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ABSTRACT 

Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open 
avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-

wide understanding of how bacteria process antibiotic stress, and how modulation of the involved 
processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic 

analysis of how the major human pathogen Streptococcus pneumoniae responds to 20 antibiotics. We 
built a genome-wide atlas of drug susceptibility determinants and generate a genetic interaction network 

that connects cellular processes and genes of unknown function, which we show can be used as 
therapeutic targets. Pathway analysis reveals a genome-wide “tolerome”, defined by cellular processes 

that can make a bacterium less susceptible, and often tolerant, in an antibiotic specific manner. Importantly, 
modulation of these processes confers fitness benefits during active infections under antibiotic selection. 

Moreover, screening of sequenced clinical isolates demonstrates that mutations in tolerome genes readily 

evolve and are frequently associated with resistant strains, indicating such mutations may be an important 
harbinger for the emergence of antibiotic resistance.  
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INTRODUCTION 

The emergence of antibiotic resistance in bacterial pathogens is a continuously developing complex 
problem that is only solvable if besides new drugs we also learn to understand the exact (genetic) 

processes that enable resistance. For instance, new antibiotics and treatment strategies are key to retain 
the ability to treat resistant infections. However, a comprehensive understanding of how and under which 

conditions resistance emerges, which genes and pathways contribute to drug sensitivity, and how 
resistance may be prevented or even taken advantage of, are equally important, as it could make 

treatments more focused and possibly less dependent on new drugs. For many antibiotics we know which 
genomic changes can cause resistance. However, it is often not clear how we get there with respect to 

which evolutionary paths are taken and whether for instance tolerance or lowered drug sensitivity precedes 
resistance. Interestingly, clinical strains isolated during antibiotic treatment failure may lack known 

resistance markers and instead contain multiple changes that may have no clear or known role in 

resistance1-5. However, whether these changes play a role or not is often unclear because the distribution 
of changes that can affect a bacterium's drug sensitivity are largely unknown1-7. Therefore, understanding 

which genes, pathways and processes can contribute to altered drug susceptibility, could help identify 
genomic changes that not only sensitize bacteria to certain drugs, but desensitize them and may thereby 

act as precursors for antibiotic escape and/or resistance development. 
 

Resistance emerges primarily through drug target mutations blocking antibiotic lethal action, upregulation 
of efflux pumps, and the acquisition of drug inactivating enzymes 7-13. Importantly, an antibiotic’s effects go 

far beyond the interaction with its direct target. We, and others, have shown that when a bacterium is 
challenged by an antibiotic, the imposing stress can expand throughout the bacterium and affect and 

demand the involvement of many different processes 6,14-17. For instance, while fluoroquinolones like 

ciprofloxacin inhibit DNA replication by targeting gyrase and/or topoisomerase, this also triggers double 
stranded breaks requiring the involvement of DNA repair mechanisms, which in turn requires nucleotide 

and energy metabolism. Antibiotics can thereby trigger a stress cascade, that with mounting stress 
increasingly reverberates through the organismal network, until the accumulating stress passes a threshold 

at which point the organism succumbs to the pressure 15,17. This explains why mutations in genes or 
pathways involved in dealing with the downstream (indirect) effects of antibiotic exposure can often make 

a bacterium more sensitive to a specific antibiotic. Indeed, we have shown for Streptococcus pneumoniae 
and Acinetobacter baumannii that, for instance, targeting DNA repair makes bacteria more susceptible to 

fluoroquinolones6,16,18, or targeting the Rod-system and/or Divisome makes A. baumannii more sensitive 

to cell wall synthesis inhibitors (CWSIs)6. This means that downstream genes, pathways and processes 
can be used as new targets or drug potentiators, either by themselves or in combination with others6,14. 

Moreover, in most bacteria, as in any other organism, the majority of genes are of unknown function, it is 
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unclear what role they play in a specific process and/or pathway, or how they are connected within the 

organismal genomic network. Thus, besides solving gene-function, mapping-out which genes, pathways 
and processes are involved in dealing with and overcoming antibiotic-stress, and how they interact with 

each other, can provide key insights into uncovering new drug targets, or for instance rational combination 
strategies6. 

 
While identifying off-target genes and pathways that increase drug sensitivity may thus be useful, it is 

possible that changes in associated processes could, in contrast, just as well reduce the experienced 
antibiotic stress. Such changes would thereby decrease antibiotic sensitivity and could possibly function 

as precursors to the emergence of resistance. A possible example of this is the induction of tolerance 
and/or persistence, where a small proportion of bacterial cells in the population upon exposure to high 

(transient) concentrations of antibiotics, are induced into a cell state that enables them to tolerate this 

treatment. Cell states associated with tolerance include cell dormancy, slow growth, transient expression 
of efflux pumps, and induction of stress response pathways 19,20,21,22. However, the mechanistic 

underpinnings of tolerance and decreased antibiotic sensitivity remain largely undefined and possibly differ 
between bacterial species and vary among antibiotics23. Moreover, specific mutations can (dramatically) 

increase the fraction of the surviving population 24-26, indicating these tolerant phenotypes have a genetic 
basis. Lastly, since clinical isolates often carry mutations located outside well-characterized drug targets 1-

5,27,28, they could thus be composed of variants with different antibiotic sensitivities. Consequently, such 
variants with decreased antibiotic sensitivity could enable antibiotic escape, and/or enable multi-step high-

level resistance mutations to evolve as they are given an extended opportunity to emerge21,29-32. Variants 
with decreased antibiotic sensitivity may thereby play an important role in antibiotic treatment failure 5,33,34. 

However, the breadth of possible genetic alterations that can trigger tolerance and/or decrease antibiotic 

sensitivity are largely unknown, making it unclear how often and probable it is that such variants arise. 
 

In this study we use Tn-Seq in S. pneumoniae exposed to 20 antibiotics, 17 additional environments, and 
two in vivo infection conditions, to generate a genome-wide atlas of drug susceptibility determinants and 

build a genome-wide interaction network that connects cellular processes and genes of unknown function. 
We explore several interactions as new leads for gene function, while we show that specific interactions 

can be used to guide the identification of targets for new antimicrobial strategies. We highlight one such 
novel target in the membrane, by successfully developing a combinatorial antibiotic-antibody strategy that 

significantly reduces the bacterial load during an acute mouse lung infection. Furthermore, detailed 

mapping of antibiotic sensitivity data to pathways and genes with known function suggests a genome-wide 
“tolerome” exists defined by a multitude of genomic changes to a wide variety of pathways and processes 

that can make the bacterium less susceptible, and often tolerant to specific antibiotics. We untangle some 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.26.477867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the underlying genetic mechanisms and show that decreased susceptibility and/or tolerance can come 

from a variety of changes including those in (nucleotide) metabolism, (p)ppGpp and ATP synthesis, 
transcription and translation, as well as different types of transport. By further combining in vivo-infection- 

with antibiotic-Tn-Seq we predict and experimentally validate that many disruptions may retain their 
decreased antibiotic sensitivity phenotype in vivo, and thereby outcompete the wildtype in the presence of 

antibiotics. Moreover, by screening hundreds of clinical isolates we show that changes in tolerome genes 
readily evolve in human patients and are often associated with antibiotic resistance. Consequently, these 

data highlight the wide array of possibilities that can lead to lowered antibiotic sensitivity and/or tolerance 
and underscore the importance of understanding the genetics of variants with altered drug susceptibility.   
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RESULTS 

A genome-wide view of antibiotic sensitivity. To obtain a genome-wide view of the genetic determinants 
that can modulate antibiotic stress in S. pneumoniae, Tn-Seq was employed in the presence of 20 

antibiotics (ABXs), representing four classes and 9 different ABX groups (Fig. 1a). Six independent 
transposon libraries were generated and grown for approximately 8 generations in the absence and 

presence of an antibiotic at a concentration that reduces growth by approximately 30-50% (Supplementary 
Table 1). Tn-mutant frequencies are determined through Illumina sequencing from the beginning and end 

of the experiment with high reproducibility between libraries (R2 = 0.70-0.90; Supplementary Fig. 1) which 
is consistent with previous Tn-Seq experiments6,15,16,18,35-38. Combined with the population expansion 

during the experiment each mutant’s fitness (W) is calculated to represent their environment-specific 
relative growth rate 6,18,35,39,40. Each gene’s antibiotic-specific fitness is statistically compared to baseline 

fitness without ABXs, and is represented as DW ( WABX - WnoABX) and categorized as: 1) Neutral, DW = 0, 

a mutant’s relative growth is similar in the absence and presence of an ABX; 2) Negative, DW < 0, a 
mutant’s fitness is significantly lower and thus grows relatively slower in the presence of an ABX; 3) Positive, 

DW > 0, a mutant’s fitness is significantly higher and thus grows relatively faster in the presence of an ABX. 

All antibiotics trigger both positive and negative growth effects (Fig. 1b, Supplementary Table 2), which 
are distributed across 22 different gene categories (Fig. 1c). Importantly, enrichment analysis shows there 

are multiple expected patterns, for instance genes involved in DNA-repair are enriched in the presence of 
fluoroquinolones; cell-wall, peptidoglycan and cell division genes are enriched in ß-lactams and 

glycopeptides; membrane integrity genes in lipopeptides; and transcription and translation in PSIs (Fig. 
1d). Additionally, throughout the manuscript we validate a total of 49 predicted genotype x phenotype 

interactions, which indicates the Tn-Seq data is in line with previously shown accuracy6,15,16,18,35-38, and of 
high quality (Fig. 1e, Supplementary Table 8). 

 

Co-fitness interaction networks identify known and unknown genetic relationships. Screens such 
as Tn-Seq are geared towards highlighting the processes and genes that are important under a specific 

screening condition. With increasing conditions, genes acquire specific profiles, and those with similar 
fitness profiles can help reveal pathways and/or gene-clusters with similar and/or shared tasks. To extract 

such patterns, we build a correlation matrix based on each gene’s fitness-profile generated from 20 
antibiotics and supplemented with previously collected Tn-Seq data from 17 additional non-antibiotic 

conditions18 (Supplementary Table 3). This results in a 1519x1519 gene matrix where positive correlations 
between genes come from shared phenotypes, while negative correlations come from opposing 

phenotypic responses under the same condition (Supplementary Table 4). By repeatedly hiding random 
parts of the data the stability and strength of each correlation is calculated and represented in a stability 

score (Supplementary Table 5). The correlation matrix and stability score are turned into a network, where 
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each node is a gene, and each edge is a correlation coefficient above a threshold (>0.75), which combined 

with the stability score indicates the strength of the relationship between two genes. (Fig. 2a; 
Supplementary Table 6). Spatial Analysis of Functional Enrichment (SAFE)41,42 is used to define local 

neighborhoods within the network, i.e., areas enriched for a specific attribute (e.g., a pathway or functional 
category), which identifies multiple clusters that represent specific pathways and processes including 

purine metabolism, cell-wall metabolism, cell division and DNA repair (Fig. 2b; Supplementary Table 7). 
Moreover, the network contains gene-clusters of high connectivity identifying highly related genes including 

those within the same operon such as the ami-operon, an oligo-peptide transporter, the dlt-operon which 
decorates wall and lipoteichoic acids with d-alanine, and the pst-operon a phosphate transporter (Fig. 2c, 

I-III)). Besides identifying known relationships, the network also uncovers interaction clusters between 
genes with known and unknown interactions and function. Several such clusters are highlighted in Fig. 2c 

(IV-VIII), including genes involved in purine metabolism (further explored below), threonine metabolism, 

and in secretion of serine rich repeat proteins (SRRPs), which are important for biofilm formation and 
virulence43. Importantly, the identification of biologically relevant relationships among (clusters of) genes 

indicates the data is rich in known and new information. 
 

Detailed pathway mapping identifies a multitude of antibiotic susceptibility targets and pathways 
to tolerance. 224 genes with a known annotation are present in the data that have at least one significant 

phenotype in response to an antibiotic, and which can be split over 21 functional groups according to a 
pathway or process they belong to (Fig. 3a). Each group is characterized by having multiple phenotypes 

that increase sensitivity in response to one or more antibiotics (negative phenotype), while each group, 
except for cell division, also has multiple phenotypes that decrease antibiotic sensitivity (Fig. 3a; positive 

phenotype). Moreover, each antibiotic group triggers both negative and positive effects (Fig. 3b). Where 

possible, the 21 functional groups are organized according to a pathway they belong to and/or relationships 
among genes and combined with their antibiotic susceptibility profile. This results in an antibiotic 

susceptibility atlas, which shows on a fine-grained scale, how inhibiting a pathway or process can affect 
sensitivity to an antibiotic (Fig. 3c and Supplementary Fig. 2 and 3). For instance, in the glycolysis-group, 

knocking out any of the three genes involved in forming the phosphotransferase (PTS)-system (SP_0282-
SP_0284) that imports glucose to generate glucose-6-phosphate (G-6P), has a negative effect on fitness 

in the presence of 30S and 50S PSIs as well as Synercid (a synergistic combination of two PSIs), while it 
increases fitness in the presence of all CWSIs (ß-lactams, glycopeptides, and daptomycin) and 

fluoroquinolones. Also, the inhibition of/knocking out SP_0668 (gki, glucokinase), an enzyme that converts 

 a-D-Glucose into G-6P, has a positive effect on fitness in all CWSIs and a negative effect in 30S PSIs. In 
contrast, inhibiting SP_1498 (pgm, phosphoglucomutase), the major interconversion enzyme of G-6P and 

G-1P, has a negative effect on fitness with all antibiotics (Fig. 3c). Within pyruvate metabolism, inhibiting 
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lactate (SP_1220, ldh, L-lactate dehydrogenase), or acetaldehyde production (SP_2026, alcohol 

dehydrogenase) increases sensitivity to ß-lactams and glycopeptides and decreases sensitivity to 30S 
PSIs; inhibiting formate production (SP_0459 [pfl, formate acetyltransferase] and SP_1976 [pflA, pyruvate 

formate lyase activating enzyme]) decreases sensitivity to co-trimoxazole and 30S PSIs, while inhibiting 
acetyl-phosphate production (SP_0730, spxB, pyruvate oxidase) decreases sensitivity to ß-lactams, 

glycopeptides and co-trimoxazole. Within aspartate metabolism, interfering with SP_1068 (ppc, 
phosphoenolpyruvate carboxylase), which generates oxaloacetate from phosphoenolpyruvate (PEP), 

triggers a range of changes from increased sensitivity to ß-lactams, and glycopeptides, to decreased 
sensitivity to most other antibiotics, while the four genes involved in the production of threonine from L-

aspartate (SP_0413 [aspartate kinase], SP_1013 [asd, aspartate semialdehyde dehydrogenase], 
SP_1360 [thrB, homoserine kinase], SP_1361 [him, homoserine dehydrogenase]) trigger decreased 

sensitivity to fluoroquinolones and 30S and 50S PSIs. In the shikimate pathway inhibiting the production 

of chorismate from PEP and erythrose-5-phosphate (through genes SP_1370 [aroK], SP_1371 [aroA], 
SP_1374 [aroC], SP_1375 [aroB], SP_1376 [aroE], SP_1377 [aroD]) leads to increased sensitivity to ß-

lactams, co-trimoxazole, and Synercid. Cell division is the only process that upon interference, only 
generates increased sensitivity, specifically for CWSIs and co-trimoxazole. Interfering with peptidoglycan 

synthesis also mostly leads to increased sensitivity to CWSIs, as well as to 30S PSIs, while changes to 
genes that are involved in anchoring proteins to the cell wall (SP_1218 [srtA], SP_1833) can decrease 

sensitivity to CWSIs. Importantly, interfering with protein turnover, for instance through the protease 
complex ClpCP (SP_2194, SP_0746) and the regulator CtsR (SP_2195), which are generally assumed to 

be fundamental for responding to stress44,45, leads to decreased CWSI sensitivity and increased sensitivity 
to 30S and 50S PSIs (Fig. 3c and Supplementary Fig. 2). Moreover, FtsH (SP_0013), important for clean-

up of misfolded proteins from the cell wall, increases sensitivity to 30S PSIs and Synercid, indicating how 

important protein turnover is especially for surviving 30S PSIs, which can trigger the production of faulty 
proteins. Most importantly, these data show that, as expected, hundreds of options exist where disruption 

of a pathway or process leads to increased sensitivity to specific antibiotics. Remarkably, there seem to 
be almost as many options that can lead to decreased antibiotic sensitivity.  

 
cozEb encodes a cell division and peptidoglycan synthesis embedded membrane protein that can 

be critically targeted in vivo through an antibody-antibiotic strategy. By identifying targets that 
(re)sensitize bacteria against existing antibiotics, genome-wide antibiotic susceptibility data have the 

potential to guide the development of new antimicrobial strategies. One such strategy could be a combined 

therapeutic antibody-antibiotic approach; the antibody would target a gene-product that is important for 

sensitivity to one or more antibiotics and the product is easily accessible for the antibody at the bacterial 

cell surface. To find suitable candidate targets, Tn-Seq data were filtered for gene-products that, based on 
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a known function or localization prediction, are likely to be present in the cell wall or membrane, and that 

when disrupted, increase sensitivity to one or more antibiotics. Moreover, it would likely be ideal if the gene 
is also important for survival in vivo. A strong candidate is SP_1505, which in the interaction network is 

most tightly linked to cell wall metabolism and cell division genes (Fig. 4a). After we previously 
hypothesized that it may play a role in cell wall integrity 14, it was recently named cozEb, with a likely role 

in organizing peptidoglycan synthesis during cell division 46, which fits its interaction profile (Fig. 4a). 
Importantly, the antibiotic Tn-Seq data suggest that disruption creates increased sensitivity to vancomycin 

and rifampicin, while the product is critical in the presence of daptomycin, which was confirmed through 
individual growth curves (Fig. 4b). The protein has eight predicted membrane-spanning domains (Fig. 4c), 

and in vivo Tn-Seq predicts it is important for survival in both the nasopharynx and lung (Fig. 4a, 
Supplementary Table 2). The gene was cloned into an expression plasmid generating an ~30kD product 

(Fig. 4c), which was used to raise rabbit anti-CozEb antibodies, which were confirmed to be specific for 

the cozEb gene product (Fig. 4c). Potential antibody in vitro activity was determined through a bacterial 
survival assay in the absence and presence of antibodies and either vancomycin or daptomycin. Incubating 

bacteria with antibodies or daptomycin has no significant effect on bacterial survival, while vancomycin 
alone at the concentration used slightly reduces the number of surviving bacteria. Moreover, combining 

the antibody with either vancomycin or daptomycin further reduces the number of surviving bacteria in vitro 
compared to any agent individually (Fig. 4d). To assess whether the antibody-antibiotic approach works in 

vivo, mice were intranasally challenged with a bacterial inoculum either containing WT or  DcozEb. Two 

additional sets of mice were challenged with WT and 8hrs post-infection they were either treated with 
daptomycin and control IgG-antibody or with daptomycin and CozEb-specific antibody. Mice were 

sacrificed 24 hrs post-infection, and bacteria in the lung were enumerated. As predicted by the in vivo Tn-
Seq data the cozEb knockout has a significantly lower fitness in the lung highlighted by an up to 2.5-log 

lower bacterial load compared to WT. Importantly, while the WT survives equally well in the presence of 
the low daptomycin concentration and the control IgG antibody, in the presence of daptomycin and the 

CozEb-targeting antibody, its survival in the lung is significantly reduced and resembles that of the cozEb 
knockout (Fig. 4e). This shows that by combining antibiotic and in vivo Tn-Seq with gene annotation 

information, a gene-product can be selected that is central and critical to cell-wall synthesis and cell-
division processes. Importantly, due to its presence in the membrane, it is directly targetable with an 

antibody, thereby sensitizing the bacterium to an antibiotic concentration it is normally not sensitive to. 

 
The Ami-operon encodes an antibiotic importer, and inhibition triggers tolerance. While increased 

sensitivity profiles can guide the development of (re)sensitizing approaches, in contrast, the multitude of 
options that may lead to reduced antibiotic sensitivity (Fig. 3), could help in identifying (new) routes that 

may contribute to (the emergence of) antibiotic resistance. With lowered antibiotic sensitivity to 3 out of 4 
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antibiotic classes, the ami-operon is among genes with the greatest number of positive interactions. The 

operon forms a tight cluster in the interaction network (Fig. 3, 5a) and it is annotated as an oligopeptide 
transporter with no clear function. Two separate knockouts for SP_1888 (amiE) and SP_1890 (amiC) 

confirm decreased sensitivity to ciprofloxacin, vancomycin and gentamicin, and increased sensitivity to 
Synercid (Fig. 5b). There is limited evidence that the ami-transporter may have (some) affinity for at least 

two different peptides (P1 and P2) 47-49. These have been theorized to possibly function as signaling 
molecules and under certain circumstances may be generated by the bacterium itself 47-49. Both peptides 

were synthesized and while neither peptide affects growth of the WT or knockout mutants in the absence 
of antibiotics (Supplementary Fig. 4), the WT grows slightly better in the presence of gentamicin and 

peptide P2, but not P1 (Fig. 5b). This shows that some peptides may, at least partially, inhibit or occupy 
the ami-transporter, and thereby trigger decreased antibiotic sensitivity, in a similar manner as a knockout 

does. Besides peptides, the ami-transporter may be (non-selectively) transporting antibiotics into the cell, 

which could explain its effect on antibiotic sensitivity. To explore this, bacteria were exposed to 
ciprofloxacin or kanamycin and the internalized antibiotic concentration was determined through mass 

spectrometry for WT and both ami knockout mutants. In both mutants the amount of internalized 

ciprofloxacin was significantly lower (~1.7x in DamiE, and ~2.3x in DamiC), while the kanamycin 

concentration was found to be significantly lower in DamiC (~2x; Fig. 5c). This shows that a functional ami-

transporter increases the concentration of fluoroquinolones and 30S PSIs, suggestively by transporting 
them into the cell, and thereby, due to a higher internal concentration, enhancing the antibiotic’s inhibitory 

effects on growth. There are multiple examples that transporters can contribute to tolerance 50,51, which we 
recently showed is also the case for the ade transporter in Acinetobacter baumannii, which contributes to 

fluoroquinolone tolerance 7. However, those examples are mostly based on efflux pumps that actively 
decrease the antibiotic concentration in the cell through upregulation of such pumps. In contrast, with 

respect to the ami-operon it would be the reverse, i.e., inhibition instead of upregulation would lead to 

tolerance. To explore the effect on tolerance, the WT and DamiE were exposed to either 10xMIC of 

gentamicin or vancomycin over a period of 24hrs. Approximately 1% of the WT population survives 4hrs 

exposure to gentamicin, while none of the population survives exposure past 8 hrs. The DamiE population 
displays a slower decline in survival with 1% of the population surviving the first 8hrs (tolerant cells). At 

~10 hrs the decline ceases and the remaining population (~0.01%) survives at least up to 24hrs, which is 
representative of a persister fraction 21. In contrast, the WT and amiE mutant populations decline at similar 

rates when exposed to vancomycin, showing that inhibition of the ami-transporter can lead to tolerance 

and persistence in an antibiotic specific manner. 
 

Purine metabolism, (p)ppGpp and ATP production are tightly linked to altered ABX susceptibility 
and tolerance. Among the 21 functional groups, purine metabolism has some of the largest number of 
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positive ABX interactions, mostly to  b-lactams and glycopeptides (Fig. 3a, 6a). Moreover, two regulators 

(SP_1821/1979) associated with this pathway decrease sensitivity to  b-lactams and/or glycopeptides and 
two ‘neighboring’ genes with unknown function have either the same (SP_0830), or the opposite effect 

(SP_1446) on antibiotic sensitivity as their defined neighbor, suggesting they may be involved in the same 
process as their neighbor (Fig. 6a). Furthermore, the global interaction network positively links an ABC-

transporter (SP_0845-0848, Fig. 2c, 6a) with multiple genes in this pathway due to its similar profile. This 

operon is annotated as a putative deoxyribose-transporter, and to verify whether an interaction exists with 
purine metabolism, single and double knockouts were created between SP_0846 (the transporter’s ATP 

binding protein) and SP_0829/deoB. Their profiles suggest they do not affect growth in the absence of 
ABXs and have increased sensitivity to Synercid, which was confirmed in individual growth (Fig. 6b). 

However, when both knockouts are in the same background, their increased sensitivity to Synercid is 
masked. Thus, as indicated by the network, these results show that the ABC-transporter indeed has a 

genetic interaction with purine metabolism/salvage, but plays an unknown role. Importantly, this confirms 
that the global network includes valuable interactions that can be explored to uncover functional 

relationships. 

 
Furthermore, within purine metabolism the alarmone (p)ppGpp is synthesized from GTP and/or GDP. Like 

other bacterial species, S. pneumoniae likely responds to (some) ABXs via induction of the stringent 
response pathway52, in which relA (SP_1645) is the key player with both synthetase and hydrolase 

activity53. Additionally, SP_1097 is annotated as a GTP diphosphokinase and may be involved in the 

synthesis of pppGpp from GTP (Fig. 6a). Our data suggests, and we confirmed for the b-lactam cefepime 

(Fig. 6c), that when synthesis of the alarmone is inhibited by deletion of relA, similar to many other 

interactions in purine metabolism, this leads to reduced b-lactam and glycopeptide sensitivity (Fig. 6c). 

Moreover, while SP_1097, as predicted, does not change ABX sensitivity (Supplementary Table 2, Fig. 6), 

a double knockout of relA-SP_1097 seems to further decrease sensitivity to cefepime (Fig. 6c, Fig. 7a). 

Additionally, besides a change in growth, the single relA and double knockout (DrelA-SP_1097), also 

increases tolerance to cefepime by ~1000-fold at 24hrs (Fig. 7b). To understand how relA and SP_1097 

affect purine metabolism, we used LC/MS to measure (p)ppGpp, ADP, ATP, GDP and GTP. Additionally, 
we included SP_0831 a purine nucleoside phosphorylase involved in nucleotide salvage, which has the 

same ABX profile as DrelA (Fig. 6a, d), but should not directly affect (p)ppGpp synthesis. While (p)ppGpp 

is below the limit of detection during normal growth in any of the strains, as expected DrelA and the double 

mutant DrelA-SP_1097 are unable to synthesize the alarmone when exposed to mupirocin, a strong 

activator of the stringent response (Fig. 6e, Supplementary Table 9). In contrast, WT, DSP_0831 and 

DSP_1097 synthesize (p)ppGpp upon mupirocin exposure to a similar extent (Fig. 6e). Concerning the di- 
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and trinucleotides in the pathway, upon mupirocin exposure GTP and GDP are significantly reduced in WT, 

DSP_0831 and DSP_1097, likely because they are used for (p)ppGpp synthesis (Fig. 6f, Supplementary 

Table 9). In contrast, while ATP and ADP again remain constant for the DrelA mutants, ATP and ADP 

synthesis are significantly increased upon mupirocin exposure, especially for WT and DSP_1097. This 

suggests that during activation of the stringent response, synthesis from IMP is directed towards AMP, and 
not necessarily GMP, at least not enough to replenish GTP and GDP. Additionally, upon mupirocin 

exposure, ATP only minimally increases for DSP_0831, while it increases over 2-fold for WT and 

DSP_1097 (Fig. 6f). It has been shown for bacteria including Escherichia coli and Staphylococcus aureus 

that a decreased ATP concentration can decrease sensitivity to ABXs such as ciprofloxacin54. Additionally, 

in S. aureus (p)ppGpp overexpression has been associated with decreased sensitivity to linezolid55. Our 
data suggests that (p)ppGpp and ATP synthesis may be intrinsically linked, i.e., at least in S. pneumoniae 

the inability to produce the alarmone also results in lowered ATP synthesis, which is associated with a 

lowered ABX sensitivity to  b-lactams and glycopeptides. However, DSP_0831 shows that even if (p)ppGpp 

can be synthesized, modulation of purine metabolism, for instance through the salvage pathway, can result 

in decreased ATP synthesis, and can lead to lowered ABX sensitivity. Importantly, in many bacterial 
species, alarmone production is generally assumed to be triggered in response to different types of stress 

and has been shown to affect a large variety of processes including nucleotide synthesis, lipid metabolism 
and translation. (p)ppGpp is thereby a ubiquitous stress-signaling molecule that enables bacteria to 

generate a response that is geared towards overcoming the encountered stress. However, contradictory 
results between species indicates a possible non-uniformity across bacteria, leaving much to be learned 

about how the alarmone and the processes it can control fit into the entire organismal (response) network 
52. Our data suggests that the inability (i.e., due to mutations) to generate the alarmone in S. pneumoniae 

in response to  b-lactams and glycopeptides is linked to reduced ATP, which under specific circumstances 

may be an optimal response, as it results in decreased ABX sensitivity, and thereby a higher probability to 
survive the insult (Fig. 6c, 7a, b).  

 
There are a multitude of predictable pathways that lead to tolerance in vivo in an antibiotic 

dependent manner. To further confirm that antibiotic sensitivity can be decreased by inhibiting a variety 
of processes, knockouts (KOs) were generated for fourteen mutants from 8 different processes. Thirteen 

mutants displayed an increased ability to grow in the presence of an ABX compared to the WT, and at 
least 8 mutants had an increased ability to survive high level exposure to an ABX (5-10xMIC) for at least 

24 hours (Fig. 7a, b, Supplementary Table 8). Note that we validated 49 single KO genotype x phenotype 

associations in this study, with an equal distribution across the entire spectrum of ABX sensitivity (Fig. 1e, 
Supplementary Table 8). These data highlight that Tn-Seq data can be used to uncover a genome-wide 

‘tolerome’, composed of a multitude of genes, pathways and processes that when modulated can decrease 
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antibiotic sensitivity and/or trigger tolerance in vitro in an ABX dependent manner. Obviously, the selection 

regime in vivo is far more complex and stricter than in a test tube, which raises the question whether many 
of the in vitro tolerome options would be available in vivo as well. To explore this, all the Tn-Seq data with 

a positive fitness in the presence of at least one antibiotic was combined with in vivo Tn-Seq data and 
filtered for those genes with no or only a small fitness defect predicted in vivo during nasopharynx 

colonization or lung infection (Fig. 7c, Supplementary Table 2). Two genes were selected that we had 
confirmed for decreased ABX sensitivity in vitro: 1) SP_0829/deoB synthesizes Ribose-1P and is involved 

in purine metabolism (Fig.6A). DdeoB has no effect on in vitro growth (Fig. 7a, d), it decreases sensitivity 

to cefepime during growth (Fig. 7a, d), but does not affect survival/tolerance (Fig. 7b); 2) SP_1396/pstA is 

the ATP binding protein of a phosphate ABC transporter (Supplementary Fig. 3). DpstA has no effect on 

in vitro growth (Fig. 7a, d), it decreases sensitivity to meropenem during growth (Fig. 7a, d), and increases 
survival/tolerance (Fig. 7b). Both mutants were mixed with WT in a 1:1 ratio and used in an in vivo mouse 

infection competition model as we have done previously 18. Of the infected mice, half were administered 
antibiotics at 16hrs post infection, and were sacrificed 6hrs later to determine the strain’s competitive index 

(CI) (Fig. 7e). Importantly, while both mutants may have a slight disadvantage compared to the WT when 

colonizing the lung or nasopharynx, their CI increases significantly in the presence of ABXs, leading to 
increased survival compared to the WT (Fig. 7e, Supplementary Table 10). Combining antibiotic- with in 

vivo Tn-Seq thus confirms the existence of a wide-array of possible alterations of specific genes, pathways 
and processes that can have a beneficial effect in vivo in the presence of antibiotics. Such changes could 

thereby contribute to escape from antibiotic pressure and even create a path towards the emergence of 
antibiotic resistance.  

 
With the possibility that some selective pressures in mice are similar in humans, this raises the possibility 

that stop codons in genes predicted by Tn-Seq to decrease antibiotic sensitivity while having no more than 
a minimal in vivo defect in the absence of ABXs, could be enriched for in antibiotic resistant clinical isolates. 

To test this hypothesis 4 gene-sets were compiled consisting of those that upon disruption: 1) decrease 

antibiotic sensitivity in at least 1 antibiotic and have no strong defect in vivo; 2) decrease antibiotic 
sensitivity in at least 1 antibiotic and have a defect in vivo; 3) have little to no effect on antibiotic sensitivity 

and in vivo; 4) have no effect or increase antibiotic sensitivity and have a defect in vivo (Fig. 8a, b; 
Supplementary Fig. 5). Thousands of strains were selected from the PATRIC56,57 database that could be 

split into a group of co-trimoxazole (SXT) resistant and a group of b-lactam resistant strains, and each 
group was matched with an equal number of sensitive strains from the database. In all strains in the SXT 

and  b-lactam groups, irrespective of resistant or sensitive status, the number of stop codons in gene sets 

1 and 3 are highest, which reflects the Tn-Seq predicted in vivo effects, i.e., while gene sets 1 and 3 contain 
mostly genes with potentially neutral effects, gene sets 2 and 4 contain many genes that are suggested to 
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have a defect in vivo when disabled (e.g. with a stop codon) (Fig. 8c). Moreover, SXT resistant isolates in 

gene set 1 more often contain a stop codon compared to sensitive strains, and in  b-lactam resistant 
isolates this is true for gene-sets 1-3 (Fig. 8d). While these are not ideal comparisons, for instance the 

entire ABX profile is not clear for many strains, different changes than premature stops could have ABX/in 
vivo modulating effects, strains could have experienced different ABX and/or in vivo selective pressures, 

and genetic changes can be strain-background dependent, it shows that genetic changes that can affect 
ABX and/or in vivo sensitivity, readily occur in clinical samples. This in turn underscores that ongoing 

infections may consist of variants that enable different paths to adjusting to, or overcoming a challenging 

host/ABX environment.  
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CONCLUSION 

The emergence and increase in antibiotic resistance among most bacterial pathogens is a continuously 
developing problem with several important drivers, which include: 1) a lagging development of new drugs 

and treatment strategies; 2) a lack of (rapid) diagnostics and prognostics; and 3) an incomplete 
understanding of how antibiotic resistance develops. Moreover, these drivers are inherently connected 

making it a complex problem to solve. First, the ability of bacteria to evolve resistance elicits an arms-race 
that requires the development of new drugs and treatment strategies to keep the balance of infection-

control tipped in our favor. Thus, while developing new drugs would keep the arms-race in place, the ability 
to slow or prevent the emergence of resistance could resolve the status quo. Furthermore, even though it 

is critical to understand how and under which circumstances resistance evolves, the applicability of this 
knowledge depends on the availability of diagnostics that could inform on the emergence of resistance 

(precursors) and thereby guide and enable timely, tailored and targeted treatments. To progress towards 

a comprehensive understanding of how an infection is developing in the absence or presence of treatment, 
and how to decide what to do next, we believe that a detailed genetic understanding of how a bacterium 

deals with and overcomes stress, as well as its genetic potential to achieve this, are key aspects. In this 
study we contribute to reaching such an understanding by building and exploring a detailed atlas of ABX 

sensitivities, which highlights how modulation of specific genes, pathways and processes does not only 
result (as expected) in increased ABX sensitivity, but almost just as often in decreased ABX sensitivity. 

We show that such an atlas can be used to identify leads for gene function, to uncover the genome’s 
underlying architecture and genetic relationships among genes, for the identification of new drug targets, 

and the development of new proof-of-principle antimicrobial (ABX sensitizing) strategies. Most importantly, 
these data identify genome-wide genetic changes that show how modulation of genes, pathways and 

processes can lead to lowered antibiotic sensitivity and tolerance, not only in vitro, but also in vivo. 

Moreover, we show that mutations that have the potential to trigger the same phenotypes readily occur in 
patients. These detailed data on reduced antibiotic sensitivities thereby suggest that far more potential 

routes to ABX-escape, and potentially resistance, may exist than assumed. However, it does not exclude 
that (multiple) general mechanisms exist that can trigger such decreased sensitivities. For instance, the 

overlap in ABX sensitivity profiles (e.g. decreased sensitivity to CWSIs) that emerge from modulating 
specific parts of glycolysis, pyruvate, ascorbate, glucose and purine metabolism, protein turnover and 

(p)ppGpp and c-di-AMP synthesis (Supplementary Fig. 2 and 3), could possibly all be linked by a common 
effect, that may at least partially come from a decreased ATP availability. Moreover, while a slower growth 

rate is also often linked to decreased ABX sensitivity and tolerance, we show that it is not the driving force 

behind our results as most of the created KOs have no effect on growth in the absence of ABXs. Importantly, 
we believe these data are both an argument and potential starting point for a platform to predict clinically 

relevant mutations and determinants of antibiotic resistance/tolerance. Consequently, these results 
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underscore the importance of understanding the genetics of variants with altered drug susceptibility, as 

their genetics makes them diagnostically identifiable and trackable, while their often-associated collateral 
sensitivities to other ABXs or drugs could make them targetable.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.26.477867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 

 
Bacterial culturing, growth curves and tolerance experiments. Experiments were performed with S. 

pneumoniae strain TIGR4 (NCBI Reference Sequence: NC_003028.3). TIGR4 is a serotype 4 strain that 
was originally isolated from a patient from Norway with Invasive Pneumococcal Disease (IPD) 58,59. All 

‘SP_’ gene numbers in the tables and figures are according to the TIGR4 genome. Single gene knockouts 
were constructed by replacing the coding sequence with a chloramphenicol and/or spectinomycin 

resistance cassette as described previously 18,35,36. S. pneumoniae was grown on sheep’s blood agar 
plates or statically in THY, C+Y or semi-defined minimal media at pH 7.3, with 5 µl/ml Oxyrase (Oxyrase, 

Inc), at 37oC in a 5% CO2 atmosphere 15. Where appropriate, cultures and blood plates contained 4 µg/ml 
chloramphenicol (Cm) and/or 200 µg/ml spectinomycin (Spec). Single strain growth assays were 

performed three times using 96-well plates by taking OD600 measurements on a Tecan Infinite 200 PRO 

plate reader or BioSpa 8 (BioTek). Tolerance experiments were performed by exposing exponentially 
growing bacteria to ~10xMIC of an antibiotic. Samples were taken at different time-points over a 24hr 

period, washed with PBS and plated on blood-agar for enumeration. 
 

Tn-Seq experiments, fitness (W) and enrichment analyses. Six independent transposon libraries, each 
containing ~10,000 insertion mutants, were constructed with transposon Magellan6 in WT-T4 as described 

previously 14,18,35,60. Selection experiments were conducted in rich medium with glucose as a carbon source 
in the presence or absence of 20 different antibiotics at a concentration that slows growth by ~30-50% 

(Supplementary Table 1). Sample preparation, Illumina sequencing and fitness calculations were done as 
described 14,18,35,40,60,61. In short, for each insertion, fitness Wi, is calculated by comparing the fold expansion 

of the mutant relative to the rest of the population by using an equation that we specifically developed to 

have fitness represent the growth rate of a mutant18,35,61. All of the insertions in a specified region or gene 
are then used to calculate the average fitness and standard deviation of the gene knockout in question. 

This means that Wi represents the growth rate per generation, which makes fitness independent of time 
and enables comparisons between conditions. To determine whether fitness effects are significantly 

different between conditions three requirements have to be fulfilled: 1) Wi is calculated from at least three 
data points, 2) the difference in fitness between the presence and absence of antibiotic has to be larger 

than 15% (thus Wi - Wj = < -0.15 or > 0.15), and 3) the difference in fitness has to be significantly different 
in a one sample t-test with Bonferroni correction for multiple testing18,35,61. To determine whether a 

particular process or pathway is specifically involved in responding to an antibiotic-group, a hypergeometric 

test was performed to test for enrichment. The distribution of significant genes within each process was 
compared to the distribution of the pathways in the overall genome. A p-value and Benjamini-Hochberg 
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adjusted p-value were calculated for each process and antibiotic group, where an adjusted p-value below 

5% is considered to identify statistical enrichment. 
 

Co-fitness network construction and SAFE analysis. A gene x condition matrix was constructed to 
identify correlating fitness profiles and built a co-fitness network. The matrix is based on 20 antibiotic 

conditions from experiments performed here, supplemented with 17 conditions from van Opijnen and 
Camilli 201218 (Supplementary Table 3). The additional conditions consist of Sucrose, Fructose, Cellobiose, 

Raffinose, Sialic Acid, Galactose, Mannose, Maltose, GlcNac, Bipyridyl, transformation, hydrogen-
peroxide, methyl-methane sulfonate, pH6, temperature, Norfloxacin. Genes with missing data were 

removed resulting in a 1519 gene x 37 condition matrix (Supplementary Table 3). Genes and conditions 
were correlated using a Pearson's correlation coefficient and a Spearman’s correlation coefficient. 

Resulting in two 1519x1519, gene vs gene matrices. A significance cutoff was applied and correlations 

³0.75 were retained and used as edges to build a co-fitness network consisting of 1519 genes and 2399 
edges. An edge-weighted spring embedded layout was applied with Cytoscape 62, with the absolute 

correlation value as the edge weight. This results in a network with several major clusters and multiple 
genes unconnected to the main network. A stability test was performed to determine the robustness and 

quality of each edge in the network by building a correlation matrix from partial data. 30 conditions were 
selected 100 times to build a correlation matrix and using the same cutoff criteria a co-fitness matrix was 

compiled. Every edge with a correlation value above the threshold was assigned a 1 and every edge below 

the cut-off 0. This resulted in 100 binary matrices which were then summated, resulting in every gene vs 
gene interaction being assigned a stability score with a value N out of 100. A SAFE (Spatial Analysis of 

Functional Enrichment) analysis41,42 on the co-fitness network was performed with Cytoscape. A SAFE 
analysis is geared towards defining local neighborhoods for each node within a network and calculates an 

enrichment score for every functional attribute. It then highlights the areas that are the most enriched for 
that attribute. Attributes were assigned by merging KEGG63 pathway annotation and available functional 

category annotations, which covers 94% of the genes within the network. The distance threshold was set 
to the 1st percentile of the map-weighted distance, the Jaccard similarity index was set to 0.5, and nodes 

in different landscapes were retained. 
 

CozEb (SP_1505) cloning and protein expression. Cloning and expression of SP_1505 was undertaken 

commercially (Genscript). Codon-optimized SP_1505 was cloned into pET28a with a C-terminal His-tag. 
E. coli BL21 (DE3) was transformed with recombinant plasmid. A single colony was inoculated into LB 

medium containing kanamycin; cultures were incubated at 37°C at 200 rpm and IPTG was introduced for 
induction. SDS‐PAGE and Western blot were used to monitor the expression. Protein was purified from 

1L batch culture in Terrific Broth. Cells were harvested by centrifugation, cell pellets were lysed by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.26.477867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/


sonication, and supernatant after centrifugation was kept for future purifications. SP_1505 protein was 

obtained by three‐step purification using Ni column, Superdex 200 column and Q Sepharose. Fractions 
were pooled and dialyzed followed by 0.22 μm filter sterilization. Protein was initially analyzed by SDS‐

PAGE and Western blot by using standard protocols for molecular weight and purity measurements. The 
primary antibody for Western blot is Mouse‐anti‐His mAb (GenScript, Cat.No.A00186). The concentration 

was determined by BCA protein assay with BSA as a standard. Final protein product was stored in 50 mM 
Tris-HCl, 150 mM NaCl, 10% Glycerol, 0.2% DDM, pH 8.0 and stored at -80˚C.  

 
CozEb (SP_1505) antibody generation, purification and quantification. 

A single rabbit was vaccinated by a commercial vendor (Rockland) with recombinant SP_1505 via the 
following schedule. Rabbit was immunized via intradermal route with 0.1 mgs SP_1505 with Complete 

Freund’s Adjuvant (CFA) followed by an intradermal 0.1 mg booster injection with Incomplete Freund’s 

Adjuvant IFA as an adjuvant at day 7, followed by two subcutaneous 0.1 mg booster injections at days 14 
and 28 with IFA. Terminal bleed was collected on day 52 following challenge. SP_1505 IgG was purified 

from immunized rabbit serum using protein G resin and columns (Pierce) according to manufacturer 
specifications. Following purification, antibody was concentrated using 10,000 MWCO centrifugal filters 

(Millipore) and was dialyzed three times against PBS in a 3.5kDa Slide-A-Lyzer dialysis cassette (Thermo 
Scientific). Antibody specificity was determined by Western Blot using the parental wild-type and 

corresponding deletion mutants. 
 

Cell fractionation, TCA precipitation and Western Blotting. 
Strains were grown in Todd-Hewitt broth to OD 0.4. Following this, cells were fractionated as previously 

described64. Briefly, 2mL of culture was centrifuged at maximum speed. The pellet was resuspended in 

cell wall digestion buffer [1x Protease inhibitor cocktail (Roche), 300U/uL mutanolysin, 1mg/mL lysozyme 
in a 30% sucrose-10mM Tris (pH 7.5) buffer with 20mM MgCl2 and 20mM MES (pH 6.5)] and incubated 

at 37°C for 60 minutes. After centrifugation, the supernatant containing the cell wall was saved. Pelleted 
protoplasts were snap frozen in a dry ice ethanol bath, then treated with MgCl2, CaCl2, DNase I (Qiagen), 

and RNAse A (Roche) in 50mM Tris buffer (pH 7.5) with 20mM HEPES (pH 8.0), 20mM NaCl, and 1mM 
DTT with protease inhibitors. The pellet was incubated on ice for one hour, then spun at max speed for 30 

minutes at 4°C. The supernatant, which contained the cytoplasmic fraction, and the pellet, which contained 
the membrane fraction, were saved. 100% TCA was added to the samples so that the final concentration 

of TCA was 20%. Samples were incubated on ice for 30 min, then centrifuged at full speed at 4°C to pellet 

precipitated protein. The TCA supernatant was aspirated, and the pellet was washed twice with 100% 
acetone, then air-dried at 95°C for 1 minute. Pellets were resuspended in NuPage LDS sample buffer 

(Thermo Scientific) and boiled at 100°C for 10 minutes. Samples were loaded into NuPage SDS-PAGE 
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gels (Thermo Scientific) and transferred to nitrocellulose membranes using the XCell Sure-Lock mini-cell 

electrophoresis system (Thermo Scientific). Nitrocellulose membranes were blocked overnight in 5% 
NFDM and treated with primary antibody against SP_1505 at a concentration of 1:500. After washing, 

membranes were treated with secondary antibody goat anti-rabbit IgG-HRP (Bio-Rad) at a concentration 
of 1:3000. Membranes were developed using the SuperSignal West Dura Extended Duration Substrate 

(Thermo Scientific) and were visualized using a BioRad ChemiDoc MP imaging system. 
 

Antibiotic-antibody targeted in vitro bacterial survival. 
Bacteria were inoculated from TSA plates into C+Y media, at OD 0.4, culture was split into 1 mL aliquots 

and treated with vancomycin (0.25 µg/ml) or daptomycin (0.5 µg/ml). For antibody treatment, strains were 

grown in C+Y media until OD 0.3. At this time, samples were treated with SP_1505 antibody or control 
rabbit IgG antibody (Sigma) at concentrations indicated in figure legends, incubated for 30 minutes, 

followed by antibiotic treatment. At 4hrs post antibiotic addition samples were plated for bacterial 
enumeration. 

 
Antibiotic-antibody mouse challenge. 

Isoflurane-anesthetized 7-week-old female BALB/c mice were inoculated intranasally with 106 CFU of wild 
type pneumococcal cells in a volume of 100 µL. Eight hours following the challenge mice were treated with 

vehicle (Plasmalyte), vancomycin (0.25 mg/kg), daptomycin (2.5mg/kg), a-SP_1505 antibody (100 uL), 

and control rabbit IgG. At 16 hours following antibody/antibiotic treatment (24hr post-challenge) mice were 
euthanized, and lungs and chest cavity blood were removed for quantification of bacteria. Whole lungs 

were washed twice in PBS, and lung tissue was subsequently homogenized in 1 mL PBS. Homogenized 
lung samples were centrifuged at 300xg, and bacteria-containing supernatant was plated onto Neomycin-

containing blood agar plates for CFU titers.  
 

Peptide production. 
Peptide P1 (Ser-Asn-Gly-Leu-Asp-Val-Gly-Lys-Ala-Asp) and peptide P2 (Ala-Lys-Thr-Ile-Lys-Ile-Thr-Gln-

Thr-Arg) were synthesized on a preloaded Wang resin using the standard Fmoc/tBu chemistry for peptide 
synthesis. All coupling reactions were carried out in DMF using HBTU as the coupling reagent, 0.4 N-

Methyl Morpholine in DMF as base. After each coupling, deprotection of the Fmoc group was done by 

using 20% piperidine in DMF. After completion of synthesis, peptides were cleaved from resin using TFA 
and purified using RP-HPLC. The integrity and purity of the peptides were confirmed using LC-MS. 

 
Antibiotic accumulation. 
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Antibiotic accumulation was determined as previously described65. S. pneumoniae were grown in THY to 

OD 0.6. Cells were pelleted, washed twice in PBS and resuspended in 3.5mL PBS. 1mL of cells were 

incubated with 50µM antibiotic for 10 minutes at 37oC. Following incubation, 800µL of drugged cells were 

spun (3min, 13,000xg) through 700µL of a 9:1 mix of AR20 and high temperature silicon oils (cooled to -
80oC), after which the supernatant of silicone oil and free compound were carefully removed. For lysis, 

pelleted cells were resuspended in 200µL dH2O and lysed via bead beating (3x 15s at 5m/s). Debris was 

pelleted (10’ at 20,000xg) and 100µL of supernatant was removed and saved. Cell debris was resuspended 

in the remaining 50µL dH2O and mixed with 200µL methanol. Potential cell debris was pellet again and 

150µL of the methanol extract was mixed with the 200µL dH2O supernatant from the previous step. The 

extract was pelleted one final time (10’ at 20,000g) before being filtered (0.22µm).  

 
Samples were analyzed with a Waters Acquity M Class series UPLC system and Xevo G2 QTOF tandem 

MS/MS with Zspray. 100nl of extract was separated using a Phenomenex Kinetex 2.6 μm XB-C18, 100 Å 
(300 μm × 150 mm) column with solvent A, 0.1% formic acid in water, and solvent B, 0.1% formic acid in 

acetonitrile. The inlet method utilized a flow rate of 8 μl min−1 with the following gradient: 0−4 min, 99.9% 
solvent A and 0.1% solvent B; 4–5 min, 10% solvent A and 90% solvent B; 5–6 min, 99.9% solvent A and 

0.1% solvent B. Tandem mass spectra were acquired with the following conditions: Ciprofloxacin: CV:20, 

CE:25, m/z ion: 333.14.®245.11; Kanamycin: CV:40, CE:20, m/z ion: 485.25®163.11. High-resolution 

spectra were calibrated by co-infusion of 2 ng ml−1 leucine enkephalin lockspray (Waters). Data were 

quantified using Waters MassLynx software where the AUC was determined by integrating the 
corresponding daughter peak of the parent compound. Concentrations of the unknown compounds were 

determined by the linear fit of the corresponding standard curve. Concentrations are reported as the 
average of three biological replicates. 

 
(p)ppGpp induction and LC/MS analysis. S. pneumoniae strains were grown at 37 °C in 10 mL ThyB to 

an OD of ~0.5. Cultures were split into 5 mL aliquots for mupirocin-treated versus untreated controls. To 
induce the stringent response and ppGpp production, mupirocin was added in a final concentration of 25 

µg/mL and incubated at 37 °C for 30 minutes. Cells were centrifuged at 6000× g for 5’, supernatant was 

discarded and cell pellets were frozen at -80 °C. For LC/MS analysis cell pellets were resuspended in 2 ml 
cold methanol, and 150 pmol of [13C10]-GTP (Sigma) was added and incubated at -80 °C for 30 minutes. 

Samples were centrifuged at 4000 x g for 10’, and the supernatant was removed and dried overnight in a 
Savant Speedvac Concentrator SPD 1010 (Thermo Fisher). Samples were analyzed using a Shimadzu 

Prominence UFLC attached to a QTrap 4500 equipped with a Turbo V ion source (Sciex). Samples (5 µL) 

were injected onto a SeQuant ZIC-cHILIC, 3 µm, 2.1 x 150 mm column at 30 °C (Millipore) using a flow 
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rate of 0.3 ml/min. Solvent A was 25 mM ammonium acetate, and Solvent B was 75% acetonitrile + 25 

mM ammonium acetate. The HPLC program was the following: starting solvent mixture of 0% A/100% B, 
0 to 2 min isocratic with 100% B; 2 to 4 min linear gradient to 85% B; 4 to 17 min linear gradient to 65% B; 

17 to 22 min isocratic with 65% B; 22 to 25 min linear gradient to 100% B; 25 to 30 min isocratic with 100% 
B. The QTrap 4500 was operated in the negative mode, and the ion source parameters were: ion spray 

voltage, -4500 V; curtain gas, 30 psi; temperature, 400 °C; collision gas, medium; ion source gas 1, 20 psi; 
ion source gas 2, 35 psi; declustering potential, -40 V; and collision energy, -40 V. The MRM transitions 

are: ppGpp, 602.0/159.0; pppGpp, 682.0/159.0, and [13C10]-GTP, 522.0/159.0. [13C10]-GTP was used as 
the internal standard. The system was controlled by the Analyst software (Sciex) and analyzed with 

MultiQuant™ 3.0.2 software (Sciex). Peaks corresponding to ppGpp and pppGpp were quantified relative 
to the internal standard. The limit of detection for ppGpp and pppGpp is 5 pmol, and for GTP, GDP, ATP 

and ADP 0.05pmol. 

 
In vivo mouse competition experiment wo/w antibiotics. In vivo competition experiments were 

essentially performed as previously described (van Opijnen and Camilli 2012). Specifically, groups of at 
least 12 outbred 4-6-week-old Swiss Webster mice (Taconic Inc.,) were anesthetized by isoflurane 

inhalation and challenged intranasally (i.n.) with 50 µl, ~1.5 × 107 CFU, bacterial suspension in 1X PBS. 
Each bacterial suspension contained a 1:1 mixture of S. pneumoniae TIGR4 wildtype and ΔSP_0829 or 

ΔSP_1396. The challenge dose was always confirmed by serial dilution and plating on blood agar plates. 
Infected mice receiving antibiotic treatment were administered either 1 mg/kg cefepime (WTvsΔSP_0829) 

or 10 mg/kg meropenem (WTvsΔSP_1396) 16 hours post-bacterial challenge by intraperitoneal (i.p.) 
injection. Antibiotic dosing was previously determined to reduce bacterial loads 10-100-fold in vivo. Mice 

were euthanized by CO2 asphyxiation at 6 hours post-antibiotic administration (or 22 hours post-bacterial 

challenge). Blood by cardiac puncture, nasopharynx lavage, and total homogenized lungs were collected 
from each animal to determine bacterial burden by serial dilution and plating blood agar plates as 

previously described18. 
 

Clinical-strain stop-codon analysis. 
Four gene-sets were compiled to test for the differential occurrence of stop-codons in patient samples. 

Each gene-set consists of 34 genes and are defined as: Set 1 consists of genes that when disrupted lead 
to a significant decrease in antibiotic sensitivity in the presence of at least one antibiotic (in vitro ABx fitness 

positive), and have no fitness defect in lung and nasopharynx (in vivo neutral or positive); Set 2 consists 

of genes that when disrupted lead to a significant decrease in antibiotic sensitivity in the presence of at 
least one antibiotic (in vitro ABx fitness positive), and have a significant fitness defect in lung and 

nasopharynx (in vivo fitness negative); Set 3 consists of genes that when disrupted have no fitness benefit 
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in any of the antibiotics (in vitro ABx fitness neutral), but with a significant fitness benefit in lung and 

nasopharynx (in vivo fitness positive); Set 4 consists of genes that have decreased fitness in the presence 
of antibiotics (in vitro ABx fitness negative), and that have a significant fitness defect of >15% in lung and 

nasopharynx (in vivo fitness negative). The PATRIC database was screened for antibiotic resistant S. 
pneumoniae isolates. There is a potential risk that isolates in the database are clonally related, which could 

mean that multiple isolates would contain exactly the same sequence and for instance the same stop 
codon, which could bias the analysis. To reduce this potential bias candidate isolates were limited to those 

belonging to a different MLST type. While this considerably reduced the number of potential isolates, we 

were able to collect 533  b-lactam resistant and 1147 co-trimoxazole resistant strains. Moreover, an equal 

number of non-resistant strains were compiled. From each genome, gene sequences were extracted that 

match those from each of the 4 gene-sets. Each gene was scanned for premature stop codons occurring 
in the first 90% of a gene. For each gene-set the number of strains with at least one stop codon in the 

gene-set were recorded, as well as the total number of stop-codons in all genes in a set. To test for 
differences in the number of isolates containing a stop codon within (susceptible vs. resistant) and between 

sets a Fisher’s exact test was performed.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.26.477867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477867
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE LEGENDS 

 
Figure 1. A genome-wide atlas of negative and positive fitness effects, highlights a multitude of 

processes that can modulate antibiotic susceptibility. a. Project setup and overview. Tn-Seq is 
performed with S. pneumoniae TIGR4, which is exposed to 20 antibiotics at a concentration that reduces 

growth by 30-50%. Genome-wide fitness is determined for each condition, suggesting a multitude of 
options exists to increase as well as decrease antibiotic sensitivity. A co-fitness network is constructed by 

adding Tn-Seq data from 17 additional conditions, which through a SAFE analysis highlights functional 
clusters, and connects known and unknown processes. The genome-wide atlas and network are used to 

develop an antibiotic-antibiotic combination strategy, and to map out the wide-ranging options that can 
lead to decreased antibiotic sensitivity in vitro and in vivo and that are associated with a higher rate of stop-

codons in clinical samples. b. There are a large number of genetic options that can modulate antibiotic 

sensitivity; with significant increased ( DW < -0.15) and decreased sensitivity ( DW > 0.15) split over all 
antibiotics almost equally likely. c. Additionally, increased and decreased antibiotic sensitivity are 

distributed across a wide variety of functional categories. d. Enrichment analysis shows that some 
pathways/processes such as glycolysis are relatively often involved in modulating responses to antibiotics, 

while other processes are more specific. e. Validated growth experiments performed throughout the project 
highlight the Tn-Seq data is of high quality. S.E.M. bars are shown. 

 

Figure 2. A co-fitness network identifies tight genetic clusters of known and unknown genes and 
processes. a. A 1519x1519 gene correlation matrix based on Tn-Seq data from 37 conditions generates 

a network with genes as nodes, and edges as interactions with a stability score and thresholded 
correlation >0.75. The network contains one large connected component and multiple smaller components 

placed underneath; b. A SAFE analysis identifies at least 11 clusters within the network that represent 
specific pathways and processes; c. The network contains highly connected clusters of smaller groups of 

genes for instance those within the same operon such as cluster I. the ami-operon, a putative oligo-peptide 
transporter; II. the dlt-operon which decorates wall and lipoteichoic acids with d-alanine; and III. the pst-

operon a phosphate transporter. Several additional clusters are highlighted containing annotated and 
unannotated genes, connected through known and unknown interactions including cluster IV, which 

contains genes involved in purine metabolism (green nodes) and a putative deoxyribose transporter 

(yellow; boxed 1.); V. genes involved in threonine metabolism (blue) and several genes located as 
neighbors to SP_2066/thrC with unclear functions (boxed 2), including a regulator (SP_2062; purple) and 

a transporter (SP_2065; yellow); VI. genes involved in secretion of serine rich repeat proteins (SRRPs), 
which are important for biofilm formation and virulence, grey-nodes are unannotated genes. 
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Figure 3. A multitude of options, pathways and processes can simultaneously lead to increased 

and decreased antibiotic susceptibility. a. Genes with at least one significant phenotype are split over 
21 groups according to a pathway or process they belong to, which highlights how modulation of most 

pathways can lead to increased (negative) and decreased (positive) antibiotic sensitivity. b. While 
sensitivity to each antibiotic (group) can be increased by knocking out genes in the genome (negative), 

sensitivity can be decreased (positive) almost as often for most ABXs, except for Synercid, and to a lesser 
extent rifampicin, where most effects are negative. c. Detailed view of 7 out of 21 groups/processes 

highlighting how modulation of specific targets within each process leads to changes in antibiotic sensitivity. 
Each group is indicated with a number which is the same as in a. Where possible genes are ordered 

according to their place in a process/pathway, and gene numbers (SP_) are combined with gene names 
and annotation. Each indicated gene is combined with an ‘antibiotic sensitivity bar’ indicating whether 

disruption leads to increased (red/negative) or decreased (green/positive) sensitivity to a specific or group 

of antibiotics. When phenotypic responses are the same, multiple genes are indicated with a single bar 
(e.g. SP0282/SP0283/SP0284 in glycolysis, or SP0413/SP1013/SP1361/SP1360 in Aspartate 

metabolism). Gene numbers in blue have no effect on growth in the absence of antibiotics when knocked 
out, while gene numbers in purple have a significant growth defect in the absence of ABXs (see for detailed 

fitness in the absence and presence of antibiotics Supplementary Table 2). Essential genes are not 
indicated and genes with an asterisk have a partial or tentative annotation that has not been resolved. All 

21 groups are listed in Supplementary Figures 2 and 3. 
 

Figure 4. CozEb an integral membrane protein increases antibiotic sensitivity and can be targeted 
with an antibody. a. cozEb/SP_1505 is tightly clustered with cell division and cell wall metabolism genes, 

it is predicted to increase sensitivity to glycopeptides and the lipopeptide daptomycin, and has a decreased 

fitness in the mouse lung and nasopharynx. b. Growth curves of  DcozEb validate its increased sensitivity 
to daptomycin and vancomycin. c. CozEb has 8 transmembrane domains, which generates a ~30Kd 

product (BSA is shown as a control). The cloned protein was used to raise antibodies, which proofed to be 

specific for a product in the WT membrane, but does not bind anything in  DcozEb, indicating the antibodies 

are specific for the membrane protein CozEb. d. Incubation of WT for 2hrs with vancomycin or daptomycin 

and in the presence of CozEb antibody, slightly but significantly decreases bacterial survival. e. An in vivo 

lung infection with WT or  DcozEb confirms the mutant is less fit in vivo. While challenging the WT with 

daptomycin and IgG does not affect bacterial survival, a challenge with daptomycin and CozEb-specific 
antibodies, significantly reduces the recovered CFUs 24hrs post infection. Significance is measured 

through an ANOVA with Dunnett correction for multiple testing: *p<0.05, **p<0.01, ***p<0.001. 
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Figure 5. Modulation of the ami transporter decreases sensitivity to many antibiotics. a. The ami-

operon forms a tight cluster, and upon knockout is predicted to decrease sensitivity to most antibiotics and 
increase sensitivity to Synercid. b. Growth curves of individual knockout mutants of amiE and amiC validate 

changes in antibiotic sensitivity and suggest the transporter phenotypically responds to peptide P2. c. 
Intracellular antibiotic accumulation analysis shows that the WT strain with an intact transporter reaches a 

higher intracellular antibiotic concentration, suggesting the transporter is involved in importing antibiotics, 
explaining why a knockout or occupation with a peptide such as P2, can lead to decreased antibiotic 

sensitivity. d. While modulation of the transporter leads to decreased sensitivity to gentamicin and 
vancomycin during growth, it leads to increased survival (i.e., tolerance) to gentamicin, but not vancomycin. 

Significance is measured through an ANOVA with Dunnett correction for multiple testing: *p<0.05, **p<0.01, 
***p<0.001. 

 

Figure 6. Modulation of purine metabolism affects alarmone and ATP synthesis and is linked to 
changes in ABX sensitivity. a. Several key steps of purine metabolism and their antibiotic sensitivity bars 

are indicated, with the same color coding as in Fig. 3. Note that for completeness SP_1097 is listed as 
well, for which we found no change in ABX sensitivity, which is denoted with ‘np’ for no phenotype. Also 

indicated is the putative deoxyribose transporter (SP_0845-0848) and its co-fitness interactions, which is 
shown as a high-connectivity cluster in Fig. 2. b. To determine whether the predicted interaction between 

SP_0845-0848 and purine metabolism leads to specific phenotypic changes, single knockouts were 
generated for deoB/SP_0829 and SP_0846, as well as a double knockout. While mutants and WT grow 

equally well in the absence of antibiotics, in the presence of Synercid, as predicted and indicated by their 
ABX sensitivity bar, the single knockouts display a higher sensitivity to the drug then the WT. The double 

mutant’s fitness in the presence of Synercid should change according to the multiplicative model if they 

act independently; i.e. their combined sensitivity should be the multiplicative of the individuals and thus 
further increase. Instead, the double knockout suppresses the increased sensitivity phenotype of the single 

mutants, indicating that the positive interaction that is found in the co-fitness network leads to a positive 
genetic interaction between these genes. c. Single and double knockouts of SP_1097 and SP_1645/relA 

grow just as well as WT in the absence of antibiotics. As predicted SP_1097 is equally sensitive to cefepime 

as the WT, while DrelA has decreased sensitivity as indicated by its ABX sensitivity bar in a. Additionally, 

the double knockout has decreased sensitivity to cefepime, indicating the dominant phenotype of DrelA. d. 

The phenotype of DSP_0831 was validated in growth as well, showing no change in growth in the absence 
of ABX, and decreased sensitivity in the presence of cefepime (FEP). e. The alarmone (p)ppGpp is below 

the limit of detection in the absence of stress (b.l.d.), upon induction with mupirocin it is synthesized in 

equal amounts in WT, DSP_0831 and DSP_1097, while it cannot be synthesized if relA is absent. f. 

Synthesis of di- and trinucleotides is significantly affected in the different mutants upon mupirocin exposure. 
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Significance is measured through a paired t-test with an FDR adjusted p-value for multiple comparisons: 

*p<0.05, **p<0.01, ***p<0.001, ns not significant. 
 

Figure 7. Decreased antibiotic sensitivity and tolerance can be achieved by modulation of a wide 
variety of processes. a. Relative growth rates of 16 knockout mutants involved in 7 processes measured 

in the presence of 7 antibiotics, validate that decreased ABX sensitivity can be achieved by modulating a 
wide variety of processes. b. Significantly increased survival during exposure to 5xMIC of an ABX over a 

24hr period is observed for 9 out of 12 knockouts. Significance is measured with an ANOVA with Dunnett 
correction for multiple comparisons: **p<0.01, ***p<0.001. c. Tn-Seq data with a positive fitness in the 

presence of at least one antibiotic is plotted against in vivo Tn-Seq data showing those genes with only a 
small fitness defect, no defect or an increased predicted in vivo fitness, either during nasopharynx 

colonization or lung infection. Circled and indicated with arrows are SP_0829 in red and SP_1396 in black. 

d. In vitro growth curves validate decreased sensitivity to cefepime (SP_0829) and meropenem (SP_1396). 
e. Mice were challenged with WT and MT in a 1:1 ratio of which half received ABX 16hrs post infection 

(p.i.), and all were sacrificed 24hrs p.i. Displayed are the mutant’s competitive index (C.I.) in the 
nasopharynx and lung, and in the presence and absence of cefepime (SP_0829) or meropenem 

(SP_1396). In all instances, the addition of ABX significantly increases the C.I of the mutant. Significance 
is measured with a Mann-Whitney test **p<0.01, ***p<0.001.  

 
Figure 8. Stop codons are enriched in clinical samples in Tn-Seq predicted tolerome genes. a. 

Based on in vivo and ABX Tn-Seq data, four gene-sets consisting of 34 genes each were compiled with 
specific fitness profiles in the presence of antibiotics and in vivo. Shown are the in vivo effects for 

nasopharynx, while lung data are depicted in Supplementary Fig. 5.  DW represents the fitness difference 

of a gene in a specific condition (e.g., an antibiotic, in vivo) minus its fitness in vitro in rich medium. Dashed 
lines indicate significance cut-offs, greyed-out dots indicate genes with no significant change in fitness in 

the presence of antibiotics, colors represent antibiotics and are the same as in Fig. 1. b. Detailed 
distributions for each gene set highlights whether effects in the presence of antibiotics, in the nasopharynx 

and lungs increase (+), do not affect (0) or decrease (-) relative fitness. Gene set rationales are described 

in the text. c. The total number of stop codons in each gene set for 2296 co-trimoxazole and 1166  b-

lactam resistant and sensitive strains. d. The number of sensitive and resistant strains with at least one 

stop codon in a gene in each gene-set. Significance is measured through a Fisher’s exact test: **p<0.01, 
***p<0.001, ****p<0.0001. 
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