence of steepness on unknown relationships with artificial data. A perfect method would
have no dependence, i.e., slope of 0. All n = 670.

An applied example
To illustrate a potential application of our new measure we performed an analysis similar to that of
Balasubramaniam et al. (2012a) who studied variation in dominance hierarchy steepness in social groups of
macaques (Macaca sp.). One of their main conclusions was that there is more variation in steepness between
species than within species, which they interpreted as providing support for an substantial phylogenetic
component in this particular facet of social behavior.

Here we ran a similar analysis, which nevertheless differed in several ways from that of Balasubramaniam
et al. (2012a). First, we used a larger data set, which comprised more groups and species, and we also
did not restrict the data to female-female interactions. Second, we estimated between-species variation and
within-species variation in a single model, as opposed to running two separate sets of analyses. The response
variable in our model was the STEER steepness estimate, which we considered to be beta-distributed. We
estimated the two parameters of the beta distribution (mu and phi), and more importantly, two variance
components. The first variance component reflected the phylogenetic relationships between species assuming
a Brownian motion model, i.e., between-species variation, using a pruned tree from a consensus phylogeny of
primates (Arnold et al., 2010). The second component reflects the variance due to repeated measurements of
the same species, i.e., within-species variation. This model resembles a phylogenetic generalized linear mixed
model (de Villemereuil & Nakagawa, 2014; Hadfield & Nakagawa, 2010). Note that the response variable
itself actually represented posterior distributions of the steepness estimate as we included the estimation of
STEER in the same model. In other words, we modeled steepness from the interaction data simultaneously
with the within- and between-species variation in the same single model. We coded this model in Stan (Stan
Development Team, 2020) (see Neumann (2022b) for data and model code).

We found no evidence for larger between-species variation (mean SD = 0.21) compared to within-species
variation (mean SD = 0.20) (figure 9). Rather the posterior distributions of the two variance components
overlapped substantially, therefore suggesting similarly sized magnitudes of within- and between-species
variation.

Note that these results are not to be taken as refuting the results and conclusions of Balasubramaniam et
al. (2012a) because there are several important methodological differences between our and their analyses
(for example we did not constrain our data to using exclusively data on adult females) (see also figure A4).
Rather, the point of this example is to illustrate the potential of our new method to answer these kinds of
questions.
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Figure 9: An example of applying STEER in a comparative study. Here we estimated steepness in 104 groups
of 14 macaque species and assessed variance due to phylogeny and due to repeated measurements of groups
of the same species. The two posteriors overlapped almost completely and differ only marginally in their
central tendencies.

Discussion
In this study we presented STEER, a novel algorithm to quantify steepness of animal dominance hierarchies
and evaluated its performance in comparison to other available methods. The new method based on Bayesian
estimation of Elo-ratings is a considerable improvement over existing algorithms to estimate hierarchy
steepness. It recovered ground truth faithfully and it showed little systematic dependence on unknown
relationships. Among the methods we tested, it was the only one that performed well in both these contexts,
i.e., being precise and unbiased. In contrast, the second method we developed, which is based on a Bayesian
implementation of David’s scores still outperformed classic steepness with respect to precision and bias, but
performed overall less well than STEER.

It is noteworthy that for our evaluation we ignored the fact that our method’s output represents a Bayesian
posterior distribution of steepness. Rather, we treated it here as a point estimate (the median of the posterior
distribution) to simplify the comparison with the other methods, which provide point estimates. However, it
is clearly beneficial to have a sense of uncertainty of steepness, which our new method provides via credible
intervals, which makes inference about uncertainty much more explicit and straightforward. For example,
a 89% credible interval for a median steepness of 0.8 that ranges from 0.31 to 0.97 should be taken more
cautiously than an interval of 0.73 to 0.85 for the same median steepness. These uncertainties then can either
be used descriptively when characterizing the hierarchy of an animal group, or can be carried forward in
cases where steepness is a predictor or response variable in analyses that comprise multiple groups within
or between species (e.g., Balasubramaniam et al., 2012a; Kaburu & Newton-Fisher, 2015; Schino & Aureli,
2008). We did the latter in our reanalysis of Balasubramaniam et al. (2012a) (figure 9, see also figure A4 for
an analysis that uses point estimates of steepness).

Importantly, our method is currently implemented only for ‘static’ interaction networks, i.e., data sets for
which the sequence of interactions is not known. However, it seems clearly beneficial to extend the approach
to dynamic networks, where the sequence of interactions is actually known. Then it would be possible to
account for (temporal) changes in individuals’ inherent fighting ability (‘rank changes’), or even changes at
the group level. For example, it could be hypothesized that steepness should be larger when competition
for resources becomes more intense. When this competition is measured quantitatively (e.g., number of
receptive/fertile females available to males who compete for conceptions, availability of high-quality food or
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territories), then a temporal implementation would allow monitoring the relationship between steepness and
competition without the need of dividing data sets into arbitrary time blocks.

Performance of other methods
The two steepness measures based on classic David’s scores performed poorly in our evaluations. This result
is not surprising because their biases and susceptibility to underestimating steepness are well-known (e.g.,
Klass & Cords, 2011) and provided the impetus for the development of our new method. We therefore think
it justified to suggest abandoning their use given that we now have more robust alternatives.

The steepness estimate provided by assessing repeatability of Elo-ratings has two downsides. First, it results
in slightly biased steepness estimates by overestimating large and underestimating low steepness values.
Second, there is no clear theoretical rationale for why repeatability of individual dominance scores should
mechanistically provide us with an index that describes average differences in individual dominance success,
i.e., steepness. While both arguments by themselves do not appear to be major issues, the combination of the
two together with the availability of our new method also let us suggest to not use repeatability for steepness
assessment.

The upward index, despite its simplicity, performed surprisingly well overall, although it tended to overestimate
steepness. It must be noted though that it relies on ranking the individuals in the first place, which in itself
is susceptible to biases. As such, its theoretical minimum of 0 can only be reached if the ranking that is
initially required is completely wrong, which seems an unlikely outcome of any ranking algorithm known to
us (e.g., Bayly et al., 2006; Neumann et al., 2018). As a result, it appears that the upward index is likely
to overestimate steepness, which indeed seems to be the case (figure 4). Furthermore, one other potential
drawback of this method is that it pools all interactions across dyads and hence might be susceptible to
dyads that interacted disproportionately frequently.

All these options share the absence of a direct assessment of uncertainty because they are point estimates. As
noted above, the steepness derived from Bayesian Elo-rating provides such an assessment in a very explicit
fashion, which in itself is a major advantage.

Lastly, we also want to point to our implementation of Bayesian David’s scores. While its performance in the
steepness context is not quite up to our new measure based on Elo-rating, it still performs better than the
classic David’s scores. Given the popularity of DS to quantify individual dominance strength (in addition to
forming the basis of classic steepness), it might be a fruitful follow up to properly validate these scores as a
dominance measure in their own right.

Guidelines/recommendations
When applying our new steepness measure we recommend to present the results in a way that does justice to
its Bayesian nature, i.e., provide readers with an appropriate assessment of the uncertainty associated with
the outcome of the analyses. We thus recommend to provide numerical (mean, median, credible interval) as
well as a graphical presentation of the posterior distribution of the steepness index.

Sánchez-Tójar et al. (2018) provided some guidelines regarding the required observation effort, i.e., the
average number of recorded interactions per individual, that is necessary to infer a reliable dominance
hierarchy. Specifically, they suggested that at least ten (better 20) interactions per individual need to be
observed (Sánchez-Tójar et al., 2018, p. 605). We find it hard to make an analogous statement with regards
to our new steepness measure. We want to avoid as much as possible recommending arbitrary cut-offs, which
potentially force researchers to make binary decisions. Arguably, this could lead to under-reporting of data
and results simply because a researcher who failed to reach a specific observation effort cut-off might choose
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to not report their results. Rather, we would advise to let the data ‘speak for themselves.’ The reason for this
recommendation is that we conceive of steepness as a distribution rather than a point estimate, which allows
assessment (via the width of the steepness distribution) of how confident we can be in our results given our
observation effort. Seen like this, we should expect that higher observation effort leads to narrower steepness
distributions. At the same time, we should not expect that higher observation effort leads to changes in the
central tendencies (median or mean) of the steepness distribution.

Figure 10 shows these two relationships between observation effort (number of interactions divided by number
of individuals) and point estimate (median of distribution), and between observation effort and the width of
the 89% credible interval around the point estimate (as a direct measure of uncertainty of the point estimate).
This figure illustrates that the point estimate is by and large independent of observation effort, although it
appears that very large steepness values are not likely to appear with low observation effort. More importantly
(and not surprisingly), the uncertainty decreases with increasing observation effort, i.e., credible intervals
become narrower with larger observation effort. Neither of these two plots suggests any clear cut-off. In other
words, rather than using some more or less arbitrary cut-off to decide whether the observed steepness is
an accurate description of the world, we find it more intuitive to let the data speak for themselves: a wide
credible interval should make us less confident than a narrow credible interval.

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

log interactions/group size

E
lo

 s
te

ep
ne

ss
 (

m
ed

ia
n 

of
 p

os
te

rio
r)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

log interactions/group sizeE
lo

 s
te

ep
ne

ss
 (

w
id

th
 o

f 8
9%

 c
re

di
bl

e 
in

te
rv

al
)

Figure 10: Point estimates and width of credible intervals of steepness as a function of observation effort
for artificial data sets. For reference, we included the recommendations put forward by Sánchez-Tójar et
al.(2018) at ratios of 10 (full line) and 20 (dashed line) interactions per individual.

We do, however, agree with Sánchez-Tójar et al. (2018) in stressing the importance of reporting observation
effort. Ideally, this reporting is accompanied by the raw interaction data from which steepness was estimated.

The final issue that needs consideration is the number of randomized sequences to use when applying our
new method. In principle, a simple rule would state that one would use as many randomizations as possible.
For example, using 1,000 randomizations is a widely-used number in many contexts. For our evaluations this
presented a practical problem, due to limited computational resources. We therefore established a rough
guide, which uses 50 randomizations for matrices with less than 100 interactions, 20 randomizations for
matrices with between 100 and 500 interactions, and 5 for matrices with more than 500 interactions. To
establish this guide we took the following approach. For each data set, we randomly selected one matrix
(which is either the full matrix, or one of the matrices from which interactions were removed). We then
applied our algorithm 1,000 times to each matrix. As our ‘true’ steepness value we took the median of all
posterior samples from 500 of those randomizations. From the remaining sequences we calculated steepness
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multiple times from one sequence, two sequences, five, ten, 20, 50, 100 and 200 sequences. We then checked
at which of these increments the derived steepness differed less than 0.01 from our ‘true’ value. The result of
this procedure gives an approximate and rough idea at which number the estimated steepness distributions
levels off, i.e., at which value of randomizations do we get sufficiently close to the true value. The results of
this approach are presented in figure 11 and they indicate that generally, matrices with fewer interactions
require larger numbers of randomizations than matrices with many interactions.
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Figure 11: Number of randomized sequences needed to achieve stable results. Matrices with fewer interactions
require more randomizations than larger matrices. The shaded areas represent the rule of thumb we used in
our evaluations. The majority of matrices achieved stable results when applying these cut-offs.

To be clear, this analysis just serves as a rough guide for setting the number of randomized sequences in our
method evaluation. And it is important to remember that whereas our new method provides actual posterior
distributions, we had to resort to using point estimates simply for being able to compare our method’s results
with the results of the alternative methods. In practice, or if in doubt, it is advisable to set the number of
randomizations higher than what we used here and 100 seems a fairly safe value.

Conclusion
We set out to develop a method that allows unbiased and precise estimation of dominance hierarchy steepness
with explicit uncertainty assessment. Our results demonstrate that STEER, steepness based on Bayesian
Elo-rating via cumulative winning probabilities, provides such a measure. By also providing the EloSteepness
R package we make this assessment as user-friendly as possible.
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Appendix

The problem with classic steepness
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Figure A1: The relationship between data set sparseness and steepness metrics. On the left, classic steepness
and its close dependence on unknown relationships. On the right our new STEER metric. Data are from 670
empirical interaction matrices. Dashed lines are fits from simple linear regressions.

Generating artificial data
First, we evaluated how well our data generation reflects variation in steepness. To this end, we used our 1,000
artificial data sets and selected only those where the initial matrix had less than 5% unknown relationships
(494 initial matrices). For these matrices, we correlated the input steepness (i.e., the steepness value we set
when the matrix was generated) and the actual observed steepness (based on Pij David’s scores). See figure
A2.
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Figure A2: Data generation evaluation. The artificial matrices we generated reflected input steepness
fairly well. Each circle reflects one generated matrix (n = 494 matrices with no more than 5% unknown
relationships).
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Figure A3: Removal experiment. Starting from the initial matrix (left column), interactions are removed so
that the number of unknown relationships increases. The top row shows the approach where entire dyads are
set to 0 interactions. The middle row shows how removing interaction by interaction increases the unknown
relationships. The bottom row shows a mix between the two. Unknown relationships are highlighted by red
boxes in the upper triangles.

Removal experiments
Setting entire dyads to zero has been done, for example, by Klass & Cords (2011).

Comparative example revisited
Here we replicate the analysis of Balasubramaniam et al. (2012a) with the data provided in their paper (their
table 2), i.e., using point estimates of classic steepness. We reverted to using point estimates because it was
not possible to subject all the data sets used in their paper to our new algorithm because the relevant raw
data were not available for all data sets.

Macaca assamensis  (1)

Macaca fascicularis  (2)

Macaca fuscata  (2)

Macaca mulatta  (2)

Macaca nigra  (1)

Macaca radiata  (1)

Macaca sylvanus  (1)

Macaca thibetana  (2)

Macaca tonkeana  (2)

SD

de
ns

ity

0 1 2 3 4

phylogenetic
repeated measurements
prior for both

Figure A4: The example from the main text, but fitted to the same data as used by Balasubramaniam et al.,
i.e., 14 groups of 9 species, using point estimates of classic steepness. In this reanalysis there is somewhat
larger phylogenetic variance (mean SD = 0.81) compared to the within species variance (mean SD = 0.68),
which is more in line with the conclusions reported in their paper.
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Bayesian David’s scores
Our implementation of David’s scores is coded in Stan. Here we model the winning proportion of one
individual within a dyad based on the observed outcomes of wins and losses for both dyad members (see
figure A5). We model this as a binomial distribution:

wi = Binomial(nij , pi)

where wi is the number of wins for an individual within a dyad and nij the total number of interactions in
the dyad. The winning proportion of the other individual in that dyad is wj = 1 − wi.
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Figure A5: Posteriors of dyadic winning proportions for one member of each dyad in a group of six individuals.
Blue distributions indicate individuals in tied or unknown relationships. Red indicates that the depicted
individual won all its interactions, and yellow that the individual lost all its interactions. The more interactions
were observed (inset text indicates wins/total interactions) the narrower the distributions are.

We put a fairly uninformative, but not flat, prior on p, which attributes most weight on winning proportions
between 0.05 and 0.95, centered around 0.5 (or more formally: 1/1 + exp(−Normal(0, 3)) (see also de Vries et
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al., 2006) (figure A6). Therefore, if no interactions were observed at all in a dyad, the posterior distribution
will reflect the prior and assign winning proportions centered around 0.5. If interactions were observed, the
posterior will reflect that and move its density towards the empirical proportion. Importantly, the more
interactions were observed the narrower the posterior will become.
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0.12
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Figure A6: Prior distribution for modelled winning proportions. The prior is fairly diffuse and mostly
concentrates its density around a winning proportion of 0.5.

The remaining steps for calculating steepness (summing winning and losing proportions and slope calculation)
follow the procedure by de Vries et al. (2006), with the only difference that instead of point estimates we
used the full sampling distributions for these calculations, which ultimately also results in a probability
distribution for the steepness metric itself.

Stan implementation
There was one crucial change that we made to the implementation and code provided by Goffe et al. (2018).
Instead of estimating the spread of the initial (start) ratings, we kept this parameter fixed. Below in figure
A7 we show that the two approaches are in essence indistinguishable. Our modification has the advantage of
being computationally faster and resulted substantially less often in divergent transitions.
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Figure A7: Differences between alternative implementations. Artificial and empirical data are combined here.
(total n = 300)
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