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ABSTRACT

Because bacterial strains can exhibit different biological properties, strain-level composition analysis plays a vital role in
understanding the functions and dynamics of microbial communities. Metagenomic sequencing has become the major means
for probing the microbial composition in host-associated or environmental samples. Despite a plethora of composition analysis
tools, they are not optimized to address the challenges in strain-level analysis: a reference database with highly similar
reference strain genomes and the presence of multiple strains under one species in a sample. In this work, we present a new
strain-level composition analysis tool named StrainScan that employs a novel tree-based k -mer indexing structure to strike a
balance between the strain identification accuracy and the computational complexity. We rigorously tested StrainScan on many
simulated and real sequencing data and benchmarked StrainScan with popular strain-level analysis tools including Krakenuniq,
StrainSeeker, Pathoscope2, Sigma, StrainGE, and Strainest. The results show that StrainScan has higher accuracy and
resolution than the the state-of-the-art tools on strain-level composition analysis. It improves the F1-score by 20% in identifying
multiple strains with at least 99.89% average nucleotide identity. StrainScan takes short reads and a set of reference strains as
input and its source codes are freely available at https://github.com/liaoherui/StrainScan.

Introduction
There is accumulating evidence showing that strains within a species can have different metabolic and functional versatility due
to the genomic variations1–3. Different strains of the same bacterium typically share 80-90% of their genes. Unique genes
or SNPs to a strain may lead to new enzymatic functions, antibiotic resistance, virulence, different infecting viruses, etc. For
example, there are at least thousands of strains identified for E. coli, with some of them containing virulence factors while others
being commensal. The 2011 E. coli outbreak in Germany is caused by a strain O104:H4 that acquired a Shiga toxin-encoding
prophage and other virulence factors4. As different strains can have different biological properties, pinpointing the strains is not
only important for high-resolution analysis of the composition, but also important for downstream applications such as precise
diagnosis and treatment.

Metagenomic sequencing data, which contain sequenced genetic materials from a host-associated or environmental sample,
become a major source to study strain-level compositions in the underlying samples. Strain-level analyses of bacteria have been
applied to a variety of microbiomes in order to achieve a more precise understanding of the relationship between the genotype
and phenotype. For example, it showed that many prevalent bacterial species have stain-level composition associated with a
geographic location in 198 marine metagenomes5. A closely related study showed that dominant E. coli strains change over
time in the gut microbiome of a Crohn’s disease patient6. P. copri, another very common bacterium in the human gut, has
been proven to have a tight link between its strains and the host’s geographical location and dietary habits7, 8. Some strains
of the potential probiotic A. muciniphila are found to have anti-inflammatory properties, which could have beneficial effects
on obesity and diabetes9. In addition, there are differences in the distribution of strains in different parts of the human body.
For example, a past study10 has found that strains of C. acnes and S. epidermidis collected from different sites of the body are
heterogeneous and multiphyletic.

Despite the importance of strain-level analysis, it has been difficult to conduct the taxonomic analysis below the species
level. One challenge comes from the fact that multiple strains can exist simultaneously in one sample. For example, there
are reports showing that multiple strains of C. acnes, an important component in the human skin microbiome, often form a
complex mixture11. Some of these strains may share high sequence similarities (>99% sequence similarity). Commonly used
metagenomic binning and assembly tools are not designed to distinguish different strains. Although there are strain-analysis
tools, they may either require multiple samples from the same population12, only output the dominant strain13–16, or pose
a restriction on the similarity of between the strains17. The second challenge that immediately follows is the resolution of
strain-level identification. The resolution here is reflected by the size of the reference database, with a larger number of
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reference strains indicating a higher resolution18. A higher resolution is usually preferred because it gives us a more complete
picture of the true strain composition of the sample. Tools including StrainGE19 and Strainest20, are designed to untangle strain
mixtures, but are limited to reporting a representative strain in a sampled strain database, and are unable to distinguish distinct
strains that are close to the same representative strain. Two k-mer-based tools, Krakenuniq21 and StrainSeeker22, also have a
very low resolution in strain-level identification when strains in the database share high similarities. The third challenge is the
identification of low-abundance strains. For example, the de novo strain construction tools23, 24, which aim to reconstruct strains
by using assembly-based strategies, usually require a high coverage of strains to achieve an accurate strain reconstruction.
Besides, many strain-analysis tools25–27 also require strain coverage greater than 10X to return accurate identification. Thus, it
remains a challenge to identify strains with low coverage for these tools. The last challenge is the strain identification time.
According to the recently published studies18, 28, most alignment-based strain-level identification tools including Sigma29,
Pathoscope230 can be computationally expensive when the database is large. While the large reference database can increase
coverage of intra-species diversity, it also requires more computational resources.

Thus, there is a pressing need to provide more sensitive, accurate, and efficient strain-level analysis for metagenomic
data. In this work, we introduce StrainScan, an open-source tool that can accurately detect known strains from sequencing
data, including metagenomic data or whole-genome sequencing data. In order to strike a balance between the resolution and
computational complexity, we developed a novel hierarchical k-mer indexing structure for a large number of strains, which
usually demonstrate heterogeneous similarity distribution. In the first step, we cluster highly similar strains into clusters. Then
we design a novel Cluster Search Tree (CST), which is a tree-based indexing structure for cluster search. CST is a binary
tree and each node contains sufficient k-mers representing strains in its rooted sub-tree. By carefully balancing the number of
k-mers in each node, we optimize the CST to prevent false positive strain identification for low abundance strains. In the second
step, we use strain-specific k-mers and k-mers that represent SNVs and structural variations to determine which strains are
likely to present. The final output of StrainScan includes the identified strains and their abundance.

By benchmarking StrainScan with other available tools on multiple simulated and real sequencing datasets, we demonstrate
that StrainScan can output strain-level composition with higher accuracy than the state-of-the-art tool. In particular, when
compared to high-accuracy tools such as Strainest, StrainScan improved the F1-score by more than 20% in identifying multiple
strains with at least 99.89% average nucleotide identity and increased the speed by at least one magnitude. StrainScan is a
targeted strain composition analysis tool, requiring the users to provide reference genomes for bacteria of interest. It can be
applied to any bacteria because it supports the construction of the indexing structure for any given set of reference genomes.

Results
Because StrainScan focuses on identifying known strains, we test the performance of StrainScan on different bacteria that tend
to pose computational challenges for strain-level analysis. All chosen bacteria have at least 100 sequenced strains and they
are listed in Figure 1A. Some of them have a large number of known strains such as E. coli and S. epidermidis. Some have
strains with extremely high sequence similarity, such as M. tuberculosis. In addition, we choose bacteria that usually inhabit
different ecosystems such as the human gut and human skin. We carried out multiple experiments to evaluate StrainScan. First,
we tested the ability of StrainScan in identifying one strain and multiple co-existing strains in simulated data. We generated
different datasets by configuring the parameters such as strain similarity and strain sequencing depth, which helps us compare
the performance of different tools in difficult scenarios. Second, we tested StrainScan in three mock community datasets, which
allow us to evaluate different tools in real sequencing data with known strain composition. Third, we tested StrainScan in 57
real sequencing datasets. Because there is usually no ground truth for the stain composition in the real sequencing data, we
choose the datasets that had been analyzed by other strain identification tools16, 20, 28, 30. By comparing the analysis results, we
are able to draw some conclusions about different tools’ performance. In these experiments, we used the F1 score, precision,
recall, and Jensen–Shannon divergence as the evaluation metrics, which were defined in Methods. We benchmarked StrainScan
against popular reference-based strain-level analysis tools including Krakenuniq21, StrainSeeker22, Pathoscope230, Sigma29,
StrainGE19 and Strainest20.

The output of all the tools is a list of strains ranked by confidence. Thus, for experiments on the simulated data that contains
x strains, we will keep only the top x outputs of a tool when calculating related metrics. The false positive (FP) cases can be
contributed by different types of outputs because of the usage or output formats of different tools. We carefully define three FP
cases: 1) The tool outputs a strain that is not in the ground truth (i.e. not present in the sample, see Case2 in Supplementary
Figure S6). 2) The tool outputs multiple strains with the same score with one of them being correct, such as the case of
StrainSeeker (see Case3 in Supplementary Figure S6). In this case, only one strain is regarded as TP and others are FPs. 3)
Tools such as StrainGE and Strainest group reference genomes into clusters and select one representative strain to represent all
strains in the same cluster. As a result, they do not intend to further distinguish strains in the same cluster. We examine whether
the representative strain is in the ground truth. If not, it is regarded as FP. (see Case5 in Supplementary Figure S6). However,
if the cluster of identified representative strain doesn’t contain the ground truth, then it will be treated as case 1). Below we
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present the experimental results.

Reference database construction
For all the species tested in this work, we created the reference strain genome database as comprehensively as possible. Thus,
we downloaded all complete and draft genomes from the NCBI RefSeq database for the tested bacteria. But there are 25,349 E.
coli genomes, requiring >1TB memory. Due to the constrain of our hardware resources, we only used the complete E. coli
genomes from RefSeq. Similar to E. coli, our hardware resources prevent us from using all draft and complete genomes for M.
tuberculosis. In addition, some available genomes for M. tuberculosis only differ by < 10 positions28. These near-identical
strains will be clustered in our pre-processing step. Thus we computed pairwise Jaccard similarities of all M. tuberculosis
strains using Dashing31 and performed complete-linkage clustering using a k-mer Jaccard similarity threshold of 99%. Then,
we selected the strain with the highest average similarity to all other genomes in that cluster as the representative strain. Finally,
we sampled 792 representative genomes out of 6,752 genomes.

The final numbers of the strains and their other properties were recorded in Figure 1A. We also show the number of clusters
(Figure 1A) and the size distribution of the clusters (Figure 1B) used in the CST tree. The result shows the intra-species
similarity of different bacteria have different distributions. Many bacteria have a large number of small clusters containing just
1 or 2 strains, indicating that their similarity is not very high. On the other hand, some bacteria have big clusters with highly
similar strains. For example, M. tuberculosis has one cluster containing 768 strains. According to the algorithm described in
Methods, StrainScan first locates the cluster using the CST tree and then identify the strain inside the cluster. Our experimental
results show that the cluster search using CST can achieve 100% accuracy for all tested bacteria. Once pinpointing clusters,
StrainScan will search strains in the identified clusters and predict their abundance using the elastic net model. For a fair
comparison, the strains used to construct the StrainScan’s reference databases were also used to construct databases for all other
tools. But StrainGE and Strainest will further cluster the input strain genomes and only keep one representative strain selected
from each cluster in their final databases. As a result, there are significantly few strains left in their database (Supplementary
Figure S2 and S3), which leads to a decrease in the resolution.

Figure 1. A. The summary statistics of the reference genomes for 6 representative bacterial species. “Average Jaccard
similarity” is obtained by calculating the average of k-mer Jaccard similarity of all strains using Dashing31. B. The histogram
of cluster sizes for clusters in the StrainScan’s reference databases.
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Detecting a reference strain from simulated reads
The purpose of this experiment is to test StrainScan and other tools on identifying the correct strain in a sample. The challenge
is to distinguish the true strain from other highly similar peers. As Sigma and Pathoscope2 are computationally expensive, we
were not able to construct their databases for E. coli, S. epidermidis, and M. tuberculosis.

For each bacterium, we randomly picked a reference strain and used its simulated short reads as input to all tools. In order
to avoid any data-related bias, we repeated the experiment 60 times, with a strain randomly picked each time. Thus, there were
360 datasets in total. For each dataset, we simulated Illumina reads using ART32 with the following parameters: -p -l 250 -f 10
-m 600 -s 150. StrainScan and the other six programs were used to identify strains from these simulated reads.

Figure 2. (A). The F1 score, recall, precision of 7 tools on “single-strain” simulated datasets. There are 60 sets of simulated
reads for each bacterial species. (B). The histogram of the identical outputs of three tools. X-axis means the number of output
strains with the same score (StrainSeeker) or in the same cluster (Strainest, StrainGE). Y-axis means the number of such
experiments. For example, “50” on the X-axis means that the tool outputs 50 strains with the same score and one of them is
correct. (C). Running time comparison of 7 tested tools. Sigma and Pathoscope2 are not shown on some datasets because they
are too computationally expensive to construct databases for the corresponding bacteria or identify strains from simulated reads.

The F1 score, recall, and precision of each program were shown in Figure 2A. Of the 60 strains, some of them have more
than 99.5% k-mer-based Jaccard similarity with at least one other reference strain genome. As a result, we noticed low F1
scores in several tools. StrainScan achieves perfect F1 scores on all datasets. While Pathscope2 and Sigma also achieved very
high F1 scores, they were at least 10 times slower than StrainScan (Figure 2C). In addition, there are some other limitations
with these two tools. As mentioned before, Sigma and Pathoscope2 were not able to construct custom databases for large-scale
genomes, which made their usage limited in real scenarios. StrainGE and Strainest, only returned the representative strains
from a sampled database and therefore have a lower precision than other tools. The major problem of StrainSeeker is the
multiple hits with identical scores, which also leads to low precision. Intuitively, if a tool outputs multiple strains with the
same score, it is difficult for users to know the actual strain present in the sample. Thus, we further investigated the number of
strains falsely identified by StrainSeeker, StrainGE, and Strainest (Figure 2B). The result shows that all these three tools falsely
identified more than 50 strains in some cases, which means these tools can only inform users that the correct strain is in these
50 strains but not exactly which strain it is. Furthermore, there are still a large number of SNVs between the actual strains and
the representative strains in the database of StrainGE and Strainest, which may imply different biological properties of these
strains (see Supplementary Figure S4). In addition, StrainSeeker and StrainGE are not able to identify strains with high k-mer
Jaccard similarities such as those of M. tuberculosis. Krakenuniq achieves a higher F1 score for the datasets that many strains
have unique k-mers. However, high similarity strains lead to low recall for Krakenuniq on some bacteria. As shown in Figure
2C, StrainScan is efficient in all tested bacteria except M. tuberculosis. Due to high k-mer-based Jaccard similarities across
strains of M. tuberculosis, StrainScan assigned most of the strains to one big cluster with a significant number of k-mers (Figure
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1B), and thus StrainScan took more time to identify them. Nevertheless, StrainScan still has the best performance in terms
of the identification of M. tuberculosis strains. All the experiments were tested on an HPCC CentOS 6.8 node with 2.4Ghz
14-core Intel Xeon E5-2680v4 CPUs and 128 GB memory. We used 8 threads for all tools. In summary, StrainScan is able to
achieve higher precision without sacrificing resolution, even when the true strain has peers of high sequence similarity.

Detecting co-existing strains from simulated data
It has been shown that the human-associated microbiota is often a complex mixture of closely related strains of the same
species11. To quantitatively compare the performance of Krakenuniq, StrainSeeker, StrainGE, Strainest, and StrainScan on
identifying multiple strains of the same species, we generated simulated datasets containing 2, 3, and 5 randomly selected
strains from six bacterial species. Because Sigma and Pathoscope2 took a lengthy time to process these datasets, they were not
included in this experiment.

To investigate how the similarities between the strains affect the tool’s performance, we used two strategies in the selection
of multiple strains. During the clustering step of StrainScan, strains with k-mer-based Jaccard similarity greater than or equal
to 95% (corresponding to an approximate ANI of 99.89%) are grouped to the same cluster. Therefore, it is more difficult
to identify and distinguish the co-existing strains that are in the same cluster than those from different clusters. To consider
different levels of difficulty, our first strategy randomly picked strains from different clusters while the second strategy selected
different strains from the same cluster. For each strategy, we randomly selected 2, 3, and 5 strains (3 groups) and simulated the
short reads using different coverage profiles: 100X and 10X for 2 strains, 100X, 50X, and 10X for 3 strains, and 100X, 70X,
50X, 20X, and 10X for 5 strains. Other read simulation parameters are the same as the “single-strain” experiment. Then we
repeated the experiment 10 times by choosing another group of strains. Ultimately, for each bacterial species, we generated 30
sets of data containing different numbers of strains using the first and the second strategies, for a total of 60 sets of data. So
there were a total of 360 (60x6) simulated datasets for the six bacterial species.

Figure 3. (A). The F1 score, recall, precision of 5 tools on “multiple-strain” simulated datasets. There are 60 sets of simulated
reads containing 2, 3, and 5 strains with different similarities for each bacterial species. Note that StrainSeeker is not able to
identify strains of M. tuberculosis and therefore the related scores are 0. (B). The histogram of the identical outputs of three
tools. X-axis means the number of output strains with the same score (StrainSeeker) or in the same cluster (Strainest,
StrainGE). Y-axis means the number of such experiments. Y-axis means the number of such experiments. For example, “50”
on the X-axis means that the tool outputs 50 strains with the same score and one of them is correct. (C). Running time
comparison of 5 tested tools.

In order to compare the performance of different tools, we calculated the recall, precision, and F1 score. The performance
comparison is shown in Figure 3A. StrainScan achieves near-perfect F1 scores on all tested datasets. Though StrainGE and
Strainest have close recall to StrainScan in some bacterial species, their precision is low. Besides, Strainest relies on alignment,
and therefore the identification time would increase quickly with the data size and data complexity (Figure 3C). For the
two faster tools, Krakenuniq and StrainSeeker, neither performed very well. Among them, Krakenuniq performed better in
identifying strains from different clusters than in identifying strains from the same cluster, which was in line with its method.
StrainSeeker did not perform well in both cases and had worse performance in the datasets with higher complexity, indicating
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that it was unsuitable for identifying data with multiple strains. Overall, compared to other tested tools, StrainScan achieves
more than 20% improvement in F1 score for datasets containing strains from the same cluster and has the highest F1 score
in all tested datasets. Same as the “single-strain” experiment, we also investigated the number of strains falsely identified
by StrainSeeker, StrainGE, and Strainest (Figure 3B). As shown in Figure 3B, there are more false positive hits in the right
panel compared to the left panel, which suggests that the high similarity between strains leads to more false positive results
for these tools. In addition, the high similarity also increases the number of strains that cannot be further distinguished (e.g.
same score) in the experiment. For example, StrainGE and Strainest falsely identified more than 100 strains for E. coli strains
from the same cluster but only falsely identified less than 15 strains for those from different clusters. Furthermore, there are
a large number of SNVs between the actual strains and the representative strains in the databases of StrainGE and Strainest
(see Supplementary Figure S5). Meanwhile, StrainScan has a more competitive speed compared to StrainGE and Strainest
(Figure 3C). However, as mentioned in the last section, due to the high similarity between strains of M. tuberculosis, StrainScan
sacrifices the computational efficiency to distinguish the strains in the same big cluster and thus took a long time to process
datasets of M. tuberculosis. In conclusion, these results demonstrate that StrainScan performs better with complex samples than
other tools, returning more accurate results even when there are a large number of similar strains in the sample with different
sequencing depths.

Relative abundance computation

Figure 4. The Jensen-Shannon Divergence (JSD) of 5 tools between the ground truth and predicted relative abundance. “Diff”
refers to strains from different clusters with k-mer Jaccard similarity < 95%, and “Similar” refers to strains from the same
cluster with k-mer Jaccard similarity ≥ 95%. The red line in the figure refers to 0.05 of Jensen–Shannon divergence (JSD). The
small windows in some of the plots show the JSD distribution for StrainGE, Strainest and StrainScan on a much smaller scale.

In order to measure the accuracy of the predicted strain profiles in synthetic data sets, we computed the Jensen–Shannon
divergence (JSD) between the actual and the inferred frequencies. In case the dimension of predicted and true relative abundance
may be different, we add zeros to the one with a lower dimension to calculate JSD. The result is shown in Figure 4. Figure 4
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shows that in all cases the strain distribution reconstructed by StrainScan had high precision, with a median of Jensen–Shannon
divergence (JSD) < 0.05. Although StrainGE and Strainest also had a good performance in most cases, they had low resolution
and only returned one representative strain for the “Similar” datasets, which actually contained multiple strains. As a result,
these two tools had worse performance in the “Similar” datasets, with a median of Jensen–Shannon divergence (JSD) > 0.05.
For StrainSeeker and Krakenuniq, the JSD was bigger than 0.1 in most cases, indicating that these tools cannot accurately
quantify the composition of strains. With increasing strain numbers and similarity, the median of JSD values of most tested
tools increases while StrainScan’s JSD doesn’t fluctuate much in all cases. These results show that StrainScan can better
quantify the composition of complex samples than other tools, even for samples containing highly similar strains.

Evaluation of StrainScan on the HMP mock data and E. coli mock community
The HMP mock data
In this experiment, we tested StrainScan on the two communities from the Human Microbiome Project33. They contain 21
known organisms with even (SRR172902) or staggered composition (SRR172903). Out of the 21 organisms, 3 bacteria (E.
coli, C. acnes, and S. epidermidis) represent hard cases for strain-level analysis and we have established reference indexing
structures. Thus, we tested StrainScan on strain-level analysis of the three bacteria. For the three bacteria, each one has only 1
strain in these two datasets. This test was especially challenging, due to the low abundance of some of these species in these
samples. For comparison, we also used Krakenuniq, StrainSeeker, StrainGE, and Strainest to identify the strains of these
bacterial species in these two datasets. The results of these 5 tools are shown in Table 1.

Samples Tools Species Predicted Relative Mash distance Running
strains abundance to the truth time (s)

SRR172902
(Even)

Krakenuniq
C. acnes GCF_003384685 0.06 0.0165552 28.89
S. epidermidis GCF_001068615 0.20 0.0165552 34.17
E. coli GCF_006364695 0.15 0.0165552 46.09

StrainSeeker
C. acnes GCF_000008345 1 0 11.42
S. epidermidis GCF_900458515 (#) 1 0.0002398 (3, 0.00027) 14.21
E. coli GCF_000005845 (#) 1 0.0000238 (119, 0.00045) 13.71

StrainGE
C. acnes GCF_000008345 1 0 146.33
S. epidermidis GCF_900458515 1 0.0002398 192.81
E. coli GCF_001308125 1 0.0000476 429.02

Strainest
C. acnes GCF_005937545 1 0.0002883 743.95
S. epidermidis GCF_000751035 0.72 0.0068392 57.75
E. coli NA NA NA 5307.61

StrainScan
C. acnes GCF_000008345 1 0 22.61
S. epidermidis GCF_900458515 0.56 0.0002398 36.94
E. coli GCF_002953895 1 0.0000476 114.61

SRR172903
(Staggered)

Krakenuniq
C. acnes GCF_003384685 0.16 0.0165552 22.79
S. epidermidis GCF_001068615 0.97 0.0165552 17.64
E. coli GCF_006364695 0.61 0.0165552 38.76

StrainSeeker
C. acnes GCF_000008345 1 0 12.45
S. epidermidis GCF_900458515 (#) 1 0.0002398 (3, 0.00027) 18.31
E. coli GCF_000005845 (#) 1 0.0000238 (119, 0.00045) 12.43

StrainGE
C. acnes GCF_000008345 1 0 175.23
S. epidermidis GCF_900458515 1 0.0002398 232.56
E. coli GCF_001308125 1 0.0000476 459.44

Strainest
C. acnes NA NA NA 239.08
S. epidermidis GCF_000751035 0.96 0.0068392 152.02
E. coli GCF_000750555 0.96 0.0000238 9414.24

StrainScan
C. acnes GCF_000008345 1 0 20.49
S. epidermidis GCF_900458515 0.57 0.0002398 59.26
E. coli GCF_002953895 1 0.0000476 117.49

Table 1. Analysis of two mock communities from the HMP project. Each bacteria has only one strain in the dataset, thus the
relative abundance should be 1.0. For StrainSeeker, we took the strain with the smallest Mash distance to the truth as the
predicted dominant strain. “(#)” means there are multiple hits with identical scores in the output. “NA” in the table indicates
missing values. The character in bold means the Mash distance of predicted dominant strain to the truth is < 0.05%. For
StrainSeeker, the two numbers in parentheses represent the number of multiple hits and the average mash distance between all
hits and the ground truth, respectively.

For all tested species, StrainScan correctly identified the presence of one dominant strain that is highly similar (Mash
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distance to the truth < 0.05%) to the bona fide strain. Besides StrainScan, StrainSeeker and StrainGE also returned strains that
are highly similar to the ground truth. However, the output of StrainSeeker often contains multiple hits with identical scores,
making accurate evaluations difficult. For example, it returns 119 E. coli strains in two tested datasets, which makes it hard for
users to know the actual strain present in these samples. In Table 1, we take the strain with the smallest Mash distance to the
truth as the predicted dominant strain by StrainSeeker. StrainGE also returns strains with a small Mash distance to the ground
truth, but these strains belong to clusters containing many other strains, which also makes it hard to know the actual strains
present in the sample. Of the two remaining tools, Strainest was unable to identify low-abundance strains and it took a long
time to run, while Krakenuniq returned results that differed significantly from the ground truth.

The E. coli mock community with multiple strains
To evaluate each tool’s performance on a real-world sample with a known multi-strain composition, we downloaded a mock
community sequencing dataset (SRR13355226), which contains a large number of reads from the host (i.e. human) as well as
four different E. coli strains. All the reads are used as input to all tools. StrainScan was the only tool that identified four strains
correctly, with no false positive identifications (Figure 5). While StrainGE and Strainest correctly identified the same four
strains, they returned representative strains that are not the ground truth. Furthermore, StrainGE identified a cluster containing
205 strains and Strainest identified strains that are not present in the mixture. The remaining two tools did not correctly identify
all four strains, among which StrainSeeker’s output contained multiple hits with identical scores, while Krakenuniq reported
many false positive strains.

Figure 5. Analysis of the mock E. coli community data (SRR13355226). “(#)”: there are multiple hits with identical scores in
the output. “(*)”: strains present in the ground truth. “(R)”: the identified strain is the representative strain of the ground truth.
“RM14721” is the representative strain of “H10407” in Strainest. “Sakai” is the representative strain for “ECP17-1298” and
“109” in StrainGE and Stainest, respectively.

StrainScan detects the pathogenic strain from real sequencing data
To illustrate the potential application of StrainScan in pathogen detection, we have applied StrainScan to examine the presence
of the pathogenic strain of E. coli and M. tuberculosis in two studies (BioProject Accession: PRJEB1775 and PRJEB2777).
The first study is related to the 2011 Escherichia coli outbreak in Germany34. The outbreak was caused by an enteroaggregative
(EAEC) strain O104:H4. The second study investigates the frequency of M. tuberculosis relapses within patients from the
REMoxTB clinical trial, which evaluated the treatment for M. tuberculosis in previously untreated patients35. For each sample
sequenced in this study, there is a known label representing the strain contained in that sample. From each of these two studies,
we selected six samples for the experiment. For comparison, we also applied other 4 computationally efficient tools to detect
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the pathogenic strains in these real sequencing data. As shown in Table 2, StrainScan was able to identify the correct strains in
all tested datasets while other tools failed to detect correct strains in some datasets. Although Strainest could identify correct
strains in most datasets, it only returned the representative strain of the correct strain for some datasets.

Species SRA Known StrainScan StrainGE Krakenuniq Strainest StrainSeeker
accession strain result result result result result

E. coli

ERR260487 O104:H4 Y Y N Y Y (#, 5)
ERR260492 O104:H4 Y Y N Y Y (#, 5)
ERR260499 O104:H4 Y Y N N Y (#, 24)
ERR260491 O104:H4 Y Y N Y Y (#, 5)
ERR260480 O104:H4 Y Y N Y Y (#, 5)
ERR262949 O104:H4 Y Y N Y Y (#, 5)

M. tuberculosis

ERR751569 GCF_900127125 Y N N Y (R) -
ERR751369 GCF_900120835 Y N Y Y -
ERR751411 GCF_900120975 Y N Y N -
ERR751393 GCF_900120575 Y N N Y (R) -
ERR751396 GCF_900120785 Y N Y Y (R) -
ERR751382 GCF_900120755 Y N Y Y (R) -

Table 2. Comparative performance of StrainScan, StrainGE, KrakenUniq, Strainest, and StrainSeeker for identification of
pathogenic strain of E. coli and M. tuberculosis. The results marked “Y” in the green block mean these results are consistent
with the ground truth while “N” in the red block indicates the inconsistent result. “(#)” means there are multiple hits with
identical scores in the output and “(R)” means the identified strain is the representative strain of the ground truth. Note that
StrainSeeker is not able to identify strains of M. tuberculosis and therefore related results are “-”. For StrainSeeker, the number
in parentheses represent the number of multiple hits.

StrainScan reveals the greater diversity of C. acnes in human skin
A recent study11 shows that C. acnes is one of the most common bacteria on human skin and usually has a complex multi-strain
community. Strainest was applied to re-analyzed the human skin data set (SRP002480) from the study20. However, we found
that in some samples, the number of strains identified by Strainest was often less than the number of strains reported by the
original study. In the original study, the authors used an in-house pipeline to determine strains in the samples, and the accuracy
of this in-house pipeline was previously validated with extensive simulations for human skin microbiome data10. Therefore, we
selected nine samples from two individuals who fit this case and then re-analyzed these samples using Strainest and StrainScan.
Then, we compared the predicted results with those reported in the original study. For consistency, we selected all strains used
in the original study to build the new custom databases for Strainest and StrainScan, and used these newly established databases
for subsequent analyses. The result is shown in Figure 6. Strainest only returned one or two strains in all tested datasets while
more strains are reported according to the original study. Meanwhile, StrainScan displayed a more similar relative abundance
pattern with the reported result than Strainest. Besides, StrainScan also detected some strains in the samples of “HV05_AI” that
were not found in the original study, which implied the greater diversity of C. acnes. For example, the strain “GCF_000145115”
detected by StrainScan in the first sample of “HV05_AI” was highly similar to the strain “GCF_004631215” detected by
Strainest in the same sample (Figure 6B). However, these strains were not reported in the original study.

Analysis of real sequencing data in cross-sectional studies
Two studies16, 20 have demonstrated a correlation between the distribution of E. coli strains and the geographical location
of their hosts. StrainScan was applied to derive the correlation using datasets from different studies. To show this utility,
we applied StrainScan to determine the strain distribution of E. coli in several recent studies. We have analyzed two sets
of metagenomic and one set of whole genomic sequencing sample from stool or blood samples of different studies, with
one dataset including 6 infants in Estonia37, the second including 6 Chinese adults38, and the third including 6 USA adults
(PRJNA278886). Considering that these samples are from different studies and countries, we only keep the dominant strain of
each analyzed sample. As a result, StrainScan distinguishes E. coli strains into three distinct groups (Figure 7A). According to
the phylogenetic tree analysis using Prokka39 and Roary40, these identified strains also fall into three distinct clades (Figure
7B).

Investigation of strain diversity of P. corpi in different populations
The evolution of some host-associated microbes can be linked to factors such as host diet. For example, one recent study shows
that the host diet and the distinct genetics of human intestinal P. copri strains are closely related8. However, the original study
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Figure 6. (A) StrainScan reveals the greater diversity of C. acnes in 9 real metagenomic samples. These samples were taken
from three different sites of the skin of two healthy individuals, at different time points. The site codes are described in the
original work11. (B) Phylogenetic tree of the identified strains. Leaves are colored using the same schema as in (A) and the
distance is the Mash36 distance.

Figure 7. StrainScan profiling of E. coli and P. copri from metagenomics samples. (A-B) E. coli genomic diversity in the
healthy sample of Chinese, Estonian and American cohorts as seen by principal coordinates analysis (PCoA) and the
phylogenetic tree analysis of dominant strains. (C-D) P. copri genomic diversity in the healthy gut of Omnivores (O),
Vegetarians (VG), and Vegans (V) cohorts as seen by principal coordinates analysis (PCoA) and the phylogenetic tree analysis
of specific strains. (E) Strain relative abundance profiles of the 21 identified strains in the 18 metagenomic samples from three
groups.

mainly explored the diversity of strains within different populations from a functional perspective, and not from a taxonomic
perspective. Thus, we applied StrainScan to re-analyze 18 human gut metagenomic datasets that are from the same study
and have high abundance of P.corpi. As mentioned earlier, these samples were all taken from the study investigating diet and
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strain diversity8. According to the original study, these samples can be divided into three groups: Omnivores (O), Vegetarians
(VG) and Vegans (V). We selected six samples from each group, all six of which had high abundance of P. copri strains.
Then, we applied StrainScan to these samples that contain multiple strains of P. copri and selected the strains with relative
abundance > 0.02 for further analysis. The relative abundance profile of each sample is shown in Figure 7E. In Figure 7E,
we can find some strains are specific to one group, and therefore we label these strains as “specific” strains of that group.
These “specific” strains are then analyzed using the principal coordinates analysis (PCoA) (Figure 7C) and the phylogenetic
tree analysis (Figure 7D). The analysis result shows that “V-specific” strains are clearly separated from “O-specific” strains.
Interestingly, “VG-specific” strains lie somewhere in between, which is consistent with the conclusion of the original study and
our general knowledge.

Discussion
In this work, we presented StrainScan, a new strain-level composition analysis tool for short reads. We designed a novel
tree-based k-mer indexing structure to strike a balance between the strain identification accuracy and the computational
complexity. Then, by applying informative k-mers and the elastic net model to identify strains and predict their abundance,
StrainScan improved the resolution of the strain-level analysis and the accuracy of abundance estimation.

StrainScan shows higher accuracy and resolution than other tested tools across all benchmark datasets with different
complexity. Especially, StrainScan outperforms all other tools on datasets containing strains with higher similarity and varied
sequencing depth. This level of high resolution can be achieved by alignment-based tools such as Pathoscope2 and Sigma. But
StrainScan is at least 10 times faster than them. The experiment results of mock data and real data further demonstrate that
StrainScan has the potential for a more comprehensive strain-level composition analysis.

We tested the limits of StrainScan on building the CST for 25,349 complete and draft E. coli genomes. The program
requires > 1TB memory. Our empirical tests show that StrainScan is efficient for building the CST for less than 5000 genomes.
Thus, we recommend users to use only complete genomes for constructing the indexing structure if there are more than 5000
genomes. Our first step based on cluster search can efficiently reduce the search space. However, if all the reference genomes
are highly similar and only differ by a handful of bases, they tend to be grouped in one cluster. In this case, the cluster search
still returns a large search space for the second step, which does not take full advantage of the cluster indexing structure. M.
tuberculosis has a large cluster, which slows down the strain identification.

For future work, we plan to extend some efficient data structures such as HyperLogLog21 to speed up both the database
construction and identification process of StrainScan. Besides, we also plan to make StrainScan output more useful features
such as SNVs and SVs between strains identified in the samples, which can be used to explore the function of different strains.

Methods

Overview of StrainScan
StrainScan is designed to identify known strains from short reads directly. Because there are many species-level composition
analysis tools for metagenomic data, the inputs to StrainScan are the short reads in “fastq” format and strain genomes for
targeted bacteria in “fasta” format. There are two major challenges for strain-level analysis. First, for highly similar strains, it is
difficult to find sequence features (e.g. unique k-mers or SNVs) to distinguish them, resulting in lower accuracy and resolution.
For example, Krakenuniq21 and StrainSeeker22, two strain identification tools utilizing k-mer-based features, performed poorly
in distinguishing highly similar strains (the right panel of Figure 3A). Secondly, the large reference strain database poses a
computational challenge for many alignment-based tools like Sigma29, Pathoscope230, Strainest20, etc (Figure 2C and 3C). To
strike a balance between the strain identification resolution and computational cost, we design a hierarchical indexing method
that combines a fast but coarse-grained cluster search tree (CST) and a slower but fine-grained strain identification strategy
inside a cluster. As shown in the flowchart in Figure 8, we will first create a cluster tree-based indexing structure. With our
efficient and accurate cluster search method on this tree, we can first pinpoint a cluster that is present in the sample. Then we
will use carefully chosen k-mers to distinguish different strains in the identified cluster or clusters. The hierarchical method has
several advantages. First, it allows us to accommodate the heterogeneous similarity distribution between strains with some
strains sharing much higher similarities than others. The strains with low similarity can be quickly identified by our fast CST
search strategy. And only those highly similar strains need to use a more careful strategy in the second step. Second, the
hierarchical method can increase the search accuracy by allowing us to use more unique k-mers (Supplementary Table S1).
Any k-mer that is shared between clusters now can be utilized for within-cluster search. Third, the hierarchical method can
reduce the member footprint. Without the hierarchical method, we need to search strains from all reference sets that contain
a large number of k-mers. Given the clusters identified by CST search, StrainScan only needs to search strains in identified
clusters that contain fewer strains and k-mers. For example, the total number of k-mers in E. coli reference set before clustering
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is 192,325,016, while the number of k-mers in the largest cluster after clustering is 16,071,080, more than a tenfold reduction
(Supplementary Table S1).

Figure 8. The overview of StrainScan. (a). The sketch of the strain genome clustering process. Given the strain genomes (G1,
G2, ...) of the bacteria of interest, all-against-all k-mer Jaccard similarities are computed using Dashing31. Genomes are then
clustered using single-linkage hierarchical clustering. By default, the clustering threshold is set to a Jaccard similarity of 0.95.
In this example, given the cutoff represented by the dashed red line, five clusters from C1 to C5 are output by the clustering
process. (b). Given the clusters, construct the hierarchical cluster tree for later cluster-level identification. (c). Generate
collinear blocks to extract k-mers that can help distinguish different strains inside the same cluster. (d). Step d concludes the
indexing structure process for the reference genomes. (e and f). The indexing structure and the sequencing data (reads) are
input for strain search. e: search for clusters. f: strains are identified by the iterative matrix multiplication and the relative
abundance profile is finally inferred by elastic net regression.

Construct the cluster search tree (CST) from highly similar strains
Given many strains’ genomes of the same species, we first calculated a Jaccard similarity matrix with an alignment-free, k-mer
based method Dashing31 (k = 31). Then, we performed the agglomerative hierarchical clustering (single-linkage) based on this
matrix, grouping the strains into a dendrogram. Finally, we chose a fixed height cutoff H (0.95 by default) to cut the dendrogram
into many clusters, each of which consists of one or more strains. The strains inside each cluster have the k-mer-based Jaccard
similarity ≥ 0.95, which roughly corresponds to average nucleotide identity (ANI) of 99.89%19.

To pinpoint the cluster where a strain is contained, we will convert the clusters and the dendrogram into a cluster search tree
(CST) to support both accurate and efficient cluster search. The CST keeps the same tree topology as the dendrogram except
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that each cluster is represented by a leaf node in the tree. In addition, we discard the distance information in the dendrogram so
that the distance between each node and its parent (or child) is uniform, regardless of their Jaccard similarity. Thus, the CST is
a full binary tree. In order to support the cluster search, each node contains a set of k-mers that are unique to the subtree rooted
by this node. By conducting k-mer match, the CST will guide us to take either the left child or the right child until reaching one
or multiple leaf nodes (i.e., clusters). We first describe how we assign k-mers for each node.

Construct the CST-based indexing structure
k-mer assignment for the nodes
A CST is defined by two elements: the tree topology and the k-mer set assigned for each node. In this section, we will describe
how we assign k-mers to the nodes to support the cluster search. For a node v in the CST, we denote the subtree rooted by v as
vT . The k-mer assignment for v follows two criteria. First, the k-mers should be shared by most of the strains in the leaf nodes
of vT . Second, the k-mers are unique to the strains in vT . The two criteria are visualized using an example in Figure 9A.

Following the two criteria, we first assign leaf nodes with k-mers extracted from strains in their corresponding clusters. To
use k-mers that represent relatively well-conserved features in the underlying strains, only the k-mers that appear in at least α%
of the strains will be kept for clusters with multiple strains. Big α indicates that only k-mers shared by many strains are used
for building the CST while small α allows the CST to use strain(s)-specific k-mers. We compared the cluster identification
performance using a range of α in our experiments. According to the empirical results in Supplementary Figure S1, we set the
default α as 90.

Hereafter, we denote the initial k-mer set for a leaf node v as Lv. Next, starting from the leaf nodes, we recursively move
the shared k-mers between every two sibling nodes towards their parent. In the last step, all k-mers that occur in more than one
node will be removed. At the end of this process, each node v (an internal node or a leaf node) contains a set of unique k-mers
denoted as Kv. Specifically, Kv for a node v can be constructed using a set operation as shown in Equation (1). For the node v
with depth dv, all the leaf nodes are divided into three groups based on their relationship with v, as shown in Figure 9B and
defined in the box below.

SSSUUUBBBvvv: Leaf nodes in vT .
EEEXXXTTT vvv: Leaf nodes outside vT and with depths d ≥ dv.
PPPRRREEEvvv: Leaf nodes outside vT and with depths d < dv.

Kv =
⋂

i∈SUBv

Li −
⋃

i∈EXTv

Li −
⋃

i∈PREv

Li (1)

Figure 9. (A) An example of the k-mer assignment in the CST-based indexing structure. Each node possesses k-mers unique
to its rooted subtree and shared by most of the strains in the subtree. Each bar with a specific color represents a k-mer and each
node is assigned with one unique k-mer in this example. (B) When constructing node v’s k-mer set, all leaf nodes will be
divided into three groups named PREv, SUBv, and EXTv.

The CST constructed so far is similar to the tree built in StrainSeeker22. Although using the unique k-mers Kv can guide the
search for identifying strain clusters, a significant limitation is that some nodes only contain a small number of unique k-mers,
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which can lead to false positive (FP) matches more easily than nodes with many k-mers. This was observed when applying
StrainSeeker. Take the StrainSeeker database built from 112 P. copri strains as an example. Out of 222 nodes, 21 nodes are
empty, and 104 nodes have k-mers fewer than 1,000. The nodes with small k-mer sets tend to be matched by chance and thus
lead to FP identification. In order to address this limitation, we will augment those nodes by adding k-mers that do not add
ambiguity to the cluster search.

Optimize the CST
The main task of the optimization process is to reconstruct all small k-mer sets. In the CST, if a node has a large k-mer set, it is
called a strong node. And the nodes with small k-mer sets are called weak nodes. To distinguish strong and weak nodes, we
need to set a specific cutoff of the k-mer number.

Determination of the k -mer number cutoff Ideally, we assume that reads are randomly distributed across a genome. Thus,
the count of each k-mer follows a Poisson distribution with mean λ equal to the average coverage across the whole genome41.
When a node only possesses a few k-mers, its k-mer count distribution will not reflect the coverage of the strains in a sample.
This not only causes a high FP rate but also reduces the accuracy of strain abundance estimation. Thus, we require that each
node has enough k-mers so that its k-mer counts still exhibit a Poisson distribution with a mean roughly equal to λ . If these
k-mers are independently distributed, estimating the minimum k-mer number cutoff of the reliable k-mer set would be easy.
Figure 10 shows how the k-mer set size influences the Kolmogorov–Smirnov (KS) distance between k-mer count distributions
of a given k-mer set and the whole genome. When the k-mer number reaches 1,000, the KS distance decreases very slowly and
approaches 0.02. Therefore, we set the k-mer number cutoff as 1,000 in this work.

Once we determine the cutoff, we can identify all weak nodes with k-mer numbers below the cutoff 1,000. A key observation
behind the weak node augmentation is that we adopt Breadth-first Search (BFS) for the CST traversal and thus only need to
choose among nodes at the same depth. As long as we can ensure that the nodes at the same depth have no overlapping k-mers,
we can conduct the search without any ambiguity. This means that we can tolerate some non-unique k-mers in the nodes of
CST. When we traverse to a node v at depth d, any leaf node i at depth smaller than d has been examined, and thus k-mers from
Li might be reused by node v. If v is a weak node, we can change it into a strong node using this method. Specifically, we
employ the set operations of k-mers to reconstruct every weak node:

K′
v = Kv +(

⋃
i∈SUBv

Li −
⋃

i∈EXPv

Li)∩
⋃

i∈PREv

Li

=
⋂

i∈SUBv

Li −
⋃

i∈EXTv

Li
(2)

Figure 10. The change of the KS distance between the k-mer count distributions on a k-mer set and the k-mers of the whole
genome with the k-mer set size. The k-mer set’s sizes range from 1 to 2,000 (X-axis). The k-mer set is randomly sampled from
the genome multiple times. And the KS distances are the average values from these repeated experiments. The coverage of the
simulated reads is 10x. When the KS distance is less than 0.02, there is no significant difference between the two distributions.
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where K′
v is the reconstructed k-mer set for the given weak node v. Compared with equation (1), a part of k-mers shared

between PREv and SUBv can be added to v’s k-mer set, thereby achieving the weak node augmentation.

After implementing the reconstruction method, most of the weak nodes will become strong nodes. For instance, in the
optimized CST built from 112 P. copri strains, only three out of 101 nodes are weak using our method. In order to decide the
presence of a strain in a sample with high precision, we require all leaf nodes to be strong nodes. If the above procedure still
leaves weak leaf nodes, we will combine them with their sibling nodes so that enough k-mers can be derived from the combined
node. This process will iterate until all leaf nodes become strong nodes.

Cluster search in the CST

Given the input sequencing data, we first extract all k-mers from the CST and conduct fast k-mer match for all short reads using
Jellyfish42. Then, the k-mer match counts by all reads will be mapped back to the CST. Each node v will be assigned with a
one-dimensional numerical vector Cv = (c1,c2, ...,c|Kv|), with each cell recording a k-mer match count. The cluster search
algorithm is based on BFS, starting from the root and examining k-mer matches for nodes level by level (Figure 11). The k-mer
match vector Cv of each node v is used to decide whether or not to traverse v’s descendants based on a binomial test. The final
search results contain one or multiple leaf nodes representing the strain clusters present in the sequencing data.

Scoring metrics for the cluster search When the search visits a node v, two scoring metrics will be calculated to decide
which child nodes will be visited. As shown in Figure 11, the first metric is the fraction of matching k-mers (fracv), which
represents the fraction of k-mers in Kv that is present in the sequencing data. It is defined as:

f racv =
|C+

v |
|Cv|

(3)

where C+
v represents the vector which contains all positive k-mer counts from Cv.

The second metric is the average k-mer match count (abundv), which is computed only using k-mers with positive matching
counts. And when f racv < 0.1, abundv will be set to 0.

abundv =

{
∑c∈C+

v
c

|C+
v | , f racv ≥ 0.1

0, f racv < 0.1
(4)

The search strategy for CST After we calculate the two scoring metrics of v, we conduct a binomial test to decide the
traversal order in CST13. Because sequencing errors can incur k-mer matches, the main goal of the binomial test is to distinguish
random matches by sequencing errors from true matches for a true strain, which is particularly important for strains of low
abundance. Given a node v, we examine whether we can reject the null hypothesis that abundv is generated by sequencing
errors.
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Figure 11. An example of the cluster search process. The values of the two scoring metrics (abundi, f raci) are shown beside
each node v. The search results contain cluster 4 and 5 with estimated abundance 23.8 and 9, respectively. Node 6 and 3 did not
pass the binomial test, thereby failing to traverse their descendants. The nodes in Path4 and Path5 are colored by blue and
orange, respectively. K4 shares the same orange k-mer with L5. Thus, we need to adjust C4 based on cluster 5’s estimated
abundance A5 to calculate the accurate scoring metrics.

Specifically, we first round abundv and abundp (p is the parent node of v) to their nearest integers abund′
v and abund′

p.
Then, given the sequencing error rate e (1% by default), we reject the error-caused null hypothesis when the probability of
abundv being generated from sequencing errors is smaller than β (0.05 by default). The probability is estimated with

PXB̃(abund′p,1−e)(X ≤ abund′
p −abund′

v) (5)

where B(abundp,1− e) is the probability mass function of the binomial distribution with abund′
p’s trials and the successful rate

1− e. Failing to reject the null hypothesis indicates that we cannot distinguish low-coverage k-mer matches and sequencing
noise. Thus, we consider abundv is just from sequencing errors, and the search will stop for v’s descendants. Otherwise, if we
succeed in rejecting the null hypothesis, we believe that one or multiple strain clusters in vT are present in the sequencing data.
And the CST search will add v’s two child nodes to the end of the BFS queue, preparing to traverse them later. Unlike the
traditional binary search tree (BST), the two sibling nodes of the same parent can both reject the error-caused null hypothesis.
Therefore, we can traverse all of their descendants, and the search results of CST are probably more than one.

Determination of the identified clusters Once we reach a leaf node, we will further examine the k-mer matching statistics
using both the leaf node and its ancestor nodes that contain k-mers moved from the leaf nodes. If there is only a single leaf
node identified, all the nodes along the path from the root to v can be used to compute the k-mer statistics. However, if there are
multiple leaf nodes identified, not all the ancestor nodes should be used. Instead, only the ones that contribute uniquely to the
leaf node v should be used to compute the final abundance. These nodes can collectively constitute a path Pathv, where all of
the k-mer matches on Pathv are only originated from strains in the leaf node v. To identify Pathv, we first identify the maximum
subtree that only contains v as the identified node. And Pathv is equivalent to the path between the root of this subtree to v.
Using the k-mer counts of nodes on Pathv all together to estimate the cluster’s abundance will provide higher confidence than
using a single leaf node. Take Path4 in Figure 11 as an example, two leaf nodes 4 and 5 are identified. In this case, Path4 is the
root-to-leaf path containing v in node 8’s rooted subtree V T

8 . Subsequently, we can collect all k-mer match counts Ci on Pathv
to calculate the weighted average fraction of matching k-mers Fv and the weighted average k-mer match count Av:

Fv =

∑
i∈Pathv

|C+
i |

∑
i∈Pathv

|Ci|
(6)

Av =

∑
i∈Pathv

|C+
i | ·abundi

∑
i∈Pathv

|C+
i |

(7)
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If Fv is larger than a given cutoff (the default value is 0.4, but users can modify the value to adapt to different conditions),
we consider the cluster in v is present in the sequencing data. After finishing the CST search, all identified clusters will be
output with their estimated abundances (calculated by Av).

Adjust Cv for accurate abundance estimation A special case may occur in the cluster search process. When the sequencing
data contains multiple strains in different clusters, some overlapping k-mers introduced during the CST optimization will cause
FPs for the nodes’ k-mer matches. Specifically, suppose we reach a reconstructed node v after a leaf r has been identified to be
present with an estimated abundance Ar. In this case, the match counts of the k-mers in Kv ∩Lr are the sum of k-mer match
counts from both r and strains in vT . Using the estimated abundance Ar, we can estimate the match counts of Kv ∩Lr originated
from r based on the Poisson distribution with λ = Ar:

P(c = k) =
Ak

r · e−Ar

k!
(8)

The estimated k-mer match vector from r is denoted as C̃r (the size is |Kv ∩Lr|). Then, both of the vectors Cv and C̃r are
sorted on the basis of increasing value of k-mer match count ci, and we adjust Cv by Cv =Cv −C̃r. This method can be applied
to multiple identified leaf nodes at different depths. After adjusting Cv for all identified leaf nodes, we can use Cv to calculate
scoring metrics without any ambiguity.

Choose k -mers for strain identification within the clusters
The CST is optimized for distinguishing clusters with similarity below a given cutoff. Using CST to distinguish highly similar
strains can lead to a large number of weak nodes that cannot be augmented because of the large percentage of shared k-mers.
Thus, once we pinpoint a cluster, we need a fine-grained method to distinguish highly similar strains. Once we pinpoint a
cluster, the number of strains to distinguish is significantly reduced compared to the original problem space. Thus, we can
afford to use all k-mers with distinguishing power. The first feature used is the unique k-mer from strain-specific regions, here
we call it the strain-specific k-mer. The second feature used is the group-specific k-mer, which may come from structural
variants (SVs) common to some strains. In a recent study43, SVs have been used to distinguish different strains. Inspired by
that study, we extract group-specific k-mers from the SVs shared by some strains. However, relying only on strain-specific and
group-specific k-mers still suffers from low resolution in some cases. For example, in Figure 12, both Strain4 and Strain5 have
the same group-specific k-mers, and when the strain-specific k-mer of Strain5 is not present in the sample, we cannot make a
fine distinction between the two strains. Therefore, to further improve the resolution, we need new features. SNVs and indels
(insertions and deletions) between all strains are already applied to distinguish different strains in many studies20, 29, 44. Using
these SNVs as well as indels, we can obtain unique k-mer sets that can distinguish all strains, and here we call these k-mers as
joint k-mers. Thus, the third feature used is the joint k-mer, which contains SNVs and indels from core genomic regions present
in all genomes. As shown in Figure 12, for all joint k-mers, although each k-mer is not strain-specific, the joint k-mer set for
each strain is unique. However, the number of joint k-mers is often not as many as the first two types of k-mer (Supplementary
Table S2), so they need to be combined together to improve the resolution of identification. By utilizing these three types of
k-mers, we improve the resolution of identification and reduce the search space at the same time.

To effciently extract these k-mers, we utilize Sibeliaz45, an efficient tool designed for identifying locally collinear blocks in
closely related genomes. Based on the blocks generated by Sibeliaz, we have developed an hash-based algorithm to extract
these k-mers from strain genomes efficiently and save them in a matrix for later usage. The algorithm’s main pseudocode is
shown in Supplementary Section 1.1. The input of the algorithm is strain genomes within the same cluster and blocks generated
by Sibeliaz. By using the efficient hash table, the algorithm can extract target k-mers quickly. Finally, all extracted k-mers will
be saved in a sparse matrix. Denote this matrix as a M×N sparse matrix. This matrix’s M rows represent k-mers found by the
algorithm and N columns represent strains in the same cluster. In this matrix, a cell Xk,i is 1 if the strain i possesses k-mer k.
Otherwise, it is 0.

Identify strains using chosen k -mers
After extracting the k-mers in the previous step, we need to use these features for strain identification. There are two main
issues. One question is which strains are present and the second question is what is the relative abundance of these strains. To
disentangle complex communities of closely related strains in the same cluster, we apply the iterative matrix multiplication to
determine all coexisting strains and predict their relative abundance using elastic net regression.

The main goal of the iterative matrix multiplication is to determine strains in the same cluster by using three types of k-mers
(Figure 12) in the k-mer matrix. To achieve this goal, we compare the k-mers in the sample to those of the k-mer matrix using an
iterative strategy similar to that of QuantTB28. The method is described as follows. Given the cluster selected by the tree search
and k-mers from its k-mer matrix X, we will apply Jellyfish42 to count all these selected k-mers in the sequencing data. Denote
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Figure 12. Use strain-specific k-mers, group-specific k-mers and joint k-mers to distinguish five strains in the same cluster.
Each strain has a unique k-mer combination.

the occurrences for all selected k-mers from the Jellyfish as M-vector y: y = (y1,y2,y3, ...,yM)T, where yi ≥ 0 and represents
the occurrences of ith k-mer in the matrix. However, the overlapping k-mers from other identified clusters could lead to false
k-mer matches or wrong abundance estimation. To remove the influence of other clusters, if one k-mer is found in other clusters
detected by the tree search, then its occurrence will be replaced with 0. For the M×N k-mer matrix X , it can be written as
X = (s1,s2,s3, ...,sN), and the k-mer vector s j is defined as:

s j = (k1,k2,k3, ...,kM)T, j = 1, ...,N (9)

where ki =

{
1, if strain j has ith k-mer,
0, otherwise.

, and N is the number of strains in the matrix.

Based on X and y, we use the iterative matrix multiplication, which can detect all possible strains in a sample accurately
and quickly. Given X and y, the function will calculate a score f j = s j · y for each strain. It’s noted we regard values beyond
the range of the 5nd and 95th percentile to be outliers, and we will set the value of all outliers to 0. The function will rank all
strains according to their scores. After ranking, the function will output the top 1 strain in the ranked list and then update y by
replacing the occurrences of all k-mers in identified strain with 0. Then the function will repeat this process. It continues to
calculate the score and identify the best-matched strain in each iteration until the occurrences of k-mers with nonzero value is
lower than the given threshold. The default threshoold is 31∗40 = 1240, which means a sufficient number of SNVs (40) still
remain in the sample and in the database for reliable classification, and this parameter can be changed by the user.

Knowing the possible strains in the sample, we use the elastic net regression model to predict sequencing depths and relative
abundances of identified strains. Here, we choose the elastic net model instead of the lasso model because the former could
better fit the abundance profile among strains compared to the method based on the lasso model like Strainest (Figure 4), and
the lasso model tends to underestimate the number of strains, leading to a decrease in recall (Figure 3A). After iterative matrix
multiplication, we obtain the filtered k-mer matrix X ′ = M ×N′, where N′ is the number of identified strains. Sequencing
depths, which are the regression coefficients β ′, are predicted minimizing the elastic net penalized residual sum of squares:

β
′ = argmin

β∈X ′N′ |βk>=0

∥∥y−X ′
β
∥∥2

2 +λ (α |β |1 +
(1−α)

2
|β |2) (10)

where the regression coefficients β ′ should be nonnegative values. α and λ are two important parameters that will affect
the model performance and therefore need to be tuned. We have designed a function to tune the α and λ based on cross-
validation to obtain the model with the lowest predictive error. Given this best model, we calculate the strain relative abundance
a = (a1,a2,a3, ...,aN′) by normalizing the regression coefficients β ′ of the model. However, if multiple clusters are detected by
the tree search, the relative abundance of one strain i will be recalculated according to the abundance of clusters. So, the final
relative abundance (RA) of each strain i is calculated as:

RAi =
ai ∗Ci

∑
n
j=1 a j ∗C j

(11)
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where C is the abundance of the cluster predicted by the tree search, and n is the total number of all identified strains.

Prediction accuracy evaluation
In order to test the performance of each method, we calculated the recall, precision, and F1 score for every test category. True
positive (TP) refers to the number of correctly identified strains. False negative (FN) refers to the number of strains present in
the sample that were not identified. The definition of false positive (FP) can be found in the first paragraph of Results section.
Some examples for illustrating these metrics are given in Supplementary Figure S2.

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, F1 =
2∗Precision∗Recall

Precision+Recall

In all experiments, we used the Jensen-Shannon divergence (JSD)46 to measure the distance between the true and predicted
relative abundance (RA). If the predicted and true RA have different dimensions, we will calculate JSD by adding zeros to the
one with the lower dimension. Suppose there are two probability distributions T and P, then their Jensen–Shannon divergence is
a value between [0,1] and defined as:

JSD(T || P) =
1
2

D(T || K)+
1
2

D(P || K)

where

K =
1
2
(T + P)

and D(T || P) is called the Kullback–Leibler divergence and it is defined as:

D(T || P) = ∑
i

T (i) log
T (i)
P(i)
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