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Abstract9

Antimicrobial peptides (AMP) emerge as compounds that can alleviate the global health hazard of antimicrobial10

resistance. Since the repertoire of experimentally verified AMPs is limited, there is a need for novel computational11

approaches to peptide generation. For such approaches, exploring the amino-acid peptide representation space is12

infeasible due to its sparsity and combinatorial complexity. Thus, we propose HydrAMP, a conditional variational13

autoencoder that learns a lower-dimensional and continuous space of peptides’ representations and captures their14

antimicrobial properties. HydrAMP outperforms other approaches in generating peptides, either de novo, or by ana-15

logue discovery, and leverages parameter-controlled creativity. The model disentangles the latent representation of16

a peptide from its antimicrobial conditions, allowing for targeted generation. Wet-lab experiments and molec-17

ular dynamics simulation confirm the increased activity of a Pexiganan-based analogue produced by HydrAMP.18

HydrAMP proposes new promising AMP candidates, enabling progress towards a new generation of antibiotics.19
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1 Introduction20

Microbes pose a continuously increasing threat to human health, in particular by causing sepsis, post-surgical infec-21

tions, and putting at risk patients with chronic conditions or immunodeficiency [1]. It is estimated that microbial22

infection will become the main cause of death by 2050, exceeding the currently dominating cancer and cardiovascular23

diseases [2]. The reason for the growing danger of microbes is their ability to gain resistance to antibiotics [1]. In24

the recent years, antimicrobial peptides (AMPs) are investigated as attractive alternatives to conventional antibiotic25

treatment. The acquisition of resistance to AMPs in microbes is much slower [3], moreover, they can be active against26

pathogens that are resistant to antibiotics [4].27

Typically, AMPs are amphiphatic; cationic amino acids build the hydrophylic face of the peptide, while hy-28

drophobic residues dominate the opposite side of the molecule. Amphiphacity together with high charge allow AMPs29

to invade and disrupt the negatively charged microbial cellular membrane [5]. Antimicrobial activity of peptides is30

measured experimentally by determining its Minimal Inhibitory Concentration (MIC). The most prominent peptides31

have low values of MIC, meaning that they remain active even in low concentrations, but their prevalence is limited.32

Given the high therapeutic promise of AMPs, it is critical to design novel peptides that are nonexistent in nature and33

could be synthesised and used to treat microbial infections in the clinic.34

In biological labs, the process of identifying new antimicrobial peptides commonly proceeds by taking existing,35

known AMPs as prototypes, and adding or substituting amino acids, aiming at increasing the resulting amphiphacity36

and/or charge. Such generated peptides are subjected to synthesis attempt, and if synthesizable, their antimicrobial37

activity is experimentally verified. First, this process is tedious, and time and cost consuming. Second, it is difficult38

to improve existing AMPs, which already have good physicochemical properties. Finally, even if new candidates39

are obtained in this way, the novel peptides will be similar in their sequence to existing peptides, and as such their40

diversity is expected to be poor. Thus, there is a need to devise efficient and accurate in silico approaches to novel41

AMP generation.42

The problem of modelling AMPs was undertaken by a number of different computational approaches. One group43

of these approaches are classifiers, which take a peptide as input and their task is to predict whether the peptide is an44

AMP or not [6, 7, 8, 9], whether it is toxic [10, 11], or whether it is active [12, 13]. A related group of methods are45

quantitative structure–activity relationship (QSAR) models [14, 15], which identify a set of structural features for a46

given peptide, all of which are associated with the peptides being AMP, for example helical structure, amphipathicity,47
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etc. Next, the model is applied to a peptide database and peptides with the highest scores for features associated48

with being AMP are chosen. As such, the QSAR methods can only score existing peptides and are not able to49

directly generate new ones. Another approach is to use autoregressive models trained on AMP sequences for peptide50

generation [16, 17, 18]. To generate new peptides, these models operate in an iterative manner. In each iteration, a51

subsequence of the peptide constructed so far is given at input, and the model is used to propose the consecutive amino52

acid in the sequence. Other approaches are based on the genetic algorithms [19, 20, 21, 12]. These methods iteratively53

evolve a population of peptide sequences by adding random mutations, evaluating their fitness, and performing cross-54

over and other evolutionary operations. Their performance depends on the choice of the method for introducing the55

mutations and for evaluating their fitness. Finally, there are linguistic models [22], that consider peptides as a formal56

language with grammar and vocabulary. By inserting alpha-helical patterns into AMP sequences in a sliding window57

manner, they are able to generate novel sequences in few attempts.58

Working in the peptide space (both amino acid sequence, as well as atomic composition, e.g. encoded with graph-59

based representations such as the Simplified Molecular Input Line Entry Specification, or shortly SMILES [23]), as60

it is the case of the QSAR, genetic algorithm-based methods, and linguistic approaches, has serious disadvantages.61

First, the sequence space is sparse. Second, it is combinatorial and discrete, and thus highly dimensional, causing62

these approaches to be computationally demanding and prone to quickly getting stuck in local minima [21]. On top63

of that, similarity in this sequence space does not imply similarity of peptide function. Specifically, it is likely that64

operations such as amino acid substitutions, deletions, or additions, making small changes to the sequence, have65

large impact on amphiphacity or charge, and thus also antimicrobial activity of the peptide. Thus, it is desirable for66

the computational approach to find a better, continuous, and reduced-dimensionality representation of peptides, and67

operate on such representations instead.68

Such representation learning approaches to peptide generation include GANs [24, 25] and variational autoen-69

coders (VAE) [26, 13] as well as their conditional variants cGANs [27] and cVAEs [28, 29]. The conditional variants70

enable generation of peptides satisfying a given condition. In contrast to VAE, training of GANs was reported to face71

substantial technical obstacles, such as training instabilities and mode collapse [27].72

On top of that, the existing approaches are not explicitly trained to perform all desired tasks. Specifically, almost73

all of above generative models, except for the genetic algorithm and cVAEs, are suitable only for a generation mode,74

which corresponds to random generation of AMPs, and which we refer to as unconstrained generation. In fact,75
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generation by improving existing peptides, which we call the analogue generation, should also be optimized during76

training. Moreover, ideally, in the analogue generation, the peptides should be generable both from known active77

AMP (positives) and non-AMPs (negatives). Indeed, the former mode would allow to directly mimic the experimental78

approach, while the latter is expected to increase the diversity of the pool of generated peptides. To our knowledge,79

none of the existing approaches are trained to improve non-AMPs. Finally, the results of the generative models80

are rarely experimentally verified, and their functionality is usually not made available to non-technical users in a81

digestible manner, e.g. as a web service.82

Here, we propose HydrAMP, a novel approach for peptide generation, designed to address these needs. Hy-83

drAMP is a cVAE-based model, which is specifically trained to perform analogue generation both from positives84

and negatives, as well as for unconstrained generation. It learns a hidden space of meaningful peptide represen-85

tations, which is disentangled from the set of antimicrobial conditions that a generated peptide is expected to sat-86

isfy — whether it is supposed to be a highly active AMP or not. The model is available as a web-service at87

www.hydramp.mimuw.edu.pl, and its results were experimentally verified and investigated in detail using in88

silico molecular dynamics simulations. As such, HydrAMP is a step forward in the daunting task of generating novel,89

highly active AMPs and fighting the problem of antimicrobial resistance.90

2 Results91

2.1 HydrAMP — a conditional, generative model of peptide sequences92

HydrAMP is a model for generation of novel peptide sequences satisfying given antimicrobial activity conditions. A93

pair of conditions, denoted c = (cAMP,cMIC) specifies whether the generated peptide is supposed to be antimicrobial94

(condition cAMP) and whether it is supposed to have high antimicrobial activity, or, equivalently, low MIC (condition95

cMIC). Despite the fact that the feature of being AMP and being highly active are strongly related, we keep them as96

separate conditions, because of existence of peptides that are known to be antimicrobial but have low activity.97

The training data for HydrAMP consists of a curated data set of peptide sequences, including sequences that are98

known to be AMP, sequences that are known to have a low MIC, and sequences collected from UniProt (Figure 1a).99

The model is trained in three modes: reconstruction, analogue and unconstrained (Figure 1b). Training in the re-100

construction mode facilitates the model to properly capture peptide sequences distribution, as well as those properties101

that make them antimicrobial and active. This is achieved by ensuring that the reconstructed peptides are similar to102
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the input peptides from the training data and satisfy the same conditions. In the analogue mode, the model is trained103

to generate analogues based on the provided prototype peptide and satisfying a specified condition. Finally, in the104

unconstrained mode, the model is trained to generate peptides de novo that resemble training data and satisfy the105

specified condition.106

More formally, HydrAMP is an extension of a conditional variational autoencoder (cVAE). The model is opti-107

mized to create a meaningful, latent, real-valued vector space representation of peptides, which is easier to sample108

from and has a lower dimension than the original, highly dimensional and combinatorial space of peptide sequences.109

Apart from standard neural network-based sub-models such as Encoder and Decoder, used in the cVAE framework110

to operate on the latent representation in a probabilistic manner, the model utilizes also a Classifier. The Classifier is111

also a neural network, which, unlike the Encoder and the Decoder, is pre-trained prior to HydrAMP training, and is112

used in order to classify whether any given peptide is AMP or not, and whether it has a low MIC or not.113

HydrAMP utilizes a number of regularization terms: latent reconstruction regularization, KL divergence, and114

Jacobian disentanglement regularization (Figure 1b). The former two regularization terms are standard in the cVAE115

framework. The latter is specifically introduced in this work for obtaining a disentanglement between the latent116

representation of peptides and the condition. In this way, the latent space encodes the property of being a peptide,117

while the condition independently encodes whether this peptide is supposed to be AMP or active (have low MIC).118

See Methods for a detailed formal description of the model.119

HydrAMP offers two generation modes: analogue and unconstrained (Figure 1c). The analogue mode improves120

upon the common practice of novel peptide discovery followed in experimental labs. In contrast to the tedious trial and121

error process of changing the original sequence, given the prototype and the desired condition, the model manipulates122

the latent representation of the prototype instead. Given the favorable nature of the latent space, which spans real-123

valued vectors that were trained as representations of valid peptides, and given that distances in the latent space124

should reflect the dissimilarities between the peptides, the points in the latent space in close proximity to the point125

representing the original peptide are good candidates for analogue samples. For such samples from the latent space,126

the role of the Decoder is then to generate a sequence of amino acids satisfying the desired condition. HydrAMP127

benefits from an additional temperature parameter τ that controls the creativity of analogue generation. Intuitively,128

the temperature influences the radius with respect to the prototype point in the latent space within which the analogues129

are searched for. Compared to the analogue mode, the unconstrained mode is more standard for cVAE and allows130
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generation of random peptides with either random, or desired condition. To this end, samples are generated from a131

prior distribution over the latent space, and Decoder is used to produce sequences with the fixed condition.132

2.2 HydrAMP outperforms other models in the ability to generate antimicrobial and highly active peptide133

candidates134

HydrAMP was compared to two alternative models: Basic and PepCVAE [28]. Basic is a standard cVAE, while PepC-135

VAE is a state-of-the-art approach to peptide generation using the conditional variational autoencoder framework. In136

case of Basic, only reconstruction mode training was performed. For PepCVAE we used reconstruction and uncon-137

strained modes. Both models lack analogue generation and Jacobian disentanglement regularization (see Methods for138

further details).139

To evaluate the generation performance of the evaluated methods we inspected their creativity as the number140

of generated peptides satisfying given conditions. We also inspected their ability to obtain desired antimicrobial141

properties, as specified by setting the condition, in a number of different generation tasks. To this end, in each task,142

each generated peptide p was assessed by the Classifier, and its probability of being AMP PMAMP(p) or being active143

PMMIC(p) was recorded.144

In order to assess the analogue generation mode, we first performed a series of experiments, in which HydrAMP145

and the compared models were asked to generate analogues of known, existing AMPs (referred to as positives; see146

Figure 2a). In these experiments, model was given a prototype sequence as input and the conditions were set to147

cAMP = 1 (being antimicrobial) and cMIC = 1 (being highly active). A 1319 AMP peptides from the test set (not used148

during training) were used as prototypes. We defined two distinct evaluation criteria: discovery and improvement,149

with the former corresponding to the ability of simply generating analogues with good antimicrobial properties, and150

the latter corresponding to generating analogues with properties strictly better than the input prototype. Specifically, a151

peptide met the discovery criterion if it had a probability of being AMP greater than 0.8 and probability of having low152

MIC greater than 0.5. A peptide met the improvement criterion if its probability of being AMP and the probability153

of having low MIC were both greater than of the original peptide. Meeting the discovery criterion turned out to be a154

relatively easy task, as novel analogues were accepted for nearly 50% of input positive prototypes for all models, with155

HydrAMP showing a 4 percent point advantage in the fraction of accepted analogues (0.52) compared to the next best156

model, Basic (0.48). In contrast, analogues that met the improvement criterion were produced only for a few percent157
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of prototypes. Here, based on the same set of prototype sequences, the HydrAMP model improved over twice (82) as158

many peptides the PepCVAE (31) and over three times more than the Basic model (23). These results show that the159

HydrAMP model is more creative than the compared models and has the capabilities of introducing new analogues160

for original prototypes.161

For further analysis of the analogue generation, we gave HydrAMP and the compared models a harder task of162

generating analogues for 1253 known non-AMP peptides (negatives) from the test set (Figure 2b). Unsurprisingly,163

meeting the discovery criterion was more challenging where the negatives were given as input compared to the pos-164

itives. Still, HydrAMP managed to discover analogues for 82 prototypes, which is over 60% more than PepCVAE165

(52) and Basic (51) models. Notably, HydrAMP was also able to improve over 50% of the test set negatives, three166

times more than the best of the competing models, PepCVAE. In order to compare the antimicrobial properties of the167

prototype negatives and their analogues that met the discovery criterion, we analyzed the probability of being AMP168

and being active of both prototypes and the analogues.169

We also compared these probability distributions against the distributions for all peptides from the test data.170

HydrAMP was able to produce analogues that met discovery criterion for peptides that had lower a priori probability171

of being AMP (Figure 2c) and lower probability of being highly active (Figure 2d) than its competitors.172

In contrast, Basic and PepCVAE models produced analogues that met the discovery criterion for peptides that were173

already initially likely to be antimicrobial and active. The outstanding performance of HydrAMP in generating highly174

antimicrobial and active novel peptides based on experimentally-validated non-AMP prototypes shows its potential175

to provide truly novel antimicrobial peptides and increase the diversity of the pool of AMP sequences. Indeed, in176

contrast to analogues produced from positive prototypes, those peptides are expected to have sequences that largely177

differ from the sequences of known AMPs.178

In order to assess the creativity of HydrAMP model in the analogue generation, we evaluated the number of179

different analogues created using two popular AMP peptides as prototypes: Pexiganan and CAMEL (Figure 2ef).180

Here, we used an additional parameter of HydrAMP analogue generation — the temperature τ > 0, which controls181

the level of peptide alternations with respect to the original peptide (Figure 1c). Indeed, the greater the temperature,182

the more the generated analogues differ from the prototype (Figure 2ef). The ability to control the creativity of the183

model is important. The more similar a newly created analogue is to the prototype one, the more likely it is to preserve184

the physicochemical properties of the original peptide. On the other hand, the more alternations introduced, the larger185
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the number of generated novel peptides.186

We assessed the unconstrained generation abilities of HydrAMP in comparison to other methods by generation187

of peptides at random in two modes: positive and negative. In the case of the positive mode we randomly sampled188

the latent representation variable and set the condition of the new peptide p to have a high probability of being AMP189

(PMAMP(p)) and a high probability of being active (PMMIC(p)). In the negative mode, we set the peptide conditions190

to be non-AMP (cAMP = 0) and not active (cMIC = 0). Peptides generated by HydrAMP were more likely to follow191

the desired conditions than the competing models both for AMP (Figure 2g) and MIC (Figure 2h) conditions. The192

advantage of HydrAMP was the most noticeable in the case of the probability of being AMP: the median probability193

of being AMP for peptides generated by HydrAMP was around 1, while for the next best model, PepCVAE, it was194

around 0.5 (Figure 2g).195

In order to confirm that HydrAMP is able to suggest new, synthesizable active AMP peptides when using the un-196

constrained mode we tested to what degree peptides generated in this mode match appropriate criteria (Figure 2i). For197

that, we generated 50k candidate peptides and run four experiments confirming their properties. First, we computed198

the fraction of such peptides p which had high probability of being AMP (PMAMP > 0.8) and high probability of being199

active (PMMIC(p)> 0.5). Next, we assumed their secondary structure as alpha-helical and tested their amphipathicity200

using hydrophobic moment [30]. Peptides with amphiphatic alpha-helical structure are known to be easily synthesiz-201

able and their mode of action has been thoroughly studied [31]. Accordingly, we computed the fraction of peptides202

with the hydrophobic moment > 0.4 (the mean hydrophobic moment of the positive peptides no longer than 26 amino203

acids). Finally, we evaluated the fraction of peptides that had charge > 4 (the mean charge of the positive peptides no204

longer than 26 amino acids; see Supplementary Figure S1 for details of the hydrophobic moment and charge thresh-205

olds selection). HydrAMP suggested the largest number of peptides that were confirmed as positives, were sufficiently206

amphipathic, and were positively charged, in each condition separately. Eventually, HydrAMP created almost 50%207

more peptide candidates that matched all three conditions than its best competitor (Basic).208

2.3 HydrAMP generates peptides with desired physicochemical properties209

Next, we evaluated HydrAMP by inspecting the physicochemical properties of peptides that it generates, in compar-210

ison to the properties of known peptides as well as peptides generated by PepCVAE and Basic (Figure 3). Physico-211

chemical properties of antimicrobial (positive) peptides differ from peptides that were experimentally verified not to212
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be antimicrobial (negative peptides). Indeed, a comparison of the distributions indicated that isoelectric point (Fig-213

ure 3a), charge (Figure 3d), hydrophobic moment (Figure 3g), and aromaticity (Figure 3j) are significantly larger214

(one-sided Mann-Whitney test p-value < 0.05) for known positives than for negatives.215

We first inspected the performance of HydrAMP and other approaches in the task of finding positive peptides based216

on negative prototypes in the analogue generation. Given such significant differences between negatives and positives,217

this requires the introduction of a shift in the physicochemical properties from the non-AMP prototypes to the newly218

generated peptides. In this task, HydrAMP showed a capacity to generate analogues with the desired significant219

increase (one-sided Wilcoxon test p-value < 0.05) of all investigated properties: isoelectric point (Figure 3b), charge220

(Figure 3e), hydrophobic moment (Figure 3h), and aromaticity (Figure 3k). We tested three temperature parameter221

setups: a conservative τ = 1.0, and more explorative τ = 2.0 and τ = 5.0 levels. For higher temperature levels, the level222

of improvement was much higher than for Basic and PepCVAE models. This implies that we can control the balance223

between physicochemical improvement and the degree of changes between new analogues and their prototypes. We224

confirmed that these results could not be obtained by chance by computing physicochemical properties of a randomly225

sampled subset of the UniProt dataset and peptides for which we randomly sampled a sequence of amino acids. In226

both of these cases, HydrAMP in explorative temperature setups produces peptides with better qualities. In contrast227

to HydrAMP, all four physicochemical properties of peptides generated by PepCVAE or Basic showed no significant228

difference to the properties of known negatives.229

Second, we evaluated HydrAMP and other approaches in a task of improving the positives. Here the challenge230

is different than in the previous task, as it is hard to improve peptides that are already ”good” (are already AMP and231

active). Here, for all analyzed physicochemical properties, HydrAMP generated peptides with significantly better232

(one-sided Wilcoxon test p-value < 0.05) properties than the input positive prototypes (Figure 3c,f,i,l). The benefit233

of the model’s creativity using a larger temperature parameter is most visible for aromaticity (Figure 3l). PepCVAE234

and Basic performed only slightly worse in this task, either producing peptides that did not improve the hydrophobic235

moment (PepCVAE; Figure 3i) or aromaticity (Basic; Figure 3l).236

Finally, we evaluated the physicochemical properties of positive and negative peptides generated by HydrAMP in237

the unconstrained mode, in comparison to peptides generated by other methods (Supplementary Figure S2). For all238

four analyzed physicochemical properties, there was large and significant difference between their distributions for239

HydrAMP generated negatives and positives (one-sided Wilcoxon test p-value < 0.05). For PepCVAE and Basic, the240
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differences between negatives and positives were also significant, but the medians of the distributions did not differ241

by as large amount as for HydrAMP. We confirmed that the amino acid distribution of the peptides generated in the242

unconstrained mode is in agreement with the true amino acid frequencies (Supplementary Figure S3). High content243

of lysine (K) and arginine (R), as well as low content of negatively charged glutamic acid (E) and aspartic acid (D)244

contribute to the positive net charge.245

Overall, these results illustrate the superior performance of HydrAMP in generating peptides with desired physic-246

ochemical properties, reflecting the properties observed for real peptides.247

2.4 HydrAMP suggested valid novel peptides248

Finally, we inspected the ability of HydrAMP to generate novel peptides using experimental wet lab validation (for249

details see Supplementary Material S5). To this end, we applied HydrAMP in the analogue mode, with temperature250

(creativity) parameter τ = 1.0, treating Pexiganan and Temporin-A as prototypes. The low creativity parameter choice251

was justified by the fact that we intended to obtain novel peptides that were similar to the prototypes. For each252

prototype, we first generated a set of 900 positive analogues. Next, we applied stringent filtering criteria to both253

generated sets of peptides (see Biological filtering criteria) to increase the chance of peptides being synthesizable and254

were left with 92 sequences for Pexiganan and 84 for Temporin-A. Out of these candidates, five positive analogues255

of Pexiganan and five of Temporin-A were selected for experimental validation. One of the selected Pexiganan256

analogues did not synthesize. The remaining were investigated experimentally and their antimicrobial activity was257

tested against two E. coli strains (Table 1; Methods). Laboratory experiments validated the known and predicted by258

the Classifier very high antimicrobial activity of Pexiganan. Out of four synthesizable analogues of Pexiganan, one259

showed even higher activity than that of Pexiganan (MIC = 2 µg/mL). This novel validated antimicrobial peptide was260

called Hydraganan. Another predicted analogue was confirmed as AMP and of high activity (MIC = 16 µg/mL).261

The Classifier model predicted high probability of being antimicrobial, and a very low probability of being highly262

active for Temporin-A. The low activity was confirmed in the lab (MIC = 256 µg/mL). All five predicted positive263

analogues of Temporin-A also showed low antimicrobial activity (MIC ≥ 512 µg/mL). As controls, we randomly264

selected and validated two peptides generated as negative analogues by HydrAMP, one for Pexiganan, and one for265

Temporin-A. Both the negative analogues were validated as inactive (MIC > 512 µg/mL).266
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2.5 Simulations confirmed that Hydraganan penetrates the cell membrane267

To better understand the functional properties of Hydraganan and of the experimentally validated negative analogue of268

Pexiganan, we performed extensive, fully atomistic simulations of their behavior in the presence of a lipid membrane269

(Figure 4a, b). Each peptide was constructed as a regular α-helical structure and placed in aqueous compartment270

of the simulation box with its helical axis parallel to the membrane plane, at three different orientations. During the271

simulations we monitored the stability of peptides α-helical structure as well as the degree of their association with the272

membrane. The latter was assessed based on consecutive, 25 ns long simulation blocks, by considering a parameter273

S ∈ [0,1] that indicates the fraction of peptide heavy atoms distribution along the membrane normal, that penetrates274

towards the bilayer core below a dividing plane corresponding to a depth at which the distribution of membrane275

heavy atoms reaches half of its maximum value (Figure 4c). Accordingly, S = 0 indicates no association, while S = 1276

represents full peptide burial.277

In the case of Hydraganan, irrespective of initial orientation, we observed peptide association with the membrane278

within the first 250 ns of the simulation time, as indicated by S values increasing above 0.5 (Figure 4d, lower plot).279

In all cases the association was followed by complete peptide burial (S→ 1) within 500 ns. In contrast, the negative280

Pexiganan analogue only loosely adhered to lipid bilayer surface and revealed no tendency to penetrate into its core,281

with S values remaining around 0.25 till the end of simulations. Notably, the active peptide consistently maintained282

∼ 0.75 fraction of helical geometry, that is considerably more than the inactive one, whose helical structure content283

dropped well below 0.5 already within the first 200 ns (Figure 4d, upper plot).284

Together these findings underscore the importance of a stable α-helical scaffold which is necessary to secure285

properly aligned hydrophobic surface patch on one peptide side and oppositely facing cluster of hydrophilic or charged286

side chains. While the former provides a driving force for peptide insertion into the nonpolar membrane core, the latter287

apparently prevents membrane defect from closing. Notably, these features rely not merely on individual amino acids288

but rather on their appropriate distribution within the sequence that warrants correct placement upon folding as well289

as helical propensity of the resulting structure.290

3 Discussion291

In this work we have proposed HydrAMP, a generative model for antimicrobial peptides discovery. It leverages292

a conditional variational autoencoder to offer two functionalities: generating analogues of existing peptides with293
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improved antimicrobial properties (analogue generation) and generating peptides de novo (unconstrained generation).294

This is enabled by a continuous peptide representation of reduced dimensionality with disentangled antimicrobial295

conditions cAMP,cMIC. Additionally, this representation is directly optimized to not only properly represent the known296

peptides but also to efficiently generate new candidates.297

We have evaluated the model’s ability to improve existing antimicrobial peptides by producing analogues of Pex-298

iganan and Temporin-A. We obtained Hydraganan, a potent antimicrobial peptide displaying better activity than Pex-299

iganan, and another Pexiganan analogue of high activity. Hydraganan was verified experimentally and by molecular300

dynamics simulations. Importantly, the simulations were performed in the presence of a lipid membrane. To facilitate301

the usage of HydrAMP model, we developed a web service available freely at https://hydramp.mimuw.edu.302

pl/.303

HydrAMP bears several novelties and advantages in comparison to existing approaches. First, in contrast to previ-304

ous VAE/WAE-based approaches [26, 28, 29], HydrAMP was trained specifically for the task of analogue generation.305

Additionally, HydrAMP is the first model trained and used to identify active analogues of non-AMP prototypes.306

Third, leveraging a Gumbel-Softmax approximation [32] enabled a continuous approximation of sampling in the307

discrete space of amino acid sequences and thus a direct optimization of peptides generated by the model. Before,308

such optimizations required a complex multi-stage training [28]. Finally, HydrAMP is the only model controls in a309

parametrized way the model creativity understood as the number of modifications introduced to the query peptide.310

Although HydrAMP conveys advancement over previous approaches, it still could be extended in several ways.311

First, HydrAMP could be enriched with a popular attention mechanism [33]. The architecture of the model allows312

easy replacement of both the Encoder and the Decoder with transformer modules [33]. It is not clear, however, that313

such an extension of the model would improve its performance, as initial evidence suggested that attention-based314

models might work worse for peptide modelling than recurrent models [34]. Additionally, we considered amino acid315

sequence only. Instead, we could leverage structure prediction models such as AlphaFold [35], and extend HydrAMP316

training procedure to directly optimize alpha-helix propensity and other structural features of AMPs. In this work,317

the loss term responsible for reconstruction objective treats each of the amino acids in the sequence as independent.318

However, the probability of each amino acid being present is dependent on proceeding and following amino acids.319

The local context can also affect the antimicrobial activity of a given peptide, as shown in [36].320

Finally, the applicability of the model could be also extended. HydrAMP does not consider the host toxicity of321
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the peptides. Successfully optimizing both activity and host toxicity within the same model would provide a powerful322

tool for AMP design. Addressing the toxicity is an urgent matter as only highly selective peptides can be used in323

treatment of human subjects. Additionally, we trained the model to target only E. coli strains. Depending on the data324

availability, it could be retrained to target other strains, either Gram-positive or multi-drug resistant strains.325

Antimicrobial resistance problem remains a serious threat that needs dire actions. HydrAMP is a novel, powerful326

tool capable of suggesting new antimicrobial peptides what has been shown both through wet-lab evaluation and327

molecular dynamics simulations. Thus, by quick indication of possible candidates HydrAMPs is making progress328

towards creation of a new generation of antibiotics.329

4 Methods330

4.1 Data collection331

The training data for the model is a curated data set of a total of 247 506 peptide sequences collected from three332

sources: MIC data collected by [12], AMP data from known AMP databases, and UniProt data [37]). To speed up333

the training process and control the synthesis costs, all selected training sequences have length of at most 25 amino334

acids and contain only standard amino acids. Sequences shorter than 25 amino acids were padded using additional335

padding character.336

MIC data The MIC data set consists of peptides with experimentally proven antimicrobial activity and measured337

MIC values downloaded from GRAMPA database [12]. Of 8049 entries only 4546 of them are unique sequences. We338

select those peptides which were experimentally tested for activity against E. coli strains. MIC values for peptides339

with multiple measurements are averaged resulting in 4546 entries. Only 3444 peptides have the required length of340

25 amino acids. Peptides with MIC < 30 µg/ml are labeled as active (positive), while peptides with MIC ≥ 30 µg/ml341

are labelled as inactive (negative). MIC data set contains 2126 positives and 1318 negatives.342

AMP data The AMP data consists of positive and negative data set. Positive examples are sequences from manually343

curated AMP databases. We combine experimentally validated peptides from dbAMP [38], AMP Scanner [8], and344

DRAMP [39] databases. Duplicate sequences are removed. Negative examples are assumed to be biologically inactive345

and are obtained manually using UniProt search filters, requiring subcellular location: cytoplasm, and excluding the346

following properties: antimicrobial, antibiotic, antiviral, antifungal, effector, excreted. To increase data set diversity,347
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negative sequences sharing ≥ 40% sequence identity are removed, and replaced with the representative sequences348

of the clusters using CD-HIT [40, 41]. The resulting set of representative sequences contains only sequence that349

are longer than 25 amino acids, thus negative sequences are randomly cropped to match the positive data set length350

distribution in order to avoid length bias. The positive and negative data sets are of equal size of 11,131 sequences351

each.352

UniProt data To extend the biological diversity in the training process we downloaded sequences of unknown353

antimicrobial properties of the desired length from UniProt database. This gave 225 244 additional sequences with no354

duplicates.355

4.2 AMP and MIC classifiers learning356

In order to predict the properties of generated peptides, we trained a pair of classifiers, that for a given peptide p,357

predict its probabilities of being antimicrobial and active. For the prediction of a given peptide being antimicrobial358

(AMP), we implemented and trained the model from AMP Scanner [8], using AMP data. We refer to this model359

as MAMP. For the prediction of peptide activity, we trained a model using MIC data, denoted MMIC, with a custom360

architecture. The model consists of six layers. The first layer is an one-hot encoded input in form of a sequence of361

amino acids. The second layer is an 128-dimensional embedding layer of each of the amino acids. Next, we use the362

LSTM layer of 64 units [42]. Downsampling is performed by 1-dimensional pooling with kernel size of 5 and stride363

of 5. Another LSTM layer of 100 units is used where only the last output is return. The final output is fully connected364

layer with a sigmoid activation.365

For a given peptide p, the MAMP returns the probability of p being antimicrobial, denoted PMAMP(p). The MMIC366

returns the probability of p being active, denoted PMMIC(p). From now on we assume that these probabilities are ob-367

tained only using MAMP and MMIC classifiers, and we refer to them jointly as Classifier. Both models are implemented368

in Keras [43].369

Cross-validation results indicate highly accurate classification results for both MAMP and MMIC (Supplementary370

Table S1).371
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4.3 HydrAMP model372

HydrAMP is an extended conditional VAE (cVAE) model. Its main generative part is a Decoder model that given a373

latent variable z ∈ Rlatent and a pair of conditions c = (cAMP,cMIC) produces a distribution over peptides Dec(z,c).374

We refer to the likelihood of a peptide p w.r.t. to this distribution as PDec(z,c)(p). The latent variable is assumed to375

follow the latent prior distribution Pz ∼N (0, I).376

The Decoder is trained so that the peptides sampled from Dec(z,c) follow a given pair of conditions c and re-377

semble valid peptides from the training dataset. As optimizing the Decoder directly is not feasible, we introduced an378

additional Encoder model trained to provide a variational approximation q(z|p) of the posterior distribution P(z|p).379

The variational posterior approximation for a peptide p is set to be a normal distribution N
(
µq(·|p),diag(σq(·|p))

)
,380

where µq(·|p) ∈ Rlatent and σq(·|p) ∈ Rlatent
+ . Both the Decoder and Encoder are modeled as neural networks. For the381

detailed architecture see Supplementary Material S3.382

The HydrAMP model is optimized using three objectives: reconstruction, analogue (see Supplementary Mate-383

rial S1.1), and unconstrained (see Supplementary Material S1.2). The reconstruction objective aims at teaching the384

Decoder how to generate valid peptide structures by reconstructing known peptides. The analogue and unconstrained385

objectives mimic the process of the analogue and unconstrained generation during training. Besides that, we also386

applied a two-fold regularization to the HydrAMP model: the Jacobian disentanglement regularization to encourage387

disentanglement between latent variable z and a pair of conditions c, and latent reconstruction regularization for better388

latent variable preservation properties.389

In the formulas below we use the following notation. Denote a constant c ∈ [0,1], p a peptide and PM(p) its

probability in a classifier model M, with M ∈ {MAMP,MMIC}. Let

HM(c, p) = log
(
PM(p)c(1−PM(p))1−c) , (1)

be the cross-entropy between the Bernoulli(c) and Bernoulli(PM(p)). We define

HΣ(c = (cAMP,cMIC), p) = Σcond∈{AMP,MIC}HMcond (ccond , p), (2)

where c = (cAMP,cMIC) is the pair of conditions, as the sum of the cross entropies for the two different conditions390

cAMP, cMIC and their probabilities PMMIC(p) and PMAMP(p), respectively.391
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4.3.1 Reconstruction objective392

The reconstruction objective forces the model to capture the structure of valid peptides collected from available393

databases. We achieve this by training the Decoder and Encoder maximizing the conditional evidence lower bound394

(ELBO) introduced in [44]. For each peptide p ∼ PX , we compute its pair of conditions cp = (PAMP(p),PMIC(p))395

using the Classifier. Next, we maximize a conditional ELBO given by:396

ELBOβ
rec = Ez∼q(z|p)

(
logPDec(z,cp) (p) + (3)

λ
class
rec Ep‘∼Dec(z,cp)HΣ (cp, p‘)

)
− (4)

β ·KL(q(z|p)‖Pz) , (5)

where (3) is the expected log likelihood of reconstruction of the initial peptide p, (4) is the expected log likelihood397

of recovering the initial peptide pair of conditions cp with parameter λ class
rec > 0 and (5) is a β -VAE regularization398

term [45] with parameter β > 0 decaying in the process of training. Parameters β and λ class
rec control the trade-off399

between reconstruction of the original peptide, satisfying the peptide condition and keeping the posterior approxima-400

tion q(z|p) close to the prior. The expectations w.r.t. q(z|p) are obtained using a reparametrization trick [46] and are401

approximated using a single sample from q(z|p).402

4.3.2 Jacobian disentanglement regularization403

For every generation process used by the HydrAMP model, a newly generated peptide should have properties404

provided by a pair of conditions c. To measure that, let us define an average condition reconstruction function of the405

Dec distribution as:406

ACRDec(z,c = (cAMP,cMIC)) = Ep∼Dec(z,cAMP) (PAMP(p),PMIC(p)) . (6)

ACRDec measures the expected likelihood of the peptides sampled from the distribution Dec modeled by the Decoder,407

for a given z and pair of conditions c, actually satisfying c. Ideally ACRDec(z,c) = c, which means that on average408

peptides sampled from Dec(z,c) have properties defined by the pair of conditions c. This means that in an ideal409

scenario the ACRDec is constant w.r.t. z and in case when ACRDec is differentiable w.r.t. to z, the following condition410
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holds:411

∂ACRDec

∂ z
≡ 0, (7)

where 0 is an all zero matrix. In that case z and c are disentangled w.r.t. to ACRDec, because any change of z does not412

affect the expected pair of conditions of newly generated candidates. In order to impose this property we introduce413

the following Jacobian disentanglement regularization function:414

JDRDec(z,c) =
2,latent

∑
i=1, j=1

Huber
(

∂ACRDec
i (z,c)

∂ z j

)
, (8)

where Huber : R→ R (sometimes also referred as a smooth L1) is given by415

Huber(x) = min(|x|,x2). (9)

We use the Huber function as it is less prone to be affected by outlier examples.416

Accordingly, we extended reconstruction objective with the following term:417

JDRrec = Ez∼q(z|p)JDRDec(z,cp), (10)

where p is a peptide being reconstructed and cp is its pair of conditions. We approximate this expectation with a single418

sample from q(z|p) using the reparametrization trick.419

Analogue and unconstrained objectives were also extended with the Jacobian disentanglement regularization term.420

See Supplementary Material S2.1 for the details.421

4.3.3 Latent reconstruction regularization422

In the cVAE framework, the Decoder plays a role similar to the inverse function of the Encoder. Indeed, the423

Decoder aims to reconstruct the peptide fed to the Encoder that is sampled from a posterior distribution generated424

by the Encoder. To further impose that relation, similarly to [28], we introduced an additional latent reconstruction425

regularization objective. Consider a peptide p and its posterior mean µq(z|p) given by the Encoder. Peptide p′ returned426

by the Decoder for a point sampled from that posterior can be given as input to the Encoder and will obtain its posterior427

mean µq(z|p′). The latent reconstruction regularization objective enforces the two posterior means to be similar. To428

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.478054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.478054
http://creativecommons.org/licenses/by-nc-nd/4.0/


this end, we minimize the following expectation for the reconstruction objective:429

LRRrec = Ez∼q(z|p)Ep′∼Dec(z,cp)

∥∥µq(·|p)−µq(·|p′)
∥∥2

2 , (11)

where p is a reconstructed peptide and cp is its pair of conditions. Using a reparametrization trick, we approximate430

this expectation with a single sample from q(z|p) and the expectation w.r.t. Dec is approximated using a Gumbel431

Softmax [32].432

When the expectation above is low, the Encoder preserves the latent code of the average peptide sampled from the433

Decoder. This property is essential especially for the analogue generation, as we assume the similarity between the434

analogue and original prototype because we sample both from precisely the single posterior distribution over latent435

codes. If the Encoder preserves the latent code of a generated analogue, then its similarity to prototype is granted for436

continuous Decoder models.437

Analogue and unconstrained objectives were also extended with the latent reconstruction regularization terms.438

See Supplementary Material S2.2 for the details.439

4.4 Basic and PepCVAE models440

We compared HydrAMP with two other models: Basic and PepCVAE [28]. We used our own implementation of the441

PepCVAE model, as its code was not made publicly available by the authors.442

Basic model corresponds to the standard cVAE model (see [44]), and is trained in the same manner as HydrAMP,443

but is optimized only for reconstruction objective and uses only the latent reconstruction regularization. PepCVAE444

model was trained to optimize the same objectives as Basic, but was additionally optimized for the unconstrained445

objective. Both PepCVAE and Basic models lack optimization of analogue objective and Jacobian disentanglement446

regularization, which are incorporated in HydrAMP.447

Since the Basic, PepCVAE and HydrAMP are increasingly complex, such a selection of models for comparison448

effectively implements an ablation study.449

4.4.1 Training procedure450

We trained all models (HydrAMP, Basic, and PepCVAE) using ADAM [47] optimizer. The batch size was equal451

to 384, and each batch consisted of 128 peptides from AMP, 128 from MIC data, and 128 from UniProt data. We452

trained every model for 40 epochs. Reconstruction and analogue objectives were optimized using all peptides in each453

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.27.478054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.27.478054
http://creativecommons.org/licenses/by-nc-nd/4.0/


batch. Additionally, in each iteration, the unconstrained objective was optimized using 128 samples from Pz. The454

Gumbel temperature used in Gumbel Softmax [32], t, was scheduled using exponential decay from 2.0 to 0.1 for 24455

epochs and then kept stable at 0.1. The β parameter was increased from 10−4 to 10−2 via exponential annealing.456

For the loss function, evaluation metrics and model selection details for training of HydrAMP, Basic and PepCVAE457

models see Supplementary Material S4.458

4.5 Post-training prior refinement459

Following successful results presented in [48], after the end of the training, we refined our Pz prior distribution to

better match an aggregated posterior:

Pagg
z = Ep∈X q(·|p), (12)

which is an average of all posterior distributions of peptides from dataset X . According to [49] this distribution is460

the latent prior distribution which maximizes likelihood of data from X when Encoder and Decoder models are fixed.461

However, this property makes it prone to over-fitting. Because of that we decided to use less complicated distribution462

to approximate the aggregated posterior. This new distribution P̂agg
z is set to be a normal distribution P̂agg

z =N
(
µ̂, Σ̂

)
463

optimized to maximize likelihood of the set of aggregated variational posterior means
{

µq(·|p)|p ∈ X
}

. The distribu-464

tion parameters µ̂, Σ̂ are selected using a classical PCA algorithm [50].465

4.6 Generation modes of peptides466

After the model is trained we use it in order to generate novel peptides. There are the following modes of this process:467

4.6.1 Unconstrained generation468

The following algorithm is used for generation of active and antimicrobial peptides in an unconstrained manner469

where z is sampled from a refined prior P̂agg
z :470

The algorithm above refers to the positive mode, while in the negative mode we sample peptides with conditions471

(cAMP = 0,cMIC = 0). We skip peptides with PMAMP(p)> 0.2 and select the peptide with the lowest PMMIC(p).472

4.6.2 Analogue generation473

The following algorithm was used for generation of active peptides similar to prototype peptide pproto. In this474
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Data: A number of tries for generation nb of tries.
Result: A new active and anti-microbial peptide sampled from P̂agg

z .
z← sample(P̂agg

z );
best candidate← None;
best candidate mic← 0;
for i← range(nb of tries) do

new candidate← sample(Dec(z,(cAMP = 1,cMIC = 1)));
if PMAMP(new candidate)> 0.8 and PMMIC(new candidate)> best candidate mic then

best candidate← new candidate;
best candidate mic← PMMIC(new candidate);

end
end
return best candidate;

Algorithm 1: Unconstrained generation in a positive mode

algorithm we introduce a creativity parameter τ ∈ (0,+∞). Prototypes are sampled from a modified variational475

posterior N (µq(·|pproto),τ
2 ·σq(·|pproto)) with a covariance matrix rescaled by a factor of τ2. This means that the closer476

τ is to 0 - the peptide sampled is similar to the one assigned to the posterior mode. On the other hand - for τ > 1 the477

sampling probability distribution has the same mean but greater variance than in case of posterior approximation what478

encourages generating peptides differing from pproto to a greater degree.479

Data: A prototype peptide pproto, creativity parameter τ ∈ (0,+∞), number of tries for generation
nb of tries.

Result: A new active and anti-microbial peptide sampled from similar to peptide pproto.
µq(·|pproto),σq(·|pproto)← Enc(pproto);
best candidate← None;
best candidate mic← 0;
for i in range(nb of tries) do

zproto ∼ N (µq(·|pproto),τ
2 ·σq(·|pproto));

new candidate∼ Dec(zproto,(cAMP = 1,cMIC = 1));
if PMAMP(new candidate)≥ 0.8 and PMMIC(new candidate)> best candidate mic then

best candidate← new candidate;
best candidate mic← PMMIC(new candidate);

end
end
return best candidate;

Algorithm 2: Analogue generation for a positive mode

An analogue meets the improvement criteria when it increased PMAMP(p) and PMMIC(p) with respect to the input480

peptide. An analogue meets the discovery criteria with PMAMP(p)≥ 0.8 and PMMIC(p)> 0.5.481
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4.7 Biological filtering criteria482

483

In general, the biological criteria serve as approximation of expert selection that takes into account peptide synthe-484

sizability. First, we filter out all of the known AMPs we collected in our AMP data set. Then, we exclude sequences485

in which in a window of 5 amino acids there were more than 3 positively charged amino acids (K, R). Finally, we486

remove sequences in which occur three hydrophobic amino acids in a row. We consider as hydrophobic following487

amino acids based on Eisenberg scale [51]: F, I, L, V, W, M, A.488

In case of selection of peptides for experimental validation we use more stringent criteria. We remove sequences489

of known AMPs, and sequences with accumulation of positive charge, as described above. Additionally, we remove490

any sequence in which three amino acids in a row are the same. We also exclude sequences containing cysteines (C).491

4.8 Computer simulations of peptide-membrane systems492

Given the amino acids sequence of interest, a peptide starting structure was modelled as a regular α-helix using493

the Discovery Studio Visualizer 2021 program (Dassault Systèmes, BIOVIA) [52]. It was then submitted to the494

CHARMM-GUI service [53] for peptide-membrane system construction. Standard protonation states were assigned495

to titratable peptide residues together with charged N-terminus and amidated C-terminus. The peptide was placed496

such that its centre of mass was 3.5 nm from the midplane of a rectangular lipid bilayer patch consisting of 120 1-497

palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 60 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-498

rac-(1-glycerol)) (POPG) molecules, and its helical axis was oriented parallel to the membrane. A random peptide499

rotation angle along the helical axis was assigned and two additional transformations by 120 and 240 degrees, respec-500

tively, were generated, resulting in three independent starting structures, each with different peptide side facing the501

membrane. A rectangular simulation box providing 1.5 nm of solvent margins on both membrane sides was filled502

with water molecules together with K+ and Cl− ions, whose number was chosen to achieve 0.15 mol/l concentration503

and to neutralise the total system charge. The fully atomistic CHARMM36 force field [54] was used for protein and504

ions, and the rigid TIP3P model [55] was used for water. All simulations were carried out using the Gromacs pro-505

gram [56] with the default simulation set up implemented in CHARMM-GUI for the chosen force field combination506

and periodic boundary conditions [57]. The protocol included potential energy minimisation, six rounds of equili-507

bration with step-wise removal of positional restraints for peptide and lipids, and production runs. The latter were508
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conducted at ambient pressure and temperature of 310 K for 500 ns. Three independent simulations with individual509

starting structures were performed for each peptide-membrane system. The stability of peptides α-helical structure510

was assessed by the DSSP program [58].511

Data and code availability512

The HydrAMP source code, data used for training, and the scripts for generation of the results can be found at513

https://github.com/szczurek-lab/hydramp. Free web-service is available with all the functionalities514

can be accessed at https://hydramp.mimuw.edu.pl/.515
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[52] Dassault Systèmes BIOVIA. “Discovery Studio, version 21.1. 0”. In: San Diego: Dassault Systèmes (2021).627
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Sequence PMAMP(p) PMMIC(p)
MIC E. coli

ATCC 43927 [µg/mL]
MIC E. coli

ATCC 25922 [µg/mL]
GIGKFLKKAKKFGKAFVKILKK-NH2 (Pexiganan) 0.99 0.99 4 4
GIGKFLKFALKKGLGLVLKFKL-NH2 0.99 0.99 16 16
GVGKKLWFALKKPLGLVKFFKLL-NH2* (Hydraganan) 0.99 0.99 2 2
GVAKKLWIAAKKPAGAGSKFKLL-NH2 0.99 0.87 512 >512
GELKKLWQAGKLSEEDGGAFKAG-NH2* 0.07 <0.01 >512 >512
FLPLIGRVLSGIL-NH2 (Temporin-A) 0.99 <0.01 256 256
FLPLIGRVFSGIL-NH2 0.99 <0.01 512 512
FLPLIGRVFSGIK-NH2 0.99 0.97 >512 >512
FLPLIGRVLSGIA-NH2 0.99 0.01 512 512
FLPLIGRVKSGIK-NH2 0.99 0.99 >512 >512
FLPIKNRYASAAE-NH2 0.08 <0.01 >512 >512

Table 1 Pexiganan and Temporin-A analogues obtained in the analogue generation process. Each row corresponds to a single
peptide. PMAMP(p) is a probability of a given peptide being an AMP. PMMIC(p) is a probability of a given peptide being active.
Minimal Inhibitory Concentration (MIC) values (µg/mL) were measured against reference strains of microorganisms (E. coli
ATCC 43927, E. coli ATC 25922). Peptides in bold were experimentally proven to show activity in accordance with Classifier
prediction. Peptide whose sequences are marked with an asterisk were subjected to molecular dynamics simulations.
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Fig. 1 HydrAMP architecture and data traversion overview.
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Fig. 1 Continued caption. a Compositional structure of the training data set. b Data flow and optimization setup during
training. Colors indicate training modes and show the path each peptide traverses within a mode. Line styling indicates the
objective terms. Shaded areas indicate components with frozen weights. c Data flow during generation. In the final step
molecular dynamics simulation and wet-lab validation are performed. HydrAMP functionality is available via a web service
https://hydramp.mimuw.edu.pl/.
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Fig. 2 Generative performance of HydrAMP (red), in comparison to PepCVAE (dark blue), and Basic (light blue).
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Fig. 2 Continued caption. a Fraction (y-axis) and number (over each bar) of 1319 positive (AMP and highly active) peptides
from the test set (y-axis), that produced analogues that met discovery or improvement criteria (x-axis) in the analogue
generation. b As in a, but for 1253 negative peptides from the test set. c The distribution of the probability of being AMP for
1253 negative prototypes and their analogues that met the discovery criteria, compared to the distribution for the test data
(yellow). d The distribution of probabilities of not being highly active (1−PMMIC) for 1253 negative prototypes and their
analogues that met the discovery criteria, compared to the distribution for the test data (violet). e, f Left: The relation between
the creativity parameter temperature (x-axis) and the log number of generated unique analogues that met the discovery criteria,
out of 10k attempts (y-axis; the actual number of analogues shown above each bar). Right: the distribution of the Levenshtein
distances between generated analogues and the prototype sequence of Pexiganan (e) and CAMEL (f) AMPs. g Probability of
being antimicrobial (PMAMP) for 50,000 peptides generated in unconstrained mode, for both positive and negative modes
(x-axis). h The distribution of probabilities of not being highly active (1−PMMIC ) for 50,000 peptides generated in
unconstrained mode for both positive and negative modes. In panels c, d, g, h, the white dots mark the median of each
distribution. i Fraction of 50,000 peptides generated in the unconstrained positive mode classified as positives (first bar plot),
fraction of peptides have hydrophobic moment > 0.4 (second bar plot), fraction of peptides with charge > 4 (third bar plot) and
fraction of peptides that satisfy all previous criteria: classified as positive, high hydrophobic moment, and high charge (fourth
bar plot). The number over each bar: the actual number of peptides with the condition.
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Fig. 3 Physicochemical properties of analogues generated by HydrAMP and compared methods in analogue generation
mode for non-AMP or AMP templates in comparison with real and random data. Boxplots of properties (a, b, c
Isoelectric point, d, e, f Charge, g, h, i Hydrophobic moment, j, k, l Aromaticity) of randomly generated peptides (dark gray),
peptides sampled from UniProt (light gray), true negatives (green), and true positives (yellow), in comparison with AMP
analogues generated from negatives (b, e, h, k), and positives (c, f, i, l) improved by different models: HydrAMP with various
creativity parameter temperature values: τ = 1.0 (light red), τ = 2.0 (red), τ = 5.0 (dark red), PepCVAE (dark blue), Basic
(light blue). Significance levels are denoted as: ns - P≥ 0.05; * - P≤ 0.05; ** - P≤ 0.01; *** - P≤ 0.001.
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Fig. 4 Summary of atomistic molecular dynamics simulations of active antimicrobial peptide Hydraganan and
experimentally verified non-AMP peptide within a model bacterial lipid membrane. a, b, late simulation snapshots of
active (red) and inactive (beige) peptides, respectively, in the membrane (blue); a top view on membrane surface; water
molecules not depicted for clarity; c, a scheme illustrating the evaluation of the S parameter describing the level of peptide burial
within the membrane; z – membrane normal axis; d, upper plot: an average (lines) and standard deviation (shaded areas) of
alpha helix fraction within peptide residues; lower plot: the evolution of S parameter for each of three initial peptide placements.
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