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ABSTRACT

The design of novel protein sequences is providing paths towards the development
of novel therapeutics and materials. At the forefront is the challenging field of de
novo protein design, which looks to design protein sequences unlike those found
in nature using general design methodologies. In this work, we develop a tool for
de novo design, based on a deep generative sequence model, that rapidly samples
novel protein sequences with diverse and ordered structures. To build this tool we
develop a framework, called DARK, that trains the underlying generative model
on an iteratively expanding set of synthetic sequences. The resulting model gen-
eralizes where models trained on natural sequences struggle and greatly improves
on the efficiency of comparable sampling-based approaches. We further show
how it can generate high quality candidates for de novo design problems and aid
in the development of further novel design methods, in all, providing another step,
amongst others, towards truly automated and intelligent protein design.

1 INTRODUCTION

Generative modelling is beginning to be used for the task of designing protein molecules, a problem
which offers potential solutions to a vast number of medical (Chevalier et al., 2017; Silva et al.,
2019) and industrial challenges (King et al., 2012; Wang et al., 2021). Computational protein de-
sign methods look to efficiently generate large numbers of candidate sequences, prior to laboratory
validation, that are confidently predicted to have stable and ordered structures together with pre-
specified structural and functional attributes. Recent generative modelling studies have looked to
improve on the high time and computational cost of contemporary design methods, which rely on
Monte Carlo sampling and energy function-based physics simulations (Huang et al., 2016).

Here, our aim is to develop a tool, based on a deep generative model, that can rapidly generate
sequences with stable and ordered structures. Furthermore, we build this tool for the important task
of de novo protein design. Computational de novo protein design is arguably the most promising and
general approach to protein design, but also the most difficult (Huang et al., 2016; Korendovych &
DeGrado, 2020). As an approach, it looks to design proteins unlike those seen in nature, with desired
structural or functional attributes. Crucially, this is done without using any information from a pre-
existing protein as a starting point, scaffold, or guide.1 Instead, the designer must rely on general
design methods with little, if any, provided information to design suitable sequences with suitable
predicted structures (Woolfson, 2021; Marcos et al., 2018; Vorobieva et al., 2021). This presents a
remarkably challenging design setting, evident in that de novo designs have yet to be successfully
generated for a number of common but biotechnologically important folds, like immunoglobins.

A tool that quickly generates sequences, unlike those seen in nature, with a diverse range of or-
dered structures is of great value as it can be used to both rapidly generate candidates directly for
design tasks as well as provide a basis for developing further novel design methods. In this work,

1The opposite of such an approach is protein engineering, an important but distinctly different field we do
not cover here. However, for clarity, an example of protein engineering in a machine learning context would be
fine-tuning a pre-trained language model on existing proteins with the desired attributes.
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Figure 1: Growing a synthetic dataset and training unconditional language models with DARK. An illus-
trative overview of the procedure used by DARK to iteratively grow a training set of synthetic sequences that
are used to train increasingly performant generative models. The final structure generation with AlphaFold for
sampled sequences is also included.

we develop deep generative sequence models that we show as satisfying this specification. Unlike
previous generative protein design approaches that typically rely on natural sequences and structure-
based conditioning information, we build an approach for de novo design by developing a frame-
work for training unconditional autoregressive language models on synthetic sequences. We call
this framework Design in Areas of Restricted Knowledge (DARK) 2. DARK iteratively generates
large datasets of synthetic sequences that are optimized in an unsupervised way to have unspecified
ordered structures that are highly likely under a supervised protein structure predictor (Figure 1).
We build this tool as an unconditional model to avoid limiting its potential applications and also to
show that it is possible to learn general relationships between sequence and structure without the aid
of conditioning information.

We evaluate our approach by first demonstrating that DARK models satisfy our criteria for a de
novo design tool. In particular, we show that the final model, DARK3, generates novel sequences
with ordered structures as judged by state-of-the-art structure predictor AlphaFold (V2; Jumper
et al. (2021)). We also test the structural generalization of our approach using a stringent unseen
structure-based test set and find DARK models performs well. We demonstrate the applications of
DARK3 as our tool with an example of designing a sequence with fold commonly used as a de novo
scaffold for grafting functional sites. Finally, we show that DARK models enable the development
of new methods by developing AlphaFold refinement, a novel and efficient approach for producing
high confidence design candidates with AlphaFold. We also use it to de novo design a sequence with
a high confidence immunoglobin fold.

In summary, we make the following contributions: (1) We show that unconditional generative mod-
els of protein sequences can learn distributions that capture general structure information by learning
from synthetic sequences. (2) We propose a novel framework, DARK, for efficiently training deep
generative models on synthetic protein sequences. (3) We provide the final DARK3 model as a flex-
ible and fast tool for de novo design that generates novel sequences with diverse ordered structures.
(4) We demonstrate AlphaFold refinement, a novel way to efficiently de novo design high confidence
sequence candidates using AlphaFold and DARK.

2 RELATED WORK

Here, we discuss related work applying generative models to protein design as well as those that
have focused on de novo design, and broader contemporary protein design methods.

Generative sequence modelling in protein design There have been a variety of machine learning
approaches (Killoran et al., 2017; Wang et al., 2018; Norn et al., 2021) including generative mod-
elling (Anand & Huang, 2018; Sabban & Markovsky, 2020; Linder et al., 2020) in protein design

2This is inspired by the huge ‘dark’ areas of the sequence space that are unexplored by nature (Taylor et al.,
2009; Perdigão et al., 2015).
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Figure 2: Generating de novo designed sequences with AlphaFold refinement and DARK3. (A) Overview
of our AlphaFold refinement approach. (B) Comparisons of the method and two benchmarks in C. (C) Plot
showing the design trajectories for 10 DARK samples with AlphaFold refinement (10K steps) compared to
10 runs of the Simulated Annealing benchmark and 10 runs of the Greedy benchmark (both 20K steps).(D)
Structures and metrics of the 10 AlphaFold refinement examples in C before and after refinement. (E) Averaged
metrics of the benchmarked methods, with more detailed metrics for AlphaFold refinement.

and protein engineering (Yang et al., 2018; Sinai & Kelsic, 2020). Unconditional and conditional
generative models have been explored in a variety of problems adjacent to protein design, such as
variant prediction (Riesselman et al., 2018; Shin et al., 2021). Other examples are recent work using
language models to learn representations for downstream supervised tasks (Alley et al., 2019; Bepler
& Berger, 2019; Elnaggar et al., 2020; Rao et al., 2021).

Most relevant to the work presented here is the set of models that have been developed to explore
design using generative models conditioned on structural information. Although a range of archi-
tectures have been used, these models vary primarily in the representations of structural information
used for conditioning. Amongst others, models have conditioned on low information descriptions
of protein folds (weak conditioning) (Greener et al., 2018; Karimi et al., 2020), secondary structure
labels (Singer et al., 2021), and course descriptions of protein backbones (Ingraham et al., 2019;
Strokach et al., 2020; Cao et al., 2021).Some methods train proteins of one structural or functional
type, effectively conditioning on that specific type (Yu & Buehler, 2020; Shin et al., 2021).

Conditioning out structure provides a way to address an inherent challenge to working with natural
protein sequences. The vast majority of known natural proteins have either a weak signal for struc-
ture or it is mixed in with other information, such as functional constraints and evolutionary drift.
Unconditional generative models, trained on natural sequences, fail to generalize to sequence with
structures beyond those represented by their training sets because of this lack of structure signal
(Ingraham et al., 2019). This is also well understood when viewed from the lens of protein struc-
ture prediction. Even highly accurate structure predictions models like AlphaFold (Jumper et al.,
2021) rely on the information contained in aligned sets of sequences similar to the query sequence
to achieve accurate predictions for natural sequences. With only individual natural sequences, per-
formance tends to be poor (Moffat & Jones, 2021; Xu et al., 2021).

Generative Models and de novo protein design A generative sequence model for de novo design
needs to be highly general, learning general sequence and structure relationships. All considered, we
find it unsurprising that there has been no clear and unambiguous demonstration of a deep generative
model, without any aid from conditioning, that generates sequences unlike natural sequences and,
crucially, with confidently predicted ordered structures. Here, we demonstrate such a model. We
achieve this by learning from syntheticsequences with a strong structure signal.

Previously de novo designed sequences are known to have extremely strong structure signals, but
just over 100 de novo designed sequences (Woolfson, 2021) have lab-determined structures in the
Protein Data Bank (PDB) (Burley et al., 2021). Thus, we find an alternative approach which is to
generate synthetic sequences by leveraging a sequence optimization objective from the recent trDe-
sign method (Anishchenko et al., 2020). Like contemporary approaches (Leaver-Fay et al., 2011), it
is primarily a Monte Carlo sampling method, however in contrast, it slowly samples from a trained
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supervised structure predictor, using simulated annealing to maximize the structure likelihood of
random sequences. The final sequences were shown to be extremely similar to pre-existing de novo
designed sequences in their attributes and to have a strong structure signal.

Contemporary de novo protein design Although recent nonparametric methods have been de-
veloped (Zhou et al., 2020), by far the most historically successful de novo design approach is the
Rosetta framework (Leaver-Fay et al., 2011), which is the recognized gold-standard (Huang et al.,
2016). The Rosetta approach constitutes a complex computational pipeline that uses a variety of dif-
ferent protocols to iteratively sample viable structures and sequences using physics-based force-field
simulations and Monte Carlo search procedures (Vorobieva et al., 2021; Marcos et al., 2018) making
it lengthy and computationally expensive. New techniques that can rapidly produce quality samples,
such as the work presented here, offer the potential to greatly reduce these costs. For further discus-
sion regarding de novo design, we point the reader to the following reviews and retrospectives by
Huang et al. (2016), Korendovych & DeGrado (2020), and (Woolfson, 2021).

3 LEARNING DARK MODELS

3.1 BACKGROUND

Let x ∈ V L be a protein sequence of length L over a vocabulary V of discrete amino acids (|V | =
20). Each amino acid is textually represented by a one-letter code. Each sequence x maps to a
corresponding molecular structure y in three-dimensional space. Protein structure is described by
the 3D coordinates of each atom, however more coarse-grained representations are commonly used.
Here, we use the discrete representation of structure known as distograms (Senior et al., 2020).
When using AlphaFold we use its predicted distograms and atomic coordinates, depending on the
task (Jumper et al., 2021). Distograms represent a structure as a [L,L,D] tensor, comprising D-
dimensional one-hot encodings of a discretized distance measure between residue pairs. We do not
consider the amino acid Cysteine for experimental reasons when generating synthetic sequences3,
however, for consistency we allow all trained models to predict it. For simplicity, we assume a fixed
length of L = 100, however our approach easily generalizes to variable sequence lengths as it is
based on autoregressively factorized probability models.

We are interested in the set of sequences that are unlike those in nature xd ∈ V L with structures
that are folded in some ordered and regular state yd. We would like to sample from their joint
distribution, which is convenient to break down, by chain rule, to p(xd, yd) = p(yd|xd)p(xd), a
common way to consider the protein design problem. The first term p(yd|xd) is often thought of as
protein structure prediction and so it is convenient to model it with some accurate proxy regression
model pβ(yd|xd), being a trained supervised structure predictor, with parameters β ∈ B. We refer
to this proxy regression model as an oracle. In this work, we focus on modeling the prior, p(xd) as
the tool we desire, which, when combined with AlphaFold, provides a rapid means to produce high
quality sequence and structure samples for de novo design problems.

3.2 AN UNSUPERVISED DESIGN LOSS FUNCTION

Recently, Anishchenko et al. (2020) demonstrated a method of sampling sequences for de novo
design which, using our own notation, also looks to maximize p(yd|xd)p(xd), using the trRosetta
structure predictor as an oracle (Yang et al., 2020). This samples sequences using simulated an-
nealing of random sequences to optimize a combined proxy objective for both terms, ultimately
generating sequences with the structure signal we are interested in. Here we describe the proxy
objective in our own notation and then how we use it. First, p(yd|xd) is approximated using the
Kullback-Leibler divergence (DKL) between an oracle and a trained background network pε(yd)
which approximates a prior over ordered structures.

arg max
xd

log pβ(yd|xd) ≈ arg max
xd

DKL

(
pβ(yd|xd)‖pε(yd)

)
(1)

3This is common in design studies, in part because it significantly complicates otherwise straightforward
recombinant protein expression in bacteria, the most relevant factor for us (See Appendix A.7).
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The background network is trained by taking a model with the same architecture and dataset as
pβ(yd|xd) and training it with the sequence inputs replaced by Gaussian noise4 (Appendix A.1).
The final objective also includes a term for approximating a weak sequence prior by taking the
negative DKL between the sequence’s normalized unigram frequencies p(xunid ) and the unigram
frequencies of proteins with high resolution crystal structures in the PDB, p(xPDB). For simplicity,
we refer to this objective as the Information Gain score (IG-score):

IG-score = arg max
xd

(
DKL

(
pβ(yd|xd)‖pε(yd)

)
−DKL

(
p(xunid )‖p(xPDB)

))
(2)

Here, we implement our own version of trDesign, termed DARK0, and correspondingly our own
version of the IG-score, using a version of the recent DMPfold2 model, chosen for its fast inference,
for the oracle and background network (Kandathil et al., 2020), which is modified so that it produces
distograms instead of atomic coordinates (Appendix A.1). DARK0 is slow, it takes an average of
11.4 minutes to generates a sample. Given the end point of protein design is in the lab, a performant
design model needs to provide as many high confidence candidates as possible to justify the cost of
validation as well as combat very high attrition rates. A method like trDesign is too slow, and has
less potential future adaptions, to be used as the tool we desire. Instead we show how we can use
IG-score to learn generative models that sample similar sequences orders of magnitude faster with
many potential applications. To kickstart the approach described in the next section, we use DARK0

(40,000 simulated annealing steps) to sample a small number of sequences, 15K, that we call the
seed samples. It is also used to sample two sets of 950 sequences to be used as a validation and
test set for models in the next section (See Appendix B.1 for further details). After this DARK0 is
discarded as an approach, and the only aspect of trDesign that we build on is our own version of the
IG-score; the rest of what is described here is our own construction.

3.3 BUILDING THE DARK FRAMEWORK FOR DESIGN

Algorithm 1 Design in Areas of Restricted Knowledge (DARK)

Input: Oracle model pβ(yd|xd)
Input: Iterations N
Input: Sample sizes at each iteration m0:N = {m0, ...,mN}

1: xs0 ← Generate m0 seed samples from pβ(yd|xd)
2: for n = 1, 2, ..., N do
3: pγn(xs)← pγn(xs|xsn−1), Learn a new sequence model
4: xs∗ ← Ancestral sampling of pγn(xs) . mn new samples
5: xs∗ ← Rapid optimization of xs∗ IG-score using the oracle
6: xsn ← [xs∗ , xsn−1 ] Combine optimized samples with existing samples
7: end for

DARK (Algorithm 1) tackles the primary limitation on effectively learning models, which is having
suitable sequences to train and test against. The first step is to take some initial set of samples xs0 to
train an initial sampling model pγ1(xs0) with parameters γ1 ∈ Γ. Here we use the aforementioned
seed samples, but this could be random sequences or sequences from DARK0-Grad, an approach
we developed that backpropagates the negative IG-score to generate samples (Appendix A.2), in
a fashion similar to (Killoran et al., 2017). We use the seed samples out of convenience as they
have the highest score, and we reasoned that they would require less iterations by comparison. The
sampling models are all generative sequence models that can be sampled. After training pγ1(xs0),
it is used to generate a large set of samples xs∗. Instead of then training a new sampling model on
xs∗, each sequence in xs∗ is quickly optimized to improve the IG-score.

This is done by a quick greedy hill-climb on the sequence for a set number of steps (Line 5 in
Algorithm 1), which we refer to as refinement. In each step, a random position is mutated. If it
improves the IG-score then it is kept, otherwise it is discarded. We use 3000 steps, a fraction of the
steps done in DARK0, as this was found to improve the average IG-score of xs∗ to approximately
equal to the IG-score of xs0 . For simplicity, this is fixed for all steps. The result of optimizing

4In practice, for a given length, the background model distograms can be calculated once, taking an average
over an arbitrary number of predictions (e.g. 100), and then saved to be used for all IG-score calculations.
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Table 1: Perplexities (PPLs), IG-scores, & Sampling Speed for protein language models. Lower PPL is
better and higher IG-score is better. IG-scores are calculated from 1000 sequence samples except the 15K
DARK0-Seed Samples. IG-scores for refined (Ref) samples are included for DARK models. Sampling Speed
is for a single example (See Appendix A.6 for further details).

Language Model PPL Test ↓ IG-score ↑ IG-score (Ref) ↑ Sample Speed (s) ↓
Unigram 17.69 0.27 - -
Pfam HMM profiles* 11.64* - - -
UF50 12.11 0.21 - 0.0524
LSTM 9.94 0.92 - 0.0210
DARK1 6.33 1.38 1.77 0.0234
DARK1-Adversarial 6.26 1.33 - 0.0234
DARK2 5.73 1.53 1.81 0.0524
DARK2-STRICT 6.50 1.48 - 0.0524
DARK3 5.20 1.63 1.84 0.0524
DARK0-Seed Samples - 1.76 1.76 685
DARK0-Grad - 0.97 - 15.1
*Values reproduced from Ingraham et al. (2019); a conditional model conditioned on a specific sequence
position of a specific family.

xs∗ is then combined with xs0 to make xs1 . In the second iteration, xs1 is used to train a new
sampling model pγ2(xs1). After some number of iterations N , the final sampling model is viewed
as a strong prior over xd, also making it a powerful generative model that can be used for de novo
design tasks. Here we perform 3 iterations with training set sizes of 15K, 100K, and 500K, where the
difference is sampled and refined between iterations. These sample sizes are arbitrary and they were
entirely dictated by computational resources available at the time. Three iterations were performed
as we believed it sufficient to demonstrate DARK’s effectiveness. We note that the iterative aspect of
DARK shares similarities to methods like Estimation of Distribution Algorithms (EDAs), a common
approach in model based optimization (MBO) (Bengoetxea et al., 2001; Larrañaga & Lozano, 2001;
Brookes et al., 2020). Viewed through this lens, it suggests a number of ways that DARK can
be adapted and potentially improved on, which we leave for future work (Kumar & Levine, 2020;
Trabucco et al., 2021).

Deep generative architectures In DARK, we use deep autoregressive language models for learn-
ing protein sequence distributions. Specifically, we use a standard Transformer decoder architecture
(Vaswani et al., 2017; Radford et al., 2019) which has been used extensively to train state-of-the-art
language models capable of generating high-quality synthetic sequence samples. In the first iteration
of DARK we use a small decoder model, termed DARK1, with 4 layers, 4 heads, and a feed-forward
size of H = 128. To affirm the choice of self-attention based architecture, we compare it to a 1-
layer LSTM with a hidden dimension H = 128. We also include results for a variant of DARK1

referred to as DARK1-Adversarial, that uses DMPfold2 as an adversarial regularizer during training
(Appendix A.3). After the first iteration, the second and third iteration models, DARK2 and DARK3

respectively, use a decoder with 12 layers, 12 heads, and H = 768. The parameters are increased to
coincide with the order of magnitude change in the size of the training set from DARK1 to DARK2.
To provide a even comparison to models trained on natural sequences, we train a model, termed
UF50, on 50M natural sequences from the UniRef50 sequence database (The UniProt Consortium,
2021) using the same architecture as DARK3 (Appendix A.5). For all trained models we perform
early stopping and a small amount of hyper-parameter optimization on the validation set.

Quantitatively measuring sample quality We define high-quality samples as those that are di-
verse, have sequences unlike any natural sequence, and are predicted to have a stable and ordered
structure. In de novo design, the most important test of a candidate sequence is that it is confi-
dently predicted to have a stable and ordered atomistic structure (Huang et al., 2016). We provide a
direct measure of both confidence and order jointly using AlphaFold’s pLDDT score, being its con-
fidence metric, which ranges from 0 to 100 (Jumper et al., 2021). This is a measure of confidence,
and an indirect measure of order. It was found that low scores (pLDDT< 50) strongly suggest
disorder and vice versa (Tunyasuvunakool et al., 2021). Thus, we use the proportion of samples
with a pLDDT> 70 as a measure of high quality for the predicted structures, which we refer to as
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Table 2: DARK3 produces samples with confidently predicted structures by AlphaFold. Good+ pLDDT
scores from AlphaFold (higher is better) are shown for unconditional language models. See Table 8 for addi-
tional benchmarks.

Language Model Good+ pLDDT (%) ↑ Training Data
Random 1.8 -
UF50 15.9 Natural
DARK3 32.3 Synthetic
DARK0-Seed Samples 40.8 Synthetic

Good+ pLDDT, indicating “good or better” quality according to criteria in Tunyasuvunakool et al.
(2021). When discussing results we use ‘ordered’ to mean ‘confidently predicted and ordered’. Us-
ing AlphaFold also provides a check to ensure that the model has not learned to produce adversarial
examples against the original DMPfold2 oracle. We also measure the diversity of sequences and
predicted structures using the estimated number of clusters in samples of sequences, and samples of
predicted structures (See Appendix B.7 & B.8).

Measuring the structural generality of DARK in a strict setting We take two key approaches
to providing a stringent measure of how well DARK generalizes with regards to structure. Both
are enabled by using AlphaFold to generate all-atom structure predictions for all 100,000 sequences
contained in the DARK2 training set, which covers the 15,000 seed samples and the 85,000 samples
from the first iteration of DARK. We then assign each sample’s structure to a topology. This process
is the repeated for the 950 sequence validation set; we ignore the 950 sequence test set for what is
described here. The first approach we take is to carefully construct a strict training and test set split
based on structure, from the 100K samples (See Appendix B.2 for exhaustive details). This has been
recently suggested for machine learning-based protein design studies (Ingraham et al., 2019) and is
considered a gold-standard approach in protein structure prediction (Chothia & Lesk, 1986; Söding
& Remmert, 2011). Our strict test set contains no sequences with overlapping topologies in either
the training set or validation set. We also remove any sequences from the validation and training
set that are detected to be similar to those in the test set with the MMseqs2 search tool (Steinegger
& Söding, 2017). We train and evaluate a model on these sets, termed DARK2-STRICT. In the
limit of working with synthetic, we believe this constitutes a stringent test of generality. The second
approach we take is to compare the number of unique topologies represented by the 15,000 seed
samples and those represented by the 85,000 sequences from the first iteration of DARK to show
that DARK iterations generate sequences with unseen structures.

3.4 USING DARK3 FOR DE NOVO DESIGN

Rapid de novo design with DARK We provide an example of how DARK can be used in a spe-
cific design task by setting the challenge of de novo designing a 4-helix bundle, which is commonly
seen in design studies and in nature (Orengo et al., 1997). 4-helix bundles are also of interest as they
are being used as de novo scaffolds for grafting in functional sites (Woolfson, 2021). To design a
sequence, we use DARK and AlphaFold to generate a database of samples and predicted structures.
We take the highest pLDDT 4-helix bundle from the dataset and then validate its structure prediction
by predicting its structure using the Rosetta Abinitio Relax protocol without any homology informa-
tion (Leaver-Fay et al., 2011) (this took 433 CPU hours). We generate 10,000 structure predictions
(decoys), and rank them by lowest Rosetta all-atom score. For this example, we use the set of 1000
unrefined sequences from DARK3 as if it were a structure database, but this can be expanded to an
arbitrary size in practice. 1000 sequences with predicted structures is equivalent to generating 28
sequences with an approach like trDesign by time. Due to its speed, DARK is able to provide a large
number of potential candidates sequences for different design tasks like this one in an off-the-shelf
way.

An novel but simple approach to de novo designing with AlphaFold To demonstrate that
DARK models can be used in method development, we use DARK3 to develop a simple design
method we call AlphaFold refinement (Figure 2A & 2B). This provides a solution to the problem
of having a candidate sequence with a structure of interest to a designer but it has low confidence.
AlphaFold refinement functions by bootstrapping the initial predicted structure as a target for per-
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forming a hill-climb based optimization of the DARK3 sampled sequence. More specifically, we
minimize the Cross-Entropy between the AlphaFold predicted distogram and the one-hot distogram
of the bootstrapped target structure. To provide a comparison to AlphaFold refinement, we construct
a trDesign-based approach that optimizes an AlphaFold IG-score (AIG-score) using simulated an-
nealing. AIG-score also provides a measure of confidence. As an example of its practical use, we
use AlphaFold refinement to de novo design a sequence with a high confidence immunoglobin fold
(Figure 3) (See Appendix B.9 for exhaustive details).

4 RESULTS

Here, we assess DARK3 as a tool and provide demonstrations of its use.

4.1 EVALUATING DARK MODELS AS A TOOL FOR DE NOVO PROTEIN DESIGN

Comparing DARK to a simulated annealing approach We use DARK3 without refinement as
our final design tool and we find that it produces similar samples by IG-score to DARK0 (seed sam-
ples), our version of trDesign, but does so four orders of magnitude faster, 52 ms compared to 11
mins per example (Table 1). We also find that the iterative approach to DARK effective for improv-
ing performance between iterations and significantly reduces the required resources. Rounding up to
the nearest day, if we were to re-perform DARK from nothing to having a trained DARK3 it would
take 12 days when parallelized across ten V100 GPUs. Of that time, model training constitutes just
over 3 days and only requires 1 GPU. To generate 500,000 examples with DARK0 would take ∼80
days across ten V100 GPUs . Compared to methods like trDesign, the sample speed of DARK mod-
els allows for the generation of large quantities of candidate sequences for different design tasks.
With an approach like DARK’s, that relies on generative neural networks, there are also clear ways
to introduce controlled generation (Dathathri et al., 2019; Keskar et al., 2019).

DARK generates samples with ordered structures We find that DARK3 reliably generates sam-
ples with ordered predicted structures (Table 2). Without any refining or conditioning, 32.3% of
DARK3 samples have Good+ pLDDT scores. Given the IG-score of unrefined DARK3 samples is
slightly lower than that of the DARK0 seed samples (Table 1), it is unsurprising that similar differ-
ence is present with the Good+ pLDDT (Table 2). Compared to an approach like trDesign, for a
small decrease in Good+ pLDDT, DARK3 is able to generate sequences orders of magnitude faster,
also giving it much greater flexibility for integrating and developing future approaches.

DARK samples are diverse We find that samples from DARK models have diverse sequences
and predicted structures (Table 3 & 4). Across all iterations, clustering results suggest that only a
small number of samples have similar sequences and structures. That said, clustering is not a very
robust measure as it doesn’t indicate an exact degree of diversity. We also generate 5000 sequences
from DARK3 and predict their structures to gain a further qualitative insight into the diversity of the
structures represented in the samples. There appears to be a preference for all-α and all-β structures,
but α & β proteins are still common. We include examples in Figure 5. Looking forward, future
investigation is required to properly quantify and examine the structure distribution of sequences
from the final model. That said, we do find sequences of design interest in the samples that we
have generated. For example, sequences with topologies that have yet to be successfully de novo
designed, like immunoglobin folds.

DARK samples are unlike natural sequences We find that samples from the DARK3 model are
distinct from sequences in nature. A sequence search, using the MMseqs2 search tool (Steinegger
& Söding, 2017) with a high sensitivity parameter (-s 7), against UniRef100 (The UniProt Con-
sortium, 2021) of the 1000 evaluated sequence samples returned no hits for all sequences except
one, which had 5 weak hits. Repeating the sequence search with a different tool, HHblits (Remmert
et al., 2012), no natural sequences were found that met the HHblits default threshold value, being an
E-value below 1× 10−3 (See Appendix B.7 for further details). This strongly suggests that DARK3

generates sequences that are unlike those found in nature. We find the opposite results for the nat-
ural sequence model. Repeating the MMseqs2 search with the 1000 samples from the UF50 model
results in 41 samples having a combined total of 1.76 million unique hits. Given the UF50 model
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is trained on natural sequences this is unsurprising. All considered, training on synthetic sequences
appears to provide a simple means to generate sequences unlike those in nature.

Learning from natural sequences leads to poor performance The UF50 model provides a direct
comparison to having trained on natural sequences instead of synthetic sequences, and is similar to
protein engineering focused approaches like ProGEN (Madani et al., 2020) and UniRep (Alley et al.,
2019). As expected, it performs poorly by both perplexity and IG-score (Table 1) and underperforms
compared to DARK3 by Good+ pLDDT (Table 2). Especially given the test set comprises synthetic
sequences, from a naive perspective we would expect UF50 to assign high likelihoods to the test set.
Not only is its training set two orders of magnitude larger than DARK3’s, the test set sequences have
a clear structure signal, It is also hyperparameter optimized on the synthetic validation set. For the
Good+ pLDDT, it is also advantaged as many of the sequences in the AlphaFold training set are in
its own training set. Ultimately, this result is entirely expected (See Section 2).

DARK models generalize to sequences with unseen structures We find that DARK general-
izes to sequences with unseen structures. DARK2-STRICT, tested on on the strict test set (Section
3.3 & Appendix B.2), performs well and achieves a perplexity of 6.50, similar to the other DARK
models and similarly outperforming the baselines (Table 1). In assigning high likelihoods to the
sequences in the strict test set, DARK2-STRICT provides direct evidence that DARK models are
learning general relationships between sequences and structure. This is further supported by how
unseen topologies are sampled between DARK iterations (Section 3.3). Within the 100K predicted
structures of the DARK2, we find that the initial 15K seed samples contains 421 unique topologies
and the 85K set from the first iteration of DARK contains 1011 unique topologies, with an inter-
section of 373 between the two. As such, there are 638 topologies sampled during the first DARK
iteration that were not present in the 15K training set. This accounts for 1476 sequences, of which
225 sequences (15.2%) have a pLDDT≥ 70. This provides direct evidence that the DARK iterations
are expanding the training sets to include sequences with unseen and ordered structures, suggesting
a general approach.

4.2 USING DARK3 FOR DE NOVO DESIGN

An example of de novo design with DARK For the task of designing a 4-helix bundle (Section
3.4), we find that DARK3 successfully produces a candidate, effectively off-the-shelf. The predicted
structure of the chosen sequence has a high pLDDT of 91.4, similar to the pLDDT of existing de
novo proteins (Appendix B.4). We also find that its AlphaFold structure is in agreement with the
best ranked predicted structure by Rosetta, having a low root-mean-square deviation of 3.11Å (by
α-carbons) compared to AlphaFold’s prediction (Figure 6 & 8). In all, this provides a demonstration
of how models like DARK3, paired with AlphaFold, can rapidly provide de novo candidates for
tasks like generating scaffolds for grafting in functional sites.

Generating de novo designed sequences with AlphaFold refinement and DARK We find Al-
phaFold refinement can reliably generate high confidence (pLDDT 91.0) sequence candidates, while
maintaining their structures,. This is slightly better than the confidence (pLDDT 88.1) with which
AlphaFold predicts the structures of recently released de novo designed sequences in the PDB (Fig-
ure 2C & 2E). We also find that AlphaFold refinement is efficient, typically converging by 7500
steps which is ∼10 hours on a consumer-grade graphics card (RTX 2080 Ti). This is significantly
more efficient than approaches like de novo design with Rosetta which can take thousands of CPU
hours. In contrast, we found the simulated annealing approach produced what we consider an ad-
versarial attack on AlphaFold (Figure 2E & 4). For the task of de novo designing a sequence with
an immunoglobin fold, we find that DARK with AlphaFold refinement is also successful, producing
a final predicted structure with a high pLDDT of 93.1 (Figure 3), demonstrating how DARK can be
used to generate candidates for important but yet to be de novo designed folds.

5 CONCLUSION

In this work, we show that it is possible to build a tool, in the form of DARK3, that can rapidly
generate sequences with diverse and ordered structures. Looking forward, building a variable length
training set and smoothing the topology distribution between iterations are clear first targets as well
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as exploring related approaches in MBO. Controlled generation is an especially useful route to
explore and there is a clear way to approach it: AlphaFold structure predictions themselves can be
used as pseudo-labels for training future conditional versions of DARK entirely based on synthetic
sequences. The AlphaFold refinement approach can also be easily extended to the sub-problem
of fixed-backbone protein design. Looking forward, we hope that DARK, and many others, are
continuing to provide steps towards intelligent and truly automatic protein design.
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Steinegger. Uniclust databases of clustered and deeply annotated protein sequences and align-
ments. Nucleic acids research, 45(D1):D170–D176, 2017.

Lewis Moffat and David T Jones. Increasing the accuracy of single sequence prediction methods
using a deep semi-supervised learning framework. Bioinformatics, 37(21):3744–3751, 2021.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.478087doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.478087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Christoffer Norn, Basile IM Wicky, David Juergens, Sirui Liu, David Kim, Doug Tischer, Brian
Koepnick, Ivan Anishchenko, David Baker, and Sergey Ovchinnikov. Protein sequence design by
conformational landscape optimization. Proceedings of the National Academy of Sciences, 118
(11), 2021.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. arXiv preprint arXiv:1711.00937, 2017.

Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and Janet M
Thornton. Cath–a hierarchic classification of protein domain structures. Structure, 5(8):1093–
1109, 1997.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Nelson Perdigão, Julian Heinrich, Christian Stolte, Kenneth S Sabir, Michael J Buckley, Bruce
Tabor, Beth Signal, Brian S Gloss, Christopher J Hammang, Burkhard Rost, et al. Unexpected
features of the dark proteome. Proceedings of the National Academy of Sciences, 112(52):15898–
15903, 2015.

Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Elaine C Meng, Gregory S Couch, Tris-
tan I Croll, John H Morris, and Thomas E Ferrin. Ucsf chimerax: Structure visualization for
researchers, educators, and developers. Protein Science, 30(1):70–82, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F Canny, Pieter Abbeel, Tom Sercu, and
Alexander Rives. Msa transformer. bioRxiv, 2021.

Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. Hhblits: lightning-fast
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Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim. Fast
and flexible design of novel proteins using graph neural networks. BioRxiv, pp. 868935, 2020.

William R Taylor, Vijayalakshmi Chelliah, Siv Midtun Hollup, James T MacDonald, and Inge
Jonassen. Probing the “dark matter” of protein fold space. Structure, 17(9):1244–1252, 2009.

The UniProt Consortium. Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids
Research, 49(D1):D480–D489, 2021.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 10358–10368. PMLR, 2021.

Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Žı́dek,
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APPENDIX

A IMPLEMENTATION AND TRAINING DETAILS

A.1 ORACLE MODEL AND BACKGROUND MODEL

We use the DMPfold2 model for the pβ(y|x) oracle (Kandathil et al., 2020). We received the trained
model as well as the training and validation data described in Kandathil et al. (2020) via correspon-
dence with the authors. We note that the code and pre-print for a more recent but non-probabilistic
version appears to be available5, but we refer here to the CASP14 version of DMPfold2 described
in the first pre-print (Kandathil et al., 2020), which outputs distograms.

DMPfold2 was chosen as an oracle as it reports favourable performance and, importantly, its ability
to perform fast inference directly from an input alignment, or in our case, a single sequence. It uses
a combination of two GRUs (Cho et al., 2014) followed by a residual network to predict distograms
from a multiple sequence alignment. The input is of shape [A,L, 22] where the A dimension is the
number of sequences in the alignment. First, a stack of unidirectional GRUs reduces A to a fixed
size, resulting in an output array sized [L, 512], that is fed as input to a stack of bidirectional GRUs
that produces the final representation of the input alignment. This representation is then fed to a
convolutional ResNet, which produces the final outputs (see below).

We refactored the code for the DMPfold2 model in order to perform batched inference on individ-
ual sequences. We find that the IG-score for a single sequence (L = 100) can be calculated in
approximately 0.06s. For a batch of 100 sequences this reduces to 0.01s per sequence.

Distogram outputs from DMPfold2 From a single input sequence of length L, DMPfold2 pro-
duces an output tensor of size [L,L, 104]. The 104D third axis is split into four separate discrete
distributions which are individually softmaxed, being sized [L,L, 2] and three of [L,L, 34]. The
output tensor contains predictions of residue-residue hydrogen bonding, residue-residue β-carbon
(Cβ) distance distributions (distograms), and backbone φ and ψ torsion angle distributions. See
Kandathil et al. (2020) for further details.

DMPfold2 Background Model To implement the IG-score we train a background network,
pε(yd), as per Anishchenko et al. (2020), using the DMPfold2 architecture and author-provided
training data. This model is distinguished with the subscript ε. Training the background model
constituted replacing the input sequences during training with 64D Gaussian noise, and altering the
input layer accordingly, but otherwise following the training procedure described in the DMPfold2
paper. We pre-calculate the background values for a given sequence length by feeding noise to the
network 100 times and taking the average of the predictions, leaving a final tensor of size [L,L, 104]
containing the resulting predictions. Although this can be calculated on the fly, for simplicity we
pre-calculate and save them once. As we focus on L = 100, this amounts to one saved array of size
[100, 100, 104].

Using DMPfold2 to calculate the IG-score The IG-score is calculated by first predicting the
output tensor for a sequence with DMPfold2. Next, DKL is calculated between each of the four
distograms in the tensor and their corresponding pre-calculated background versions. This results

5https://www.github.com/psipred/DMPfold2
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in four [L,L, 1] tensors, one for each distogram, containing the scalar DKL values. For each tensor,
the mean DKL is taken across both dimensions, resulting in four scalars. These four DKL values are
added together with equal weighting. Finally, the IG-score is this value minus the DKL between the
unigram frequency distribution in the predicted sequence and the corresponding distribution in high
resolution protein structures from the PDB. This results in a single scalar DKL. The latter values are
sourced from the publicly available trDesign code repository6.

A.2 DARK0-Grad: SAMPLING SEQUENCES FROM DMPFOLD2 WITH GRADIENT DESCENT

We wished to investigate whether the seed sequences we use in DARK could be generated by a
minimizing the negative IG-loss predicted by DMPfold2 with respect to the input sequence. We do
so implementing and testing an approach similar to those shown by Killoran et al. (2017) and Norn
et al. (2021), but instead using DMPfold2. We begin with an input of shape [B,L, 22] where the first
dimension is the number of sequences in the minibatch. To keep compute time results comparable
to the other methods presented here we use B = 100. The input itself is a one-hot encoded random
sequence of L = 100. The version of DMPfold2 we use is altered to predict distograms for batches
of sequences under the constraint that the alignment is always of size 1, which is not a constraint for
us here.

To begin optimization, we compute the distograms from the batch of input sequences, backpropagate
the negative IG-score as our loss, and then update the original input [B,L, 22] vector. This is one
step. As we are back propagating through a discrete node, and the updated input vector is no longer
discrete, we do the following in all optimization steps to make the operation differentiable. We
softmax the updated input vector (we refer to this now as a profile) in the final dimension and then
we sample sequences from the softmaxed residue distributions using a straight-through estimator
(Bengio et al., 2013).

We perform 200 of the above steps as we found it sufficient for the negative IG-scores to converge.
Instead of sampling final sequences from the final profiles, we track and keep the sampled sequence
that achieves the highest IG-score during the 200 steps. We explored a variety of optimizers, profile
regularization and normalization approaches, and other variants with the aim of improving the av-
erage final IG-score. Despite this, we generally found Adam (Kingma & Ba, 2014) with a learning
rate of 1, default β parameters, and a temperature of 1.0 on the softmax to be the most consistently
effective approach. To calculate the average IG-score of this method, and the average sample time,
we generate 1000 sequences from the described approach. These resulting metrics can be seen in
Table 1.

A.3 DARK1-Adversarial:

As part of our investigations we were motivated to assess the effect of incorporating a structure pre-
dictor directly into the training of our autoregressive DARK models. There has been a range of recent
work (Larsen et al., 2016; Esser et al., 2021) exploring the combination of learned and fixed dis-
criminators, like the learned descriminator in generative adversarial networks (GANs) (Goodfellow
et al., 2014), with generative autoencoding models like variational autoencoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014), vector quantized VAEs (VQ-VAEs) (Oord et al., 2017), and
many others. Although this topic has mostly been explore with latent variable models, we wished to
investigate whether such an approach would benefit our autoregressive approach.

To explore this model, we began with the full training procedure and architecture of the DARK1

model. We then incorporated DMPfold2 by, during a forward pass in training, taking the output
probabilities for the batch in question and sampling one-hot sequences combined with a straight-
through estimator like in Appendix A.2. The negative IG-score is then calculated as a loss, LIG.
We see using DMPfold2 in this way as a kind of adversarial regularizer, thus we termed it DARK1-
Adversarial. It must be noted that the DMPfold2 parameters are not being updated in this procedure,
the model is effectively frozen. We calculate the final loss Lfinal as,

Lfinal = LAR + γLIG (3)

where LAR is the original autoregressive cross-entropy loss and γ is a tunable hyperparameter. We
performed a small search of γ values and found γ = 0.5 to perform well however this was not

6https://github.com/gjoni/trDesign
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rigorously optimized. As can be seen in Table 1, the approach does not perform significantly differ-
ently from the original DARK1 model. We in part suspect that this is due to the DMPfold2 model
simply reinforcing the loss signal from the cross-entropy against the original sequence; the original
sequence is already optimized to have a high IG-score. A less charitable view is that the gradient
returning to the decoder model from DMPfold2 is simply contributing noise. While interesting, we
highlight this overall linked approach between generator and structure predictor as a focus of future
work.

A.4 AUTOREGRESSIVE MODELS

We build the autoregressive neural network models used in this work with PyTorch (Paszke et al.,
2019). We also use several utilities from the NLTK (Bird et al., 2009) package. For all neural
network architectures we do mini-batch gradient descent against negative log likelihood (NLL) loss.
We use the Adam optimizer (Kingma & Ba, 2014) with default β values of 0.9 & 0.999. Early
stopping is performed using the validation set. A batch size of 64 is used with a learning rate of
1 × 10−3 for the RNN baseline, and 1 × 10−5 for self-attention models. The learning rate was not
changed according to a schedule as it was not found to provide significant benefit, and so was left
static. All training was done with automatic mixed precision as it brought a significant improvement
in computational efficiency. Below we describe the architectures for the best RNN baseline model
and for the self-attention models.

Inputs For all language models trained on synthetic data, the input is a batch of B sequences in
an array sized [B,L]. This contains 22 integers corresponding to 20 amino acids, a start token, and
a stop token. The length L is the length of the protein sequence with a start token placed at the
beginning of the sequence. As is standard for autoregressive models, the target sequence used for
calculating the loss is the protein sequence with a stop token placed at the end. All neural networks
use embedding layers that use these as integer indices for embedding vectors learned during training.

RNN architecture The best RNN model uses an embedding layer, learned during training, of size
64. The embedded sequence of size [B,L, 64] is fed into an LSTM model with a hidden size H of
128 and 1 layer (Hochreiter & Schmidhuber, 1997). The hidden vector output at each time step of
the LSTM is then fed to a linear layer (H = 128)→ ReLU activation→ linear layer (H = 22). The
resulting final array, sized [B,L, 22], is then log-softmaxed.

Xfmr architecture The Big and Small Xmfr models use a common architecture but with different
numbers of parameters. We describe the architecture using the sizes of the Big model first. An
embedding layer of size 384 is concatenated with a positional encoding of size 384 (Vaswani et al.,
2017), resulting in an array of size [B,L, 784]. The positional encoding uses a maximum length of
101. In comparison, the Small model uses an embedding size of 64, so the input to the following
decoder has 128 dimensions in the final axis. We use a standard decoder architecture for autoregres-
sive multi-headed self-attention with causal masking (Vaswani et al., 2017; Radford et al., 2019).
This includes 10% Dropout (Srivastava et al., 2014) and the use of Layer Normalization (Ba et al.,
2016). We use the Fast Transformers library (Katharopoulos et al., 2020) for implementing models.
The Big model uses 12 layers with H = 784 and 12 heads, and the Small model uses 4 layers with
H = 128 and 4 heads. For both models the output of the decoder goes into a linear layer (H = 128)
→ ReLU activation→ linear layer (H = 22). The output is produced is also a [B,L, 22] array that
is log-softmaxed.

For both RNN language models and self-attention language models, additional decoding strategies
beyond simple autoregressive sampling like Top-K sampling (Welleck et al., 2019) were not found
to significantly improve results. We mask out cysteine when sampling from DARK models, however
we include it in the sizing of the input embeddings and output size to maintain consistency with other
approaches. The output array of size 22 accounts for the 20 amino acids, a start, and a stop token.
Further investigation of more complex decoding schemes, as well as the use of different positional
encoding methods and types of attention, are potential avenues for future research.
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A.5 TRAINING AN UNCONDITIONAL MODEL WITH NATURAL SEQUENCES

Here we describe further architecture and training details of the ‘UF50’ model used to benchmark
the DARK models produced in this work. This model provides a direct comparison of training
with natural sequences and training with synthetic proteins from DARK. UF50 is an unconditional
language model that uses the same training procedure and architecture as the DARK3 model, with
some modifications, and trained on sequences from nature. Specifically, the model is trained on
the representative sequences for each cluster in the UniRef50 database (The UniProt Consortium,
2021), yielding a training set of 50,106,395 sequences. UF50 provides a benchmark for an approach
similar to the ProGEN model (Madani et al., 2020), if ProGEN was an unconditional model. Pro-
GEN is conditioned on a variety of evolutionary and functional information for the task of protein
engineering, making it not directly comparable to the work performed here.

We now describe the modifications used in the UF50 model. During training, missing amino acids
and non-canonical amino acids are mapped to an additional ‘UNK’ token which does not contribute
to the loss. Thus, the final vocabulary size is 24. Batches are dynamically padded to the length
of the longest sequence, and padded positions are masked for the loss calculation. To reduce the
GPU memory required for long sequences, any sequences longer than 100 amino acids (start/stop
not included) are clipped to 100. For the target sequence, instead of placing a stop token at position
101, the amino acid sequence in position 101 from the original non-clipped sequence is used. In this
way, due to the causal masking, this is exactly the same information available to the model as if it
was not using clipped sequences, within the range of 101 amino acids. As all evaluated sequences
are of length 100, the clipping has no effect on any conclusions drawn. To provide a level playing
field, UF50 uses the same validation set as DARK models. We also use rejection sampling to sample
1000 sequences of length 100 for evaluation and comparison. Additional decoding strategies like
Top-K sampling and placing a temperature factor on the next-token softmax were explored but not
found to aid performance.

A.6 FURTHER COMPUTATIONAL EFFICIENCY AND HARDWARE DETAILS

We report all timing estimations, unless stated otherwise, based on using an RTX 2080 Ti graphics
card on the same single machine. We report all sample speed timings in seconds per example.
Sample timing estimations were calculated with batches of 100 sequences, and calculated on the
same single machine. The only example were this was not the case was for DARK0-Grad which
was performed in batches of 10 due to memory constraints. Model training and sample refinement
was performed with resources available at the time but these typically consisted of V100 graphics
cards. As such, we report timing for training, refinement, and simulated annealing experiments as
they would take on V100 graphics cards. The average time taken for refinement is 51.3 seconds.

A.7 EXCLUSION OF CYSTEINE

Cysteines are a special case with regards to the other amino acids as they are primarily present in
proteins to form disulfide bonds. Disulfide bonds are very strong bonds that form between two
cysteine residues. They are, for the most part, present only in proteins that are secreted by the cell
or exist on the outward facing surface of the cell membrane. This is due to the fact that the disulfide
bond cannot form in the reducing environment of the cytosol of cells. We note that for all the
statements, as always with biology, there are exceptions to the rules. In de novo design studies, the
inclusion of cysteine is understandably usually framed as the inclusion of disulfide bonds. Marcos
et al. (2018) and Bhardwaj et al. (2016) provide recent examples of de novo designing with the intent
to use disulfide bonds or simply explore if their inclusion provides benefit. Disulfide bonds can be
very useful for adding stability to a protein but complicate protein expression and depending on the
aim of the design study, it may be disadvantageous or advantageous. From a structural perspective,
a disulfide bond can very much ‘make or break’ a candidate so it requires consideration. Its for this
reason that the inclusion of cysteine and disulfide bonds is typically addressed in a methodologically
specific way, Bhardwaj et al. (2016) being a direct example of that. This is relevant in our case
because it clearly indicates how the default stance is generally to not include cysteine and disulfide
bonds unless there is a reason to. Ultimately, its exclusion does not make the problems we tackle in
this work any easier and if it were to be included it would be unlikely to add any significant value.
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B SEQUENCE AND STRUCTURE ANALYSIS

B.1 VALIDATING THE VALIDATION AND TEST SET

Ideally each seed sample from the black-box oracle could be viewed as identical and independently
distributed (i.i.d.). However, given the sometimes unexpected pathologies (e.g. adversarial exam-
ples) that can be present in neural networks, we directly measure the diversity of the training set
sequences as well as look for any direct overlap of the validation and test sets with the training set.
As can be seen in Table 4, the training set sequences begin to form clusters at around 30% sequence
identity.

As a method of comparing generative models between architectures and iterations of DARK, a test
set and a validation set of 950 samples each are generated, using the simulated annealing approach
of trDesign. We check that the two sets do not share extremely similar or identical sequence samples
with the seed set, producing artificially high performance metrics. As such, validation and test set
sequences are separately compared to all 15,000 sequences in the seed sample set. This is done
using the MMseqs2 (Steinegger & Söding, 2017) search tool with a sensitivity parameter of 7 and
one iteration. Given the clustering results of the seed samples (Table 4), we expect a high proportion
of the sequences to share some small similarity to sequences in the seed sample set. This was
found to be the case; from the validation and test set, 854 out of the 950 sequences in each set
were found to have some similarity to sequences in the training set. The mean sequence identity
between the similar sequences for both sets was low, being 31% for both. The highest sequence
identity found in the validation set was 68%, and for the test set 60%. These results are as would be
expected; they suggest that both sets are sampled from the same distribution as the seed set while
not containing any near-identical copies. This is acceptable, given that this is an unsupervised task
using synthetic samples, where the aim is to learn that distribution. We make the distinction as had
natural sequences been used a more stringent test and validation splitting based on structure and
evolutionary relationships would be required.

As part of investigating the effects of DARK iterations, we also performed this search process with
the test set for the 500,000 examples of the third iteration’s training set. The number of examples
in the test set that had any detected hits increased a small amount, from 854 (N = 1) to 922. The
mean sequence identity of the hits increased slightly from 31% to 33% and the highest identity hit
increased from 60% to 66%. Again, these values are acceptable, and even potentially a positive sign.
One likely cause for the increase in the performance of models across iterations of DARK is that
the area of sequence space covered by the training set is progressively growing in an unsupervised
manner. Even from a pessimistic perspective, if the N = 3 model has better likelihood estimates on
the test set because the previous iterations generated training samples closer in space to the test set,
then it suggests that the iterations are indeed expanding and filling in unseen parts of the distribution.

B.2 THE STRICT STRUCTURE-BASED TEST SET AND DARK2-STRICT

We take two key approaches to providing a stringent measure of how well DARK generalizes. Both
are enabled by first using AlphaFold to generate all-atom structure predictions, and pLDDT scores,
for all 100,000 sequences contained in the DARK2 training set. This set covers the 15,000 initial
seed sequences and the 85,000 sequences from the first iteration of DARK. We also assign each
structure a topology in the form of a topology string. This describes the topology by the secondary
structure elements going from the N-terminus to C-terminus. For example, if this had been done for
the de novo designed ‘Top7’ protein (PDB ID: 1QYS) the topology string would be ‘ββαβαββ’ or
‘bbababb’. We also repeat this procedure for the 950 sequence validation set.

The first way we use this 100K set is to group sequences by their topologies and show that the
first iteration of DARK generates sequences with structures unseen in the initial 15K seed set. The
seed set contains 421 unique topologies and the 85K set contains 1011 unique topologies, with an
intersection of 373 between the two. As such, there are 638 topologies in the 85K set that were
unseen in the training set. This accounts for 1476 sequences, of which 225 sequences (15.2%) have
a pLDDT≥ 70. This provides strong evidence that the DARK iterations are expanding the training
sets to include sequences with unseen and, importantly, ordered structures.

The second way we use this set is to construct, and train a model on, a new training and test set split
based on structure, as is considered the gold-standard in evaluating structure prediction methods
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(Chothia & Lesk, 1986; Söding & Remmert, 2011). We refer to the model trained and tested on
this new split as DARK2-STRICT. We construct the test set by first randomly sampling 101 topolo-
gies, approximately 10%, from the 1059 unique topologies in the 100K set, ignoring the 100 most
common topologies and uninteresting topologies, being a single helix (131 sequences) and only coil
(3 sequences). This 101 topologies accounts for 413 sequences which are removed from the 100K
set, and become the strict sequence test set (See Appendix B.2 for the test topologies and further
details). We also remove and discard 4 sequences from the 950 example validation set that have a
strict test set topology. The original 950 example test set is not used here.

Next we use the MMseqs2 search tool (Steinegger & Söding, 2017) with the maximum sensitiv-
ity parameter (-s 8.5) to aggressively search for potential similarity between the strict test set
sequences and sequences in the remaining 99587 training examples and 946 validation examples.
We then discard any training and validation sequences that MMseqs2 returns as hit, meaning it is
potentially similar to a test set sequence. This reduces the size of the training and validation sets to
87551 and 621 examples respectively. We then use the 87551 sequence training set, 621 sequence
validation set, and 413 sequence strict test set to train and evaluate the DARK2-STRICT model.

We note that this approach to assigning structures to topologies is an aggressive one as it does not
consider the different packing arrangements that the secondary structure elements can have. Thus,
our measures of the number of topologies present in the set is likely a lower bound on the number
of topologies that would be assigned by a more intricate approach like that done for CATH (Orengo
et al., 1997). This may make the test set we have constructed more difficult however we wish to take
a conservative approach and challenge the model, so we find this acceptable.

The 101 randomly selected topologies, and their sequence counts, making up the STRICT test
set The ‘a’ is for alpha helix and ‘b’ is for beta sheet. The 101 topologies cover a total of 413
sequences:
bbabbbabbbb (7), abaaaab (2), baaababab (1), aaabbbabb (1), babb (3), bbbbbbbbbbbab (6),
bababaaa (1), abbaabbbb (2), bbbabbababb (3), bbabbbaabb (3), bbabbbababbab (1), bbbbb-
bababb (3), aaabbb (5), babbabbbba (2), abbbbbbbabbab (1), aabbaa (32), bbaababa (1), bbbbbb-
baab (4), bbabbbababb (1), abaaabbaa (1), abbaaabbaa (1), bbabbabbbbbabbb (1), abbaabba
(7), babbbabab (3), babbabbabb (19), bbbbabbaabba (1), aabaaabbaa (1), babbbbbabbbb (2), bb-
baabbba (2), bababbbbbbb (2), bbabbabbabbb (6), babbbaab (2), bbbababbb (18), babbbabba
(3), bbbaabaa (1), babaabb (14), abaabbabbab (1), bbababbbb (19), baaaab (9), bbaaaabb (1),
abaabaabaabaa (1), bbaabab (4), abbbababbbbb (1), bbbbaabbbb (1), bbbbbbbbaab (1), baab-
baab (2), bbababababab (1), bbabbabbabbab (2), aabbbab (4), bbaabbabbb (1), bbbbbbbabab
(5), bbaababaab (1), bbabbbbab (29), abbbbabb (22), aaaabab (2), babbbbbabbb (4), bababbabb
(6), babaabbbaab (1), bbabbabbbbbbb (1), bbbbabbbabbb (2), babbabbabab (1), bbabaabbb (2),
baabbbbbb (5), aaabaabaab (1), bbbaabb (7), abbbbabbabb (1), bbaabbbbaab (1), ababaaa (1),
babaabab (7), bbabbbbaa (3), aabbaabb (4), abbababb (5), abbbabbabbb (1), bbaabaabb (1), bbb-
baab (7), baababb (8), aaabaabba (1), abababaa (1), bbbabbbbbbabbab (1), bbabbbbabbbb (4),
abbaaaaa (3), abbbbababb (1), bbbbabbbaab (1), abaabbabba (1), bbbbabbbbabbb (2), bbabbb-
babbbabb (1), babbbba (26), aaabbabbb (1), abbbabbbbbbb (1), babbbbabab (3), bbaabbabbba
(1), bbbbbabbabbb (1), abbabbabbb (2), bbbaabbbabba (1), bbabbbbbbbba (1), babbababb (8),
abb (5), bbaaabbbbba (1), bababaab (2), bbbbabbbbbbbb (2), babbbbabba (3)

B.3 PREDICTING STRUCTURE WITH ALPHAFOLD

We use the publicly available version of AlphaFold7 for predicting structures and as part of a quality
metric. In both cases, we use the standard AlphaFold inference pipeline, meaning we predict with
the five ‘CASP14’ models, take the predicted structure with the highest pLDDT as the final result,
and perform relaxation. We use adapted inference scripts to accommodate for predicting with only a
single sequence and without using the template pipeline or the multiple sequence alignment (MSA)
pipeline. This consisted of setting all models to use the same default configuration, as they all use
variants on the default, and then setting all to not use templates. The MSA clusters are reduced to
1 sequence, being the single input sequence, and the deterministic flag is set to true. The number

7https://github.com/deepmind/alphafold

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.478087doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.478087
http://creativecommons.org/licenses/by-nc-nd/4.0/


of recycles is set to 4. Following structure prediction, the standard relaxation is performed for
the best final structure. We note that relaxation is not necessary to produce a final structure, thus
it can be said that a trained language model, like those we present, with AlphaFold provides a
direct way to sample from a joint distribution of sequence and structure, and without additional
conditioning information. Predicting structure with AlphaFold provides the pLDDT scores at each
residue position. We take the average of these for the pLDDT score of a given sequence. Structures
are visualized with ChimeraX (Pettersen et al., 2021).

B.4 ALPHAFOLD PREDICTION CONFIDENCE AND DARK3 FOR RECENTLY RELEASED DE
NOVO DESIGNED STRUCTURES IN THE PDB

As we use the pLDDT from AlphaFold as a metric for measuring structural order, we wish to double-
check that AlphaFold assigns good or better pLDDT scores to de novo designed sequences in the
PDB that were not used as a part of its training set. We manually curate a list of 26 of these
sequences from the PDB. The PDB IDs containing these are 6MRR, 6MRS, 6NUK, 6MSP, 6XWI,
6XXV, 6VTW, 7KBQ, 6D0T, 7JH6, 6XEH, 6X9Z, 6WVS, 6E5C, 6DS9, 5TX8, 5W9F, 6YWD,
6Z35, 6W6X, 6W90, 6WI5, 6W3W, 6VGB, 6W70, 6YQY.

This is not a comprehensive list as, amongst other reasons, some sequences were not included if
they were very sequence-similar to an already selected structure or if they are a large tandem repeat
structure (e.g. ‘armadillo repeats’) to avoid biasing the average. This is still a biased set of structures
as they are the product of whichever goal a given study was investigating, but the pLDDT scores are
still informative. We note that although the PDB has a ‘DE NOVO PROTEIN’ classification, this
includes engineered, designed, and de novo designed proteins. The average calculated pLDDT of
all sequences in the list is 88.1 (σ = 4.41), a good score, as is expected.

We also calculate the likelihood of these sequences under DARK3 compared to random sequences
of length 100. We ignore the 5 sequences that contain cysteine. To account for DARK having been
trained on static length proteins we ignore the prediction of the ‘stop token’ and ignore all residues
in a sequence above position 100 if they exist. We calculate the bits per character (BPC), where
characters are residues, across 100 random sequences and the 21 designed sequences. The random
sequences have a mean BPC of 5.88 bits and the designed sequences have a mean BPC of 4.96 bits.
In having a lower BPC suggests that the DARK models have learned a distribution of sequences
that incorporates structure and is capable of producing de novo designed sequences more so than
random. It is also unlikely that by random chance the DARK models have generated and learned
from sequences in the same parts of the dark sequence space

B.5 BENCHMARKING WEAKLY CONDITIONED METHODS

We provide results for benchmarking with Good+ pLDDT proportions on two recent weakly condi-
tioned generative protein design models, which we refer to as gramVAE (Greener et al., 2018) and
gcWGAN (Karimi et al., 2020). These both use a fold level description that we call weak as they are
far removed from the explicit structural information provided in fixed backbone models (Ingraham
et al., 2019; Strokach et al., 2020; Cao et al., 2021). We stress that these models are not directly
comparable to the unconditional models explored in this work. Furthermore, we provide these only
to gain a small degree of insight but this is significantly muddied by both models being able to
‘cheat’. If either of them reproduce a sequence from their training set, then it is extremely likely that
the same sequence and its structure are in the AlphaFold training set8 and so likely to be assigned
a higher pLDDT than would otherwise be expected. Nonetheless, we provide these benchmarks as
they provide some small degree of context. Even with extra information from conditioning variables
and this ability to cheat, they are still outperformed by DARK3 (Table 8). We speculative that this
difference can even be seen visually in the predicted structures shown by both models (Figure 5c of
Karimi et al. (2020) and Figure 6 of Greener et al. (2018)) which contain clear disordered regions.

The gramVAE9 uses a context-free grammar of SCOP protein folds (Andreeva et al., 2020) as a
conditioning variable for a Variational AutoEncoder (VAE). Both encoder and decoder use non-

8AlphaFold makes the blanket statement that all structures from the PDB with a maximum release date of
30 April 2018 are used in its training.

9https://github.com/psipred/protein-vae
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linear layers and sequences are padded to a maximum length of 140. The gcWGAN is a condi-
tional Wasserstein Generative Adversarial Network that also pads length to use fixed-sized networks
(Karimi et al., 2020). It conditions on a small latent representation of folds, learned from perform-
ing kernel PCA on an all-vs-all distance matrix between all folds in the dataset, where the kernel
used is symmetric TM-score (Zhang & Skolnick, 2005) between two folds. The publicly available
implementation10 provides 600 sequences generated for the 6 folds (100 sequence each) in its test
set using the gcWGAN and the gramVAE in a head to head comparison. Being publicly available
and a direct comparison, we use these provided sequences to calculate Good+ pLDDT proportions
for both models. The gramVAE achieves 21.0% and the gcWGAN achieves 2.83%.

We note that the majority of the folds in the gcWGAN test set are in the gramVAE training set,
which likely explains part of the performance difference. We are not concerned by this as the DARK
models still outperform the gramVAE with an artificial boost. We also note that the gcWGAN model
does not discretize the output of the generator and use any approaches to backpropagating through
the discrete output variable (Bengio et al., 2013; Jang et al., 2016). This provides the discriminator
a trivial learning scheme: place the decision boundaries at the edge of the probability simplex of
tokens at any position. This may explain part of the gcWGAN’s poor performance. In both cases,
we recognize that these models are not ideally suited for sequence problems and have reported poor
performance elsewhere (Cao et al., 2021). We expect future weak conditioning methods will provide
more competitive benchmarks. Ideally, we hope that future investigations into novel unconditional
models will provide direct benchmarks, establishing the best approach to unconditional modelling.

B.6 DARK MODEL SAMPLES ARE DISTINCT FROM NATURAL PROTEINS

We find that samples from the DARK3 model are distinct from sequences in nature. A sequence
search against UniRef100 of the 1000 evaluated sequence samples (without refinement) returned
no hits for all sequences except one, which had 5 weak hits. Two pairs of these 5 sequences were
extremely sequence-similar. Repeating the sequence search with a different tool, HHblits (Remmert
et al., 2012), no natural sequences were found that met the HHblits default threshold value (an
E-value below 1× 10−3).

B.7 SEQUENCE SEARCHING AND CLUSTERING

We use the MMseqs2 package (Steinegger & Söding, 2017) to perform sequence searches and se-
quence clustering. For clustering, the default clustering pipeline and settings are used with sequence
identity as the threshold. If not specified, this is assumed to be a threshold of 30% sequence identity.
For sequence searching we use the default pipeline of MMseqs2 and a high sensitivity parameter
of 7.0 with 1 iteration against UniRef100 (03-2021 release) (The UniProt Consortium, 2021). Any
sequence searching done with HHblits (Remmert et al., 2012) uses an E-value cut-off of 1 × 10−3

with 1 iteration against UniRef30 (06-2021 release) (Mirdita et al., 2017). In this work, we call any
two sequences similar if MMseqs2 (or HHblits) returns a hit between them, meaning it has detected
similarity. Sequences that have a, for example, 40% sequence identity or above are also defacto
assumed as similar.

B.8 STRUCTURE CLUSTERING

To cluster predicted protein structures we perform single-linkage agglomerative clustering using
TM-score (Zhang & Skolnick, 2005) as a similarity metric, meaning an all-against-all matrix of
TM-scores is calculated for each structure in the set of 1000 samples. We use a TM-score of 0.4 as
the cutoff for selecting best cluster centroids and a TM-score of 0.65 for single-linkage clustering
around the centroids.

B.9 GENERATING DE NOVO DESIGNS WITH DARK AND ALPHAFOLD REFINEMENT

Background To give a concrete demonstration of how DARK3, and models like it, can be used in
developing novel methods, we develop a simple but novel design method. The method we develop,
termed AlphaFold refinement, tackles what could be considered the next step for using a model like

10https://github.com/Shen-Lab/gcWGAN
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DARK. Although we have used AlphaFold primarily to evaluate samples, and by extension models,
it can also be used to improve candidates. An obvious first step is that AlphaFold produces both
distogram based predictions and an all-atom structure prediction, so a simulated annealing approach
like trDesign’s (Anishchenko et al., 2020) could be used to sample sequences. We note that the
all-atom prediction can be considered a point estimate of the distogram, but the all-atom model is
ultimately the output of the most interest to us for design.

The challenges of a simulated annealing approach with AlphaFold Unfortunately, this ap-
proach poses two problems. The first is that, at its fastest, meaning running AlphaFold with no
recycling (Jumper et al., 2021), each forward pass takes approximately 5 seconds. This is in contrast
to 0.064 seconds with DMPfold2. Performing a simulated annealing run with the same schedule
as we use would take ∼2.3 days which is prohibitively long. The second problem is one we find
in extending the approach itself. Directly optimizing on the AlphaFold IG-score (AIG-score) itself
appears to produce, what amounts to adversarial attacks on AlphaFold. This can be seen in Fig-
ure 2A & 4, and is particularly evident in the low AIG-scores (low compared to our approach) but
extremely high pLDDT scores. The visual confirmation of this is evident in Figure 4 where all struc-
tures produced are a very unrealistic single long helix. We implement the AIG-score as the IG-score
but using AlphaFold to calculate the distogram prediction from which the p(y|x) term is calculated.
As we do not have the resources that were use to train AlphaFold (Jumper et al., 2021), we calculate
a proxy background distribution by predicting the structure of 1000 random sequences of L = 100
and then averaging their resulting distogram predictions together into one vector.

Using DARK3 to enable AlphaFold design Introducing DARK3 into this problem brings several
benefits. First and foremost it allows us to generate diverse and high confidence samples from Al-
phaFold without them being adversarial attacks. It also reduces the number of design steps such an
approach would take, and adds a measure of control into the design process. We call this method
AlphaFold refinement as it is similar in concept to the refinement done with DMPfold2 between
iterations of DARK. DARK3 allows us to generate large sequence databases, with predicted struc-
tures, that have a diverse range of topologies. These include structures with topologies that have yet
to be successfully de novo designed, and many with high confidence stable structures that can be
used as de novo scaffolds into which functional sites are grafted (Woolfson, 2021). In short, DARK3

produces sequences that have structures that are of design interest.

AlphaFold refinment AlphaFold refinement begins with a sequence sample from DARK and its
AlphaFold predicted structure, chosen by the designer. This is how control is introduced into the
design process. For a graphic displaying the full AlphaFold refinement procedure see Figure 2.
The next step is to take the predicted all-atom structure and calculate its one-hot encoded distogram
representation (Jumper et al., 2021). We then bootstrap this representation as a fixed optimization
target. The actual optimization that occurs is a greedy hill-climb on the sequence against the Cross-
Entropy between the predicted distogram and the bootstrapped target. As we use all five parameter
sets when we use AlphaFold, we treat the distogram prediction at each step as if it were an ensemble
of five AlphaFolds; we average the five predicted distograms as one final predicted distogram with
which to calculate the Cross-entropy. We run this for AlphaFold refinement for 10000 steps, as can
be seen in Figure 2C, however we found comparable results could be achieved in 7500 steps, being
10 hours per sequence on a single consumer-grade GPU (RTX 2080 Ti). This is significantly more
efficient than an approach like using Rosetta which can take thousands of CPU hours. In summary,
we mutate the sequence and keep mutations that minimize the Cross-Entropy to the original struc-
ture. The underlying reason for undertaking this approach is that the structure and sequence we are
interested in will, more often than not, have a lower pLDDT than is possible with a similar sequence
that folds to the same structure. In short, there is always room for improvement, and AlphaFold with
DARK3 provides a way to address this.

This provides two benefits. The first is that it forces the objective to keep the original structure we
are interested in. We find that this also provides a shorter and, we speculate, more direct optimization
path to a high confidence structure. There stands to reason as we giving a fixed objective, a much
easier task, rather than letting the random walk find arbitrary minima. This is evident in the average
AIG-score and pLDDT score improving vastly while the final sequences remain very similar from
a sequence identity perspective. What is particularly notable is that the average pLDDT score of
the 10 examples explored is very similar to that of recently released de novo designed structures in
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the PDB (Figure 2D & 2E). The 10 examples we take are chosen from the 5000 DARK3 samples
previously generated in a semi-random we fashion. We chose them randomly but rejected any with
the exact same topology, accounting for packing, and any single sheet (CATH 2.20; Orengo et al.
(1997)) topologies simply because they are uninteresting. The 10 examples cover 4 α& β structures,
3 α structures, and 3 β structures. This rather even spread of examples was entirely coincidental but
convenient.

Another aspect of using the distogram is that it provides a softer means of keeping the original
structure. In essence, by working in a probabilistic space, AlphaFold can perform small rearrange-
ments to the original structure to improve its confidence while not straying to far. This is difficult
to quantify but can be seen in Figure 2D Example 8, a complex α & β topology where several of
the sheets are brought together in the lower half of the structure (as visualized) to improve packing.
To summarize, in the limit of AlphaFold’s prodigious accuracy, AlphaFold refinement provides a
way to refine design candidates of interest and improve the confidence (and order). Another way
of viewing this approach is as an entirely neural network driven approach flexible-backbone design,
here used as part of an overall de novo design method. In that vein, we note that this approach could
be extended very easily to other tasks in protein design like fixed-backbone design.

Designing a novel immunoglobin As an example of using this approach we take a immunoglobin
from the 5000 DARK3 samples that we previously generated and then AlphaFold refine it. We take
the first example of an immunoglobin in the set and find that we successfully refine its structure to a
high pLDDT and AIG-score while not altering the original approach. The results of this design can
be seen in Figure 3. This provides a concrete example of using DARK3 and AlphaFold to design a
high confidence candidate for a topology of high scientific interest that traditional approaches like
Rosetta are known to struggle with.
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C ADDITIONAL FIGURES AND TABLES

Table 3: Samples from DARK models have diverse sequences and predicted structures. Sequence and
structure diversity is shown with the number of clusters (of 1000 samples) estimated by sequence clustering
and structure clustering respectively. Change in the Good+ pLDDT between iterations is also included.

DARK Model Good+ pLDDT (%) ↑ Sequence Clusters ↑ Structure Clusters ↑
DARK1 28.0 1000 829
DARK2 31.0 973 835
DARK3 32.3 962 822

Table 4: Diversity of the sequence examples in the training set. Diversity at each iteration is measured by
number of sequence clusters found by clustering with four different sequence identity (Seq. ID) thresholds.
The number of training examples (Train Ex.) at each iteration is included.

Iteration 99% Seq. ID 90% Seq. ID 50% Seq. ID 30% Seq. ID Train Ex.
N = 1 15,000 15,000 14,994 11,076 15,000
N = 2 100,000 100,000 99,942 66,509 100,000
N = 3 500,000 500,000 498,077 231,425 500,000

Table 5: Showing baseline results of refining random sequences against the AlphaFold IG-score using a greedy
hill-climb. Sequence identity is between a sequence before refining and the final sequence produced by refining.
This was ran for 20,000 steps.

Example Best AlphaFold
IG-score ↑ Sequence Identity

to Starting Sequence ↑
1 0.865 0.16
2 0.861 0.14
3 0.849 0.12
4 1.210 0.24
5 0.837 0.15
6 0.855 0.18
7 1.227 0.22
8 0.859 0.13
9 0.852 0.21

10 0.834 0.14
Average 0.925 0.169
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Table 6: Showing baseline results of using a trDesign-like approach with AlphaFold. It refines random se-
quences against the AlphaFold IG-score using simulated annealing. Sequence identity is between a sequence
before refining and the final sequence produced by refining. This was ran for 20,000 steps.

Example Best AlphaFold
IG-score ↑ Sequence Identity

to Starting Sequence ↑
1 1.204 0.03
2 1.198 0.07
3 1.210 0.07
4 1.214 0.02
5 2.009 0.05
6 1.224 0.06
7 1.204 0.05
8 1.196 0.03
9 1.205 0.10

10 1.204 0.04
Average 1.287 0.052

Table 7: Showing results of performing AlphaFold refinement with DARK3. It refines DARK3 sequences
against the Cross-Entropy between AlphaFold’s initial step 0 distogram and the current sequence’s distogram,
indirectly improving the AlphaFold IG-score, using a greedy hill-climb. Sequence identity is between a se-
quence before refining and the final sequence produced by refining. This was ran for 10,000 steps as it was
sufficient for convergence and so stopped as to not waste resources.

Example Best AlphaFold
IG-score ↑ Sequence Identity

to Starting Sequence ↑
1 2.387 0.33
2 2.190 0.39
3 1.992 0.38
4 2.160 0.36
5 2.008 0.32
6 2.145 0.39
7 2.197 0.42
8 1.316 0.43
9 2.317 0.40

10 2.329 0.33
Average 2.104 0.375

Table 8: Good+ pLDDT scores from AlphaFold (higher is better) are shown for unconditional language mod-
els, uniformly random sequences, and two recent conditional models that use non-specific (weak) structure
information for conditioning.

Language Model Good+ pLDDT (%) ↑ Conditioning Training Data
Random 1.8 - -
gcWGAN (Karimi et al., 2020) 2.8 Structure Natural
gramVAE (Greener et al., 2018) 21.0 Structure Natural
UF50 15.9 - Natural
DARK1-Adversarial 28.0 - Synthetic
DARK1 28.0 - Synthetic
DARK2 31.0 - Synthetic
DARK2-STRICT 29.2 - Synthetic
DARK3 32.3 - Synthetic
DARK3 (Ref) 37.3 - Synthetic
DARK0-Seed Samples 40.8 - Synthetic
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Figure 3: Showing the structure of a DARK sampled sequence predicted to have an immunoglobin fold by Al-
phaFold. The structure of the sequence is shown after AlphaFold refinement along with the change in pLDDT,
the Cα-RMSD difference between the two structures, and the sequence identity between the two sequences.
The structures are visualized with ChimeraX (Pettersen et al., 2021)

Figure 4: The superimposed structures of 10 examples produced by simulated annealing of the AlphaFold IG-
score, in essence, a trDesign approach with AlphaFold. All 10 examples achieve a low IG-score of 1.28 (our
method achieves 2.10) but an extremely high mean pLDDT of 97. This direct approach to maximizing the
AlphaFold IG-score effectively generates adversarial examples, evident in all samples being predicted to have
the same single long helix. The structures are visualized with ChimeraX (Pettersen et al., 2021)

Figure 5: DARK3 paired with AlphaFold unconditionally samples diverse predicted structures. We show
varied examples of protein structures, predicted by AlphaFold, for sequences sampled directly from DARK3

without any refinement. These structures have a variety of different folds, and are visualized with ChimeraX
(Pettersen et al., 2021). For clarity, we split the rows into examples of all-α, α & β, and all-β structures.
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Figure 6: Agreement between Rosetta and AlphaFold structure prediction. Predicted structures of a se-
quence sample (ID 209a) using AlphaFold and Rosetta AbinitioRelax. Both approaches are in agreement, pro-
ducing close to the same structure. For the latter, the best predicted structure with the lowest Rosetta all-atom
score is used, being -279. The root-mean-square deviation between α carbons in the two different predictions
is included.

Figure 7: DARK models generate samples with confidently predicted structures. A Normalized histograms
of the pLDDT scores produced by AlphaFold when predicting structures for three sets of sequence samples,
each containing 1000 sequences. A skew-normal is fit to each set and plotted for clarity. Random refers to
uniformly random sequences of L = 100. The Good+ pLDDT (pLDDT> 70) proportion is also included.
N = 3 refers to the DARK3 model.
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Figure 8: Rosetta predicts correct fold and potential alternative conformation. The top 1000 predicted
structures (by Rosetta score) for a sampled sequence, of 10000 structures, produced by the Rosetta AbinitioRe-
lax protocol. Rosetta scores are expressed in Rosetta Energy Units (REU; lower values are better). RMSD is
root-mean-square deviation (RMSD) in Å from the AlphaFold structure prediction of the sampled sequence
using α-carbon atoms. The best model is bottom left but a second peak suggests an alternative conformation
may be possible (bottom right). We note a similarity to the multi-peak distributions presented in Figures 2B &
2C of Norn et al. (2021).
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