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Abstract 

At the outset of an emergent viral respiratory pandemic, sequence data is among the first 

molecular information available. As viral attachment machinery is a key target for therapeutic 

and prophylactic interventions, rapid identification of viral “spike” proteins from sequence can 

significantly accelerate the development of medical countermeasures. For five families of 

respiratory viruses, covering the vast majority of airborne and droplet-transmitted diseases, host 

cell entry is mediated by the binding of viral surface glycoproteins that interact with a host cell 

receptor. In this report it is shown that sequence data for an unknown virus belonging to one of 

the five families above provides sufficient information to identify the protein(s) responsible for 

viral attachment and to permit an assignment of viral family. Random forest models that take as 

input a set of respiratory viral sequences can classify the protein as “spike” vs. non-spike based 

on predicted secondary structure elements alone (with 97.8 % correctly classified) or in 

combination with N-glycosylation related features (with 98.1 % correctly classified).  In 

addition, a Random Forest model developed using the same dataset and only secondary structural 

elements was able to predict the respiratory virus family of each protein sequence correctly 89.0 

% of the time.  Models were validated through 10-fold cross-validation as well as bootstrapping.  

Surprisingly, we showed that secondary structural element and N-glycosylation features were 

sufficient for model generation.  The ability to rapidly identify viral attachment machinery 

directly from sequence data holds the potential to accelerate the design of medical 

countermeasures for future pandemics. 
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Introduction 

The COVID-19 pandemic has underscored the importance of an effective response for 

emerging viral pathogens that is focused on the rapid deployment of molecular testing and 

medical countermeasures. Our experiences with the current pandemic have highlighted the 

vulnerability of the global healthcare infrastructure to respiratory pathogens that, like SARS-

CoV-2, are capable of long-range airborne spread via aerosolized particles [1]. In contrast to 

other pathogens, the window for effective intervention to avert a pandemic resulting from a 

newly emergent respiratory virus may be very short. Thus, the speed with which molecular 

diagnostics, therapeutics, and vaccines can be deployed are critical determinants of our ability to 

contain an outbreak.  

The viral attachment machinery (the set of proteins responsible for host cell attachment 

and cell entry) has served as a historically important focus for the development of molecular tests 

(for example for influenza [2] and SARS-CoV-2 [3, 4]) as well as medical countermeasures such 

as vaccines [5-7].  Thus, the accurate and efficient identification of the viral attachment 

machinery is a critical first step in the design and deployment of biomedical countermeasures.  It 

had been observed for coronaviruses in 2012 (pre-COVID-19) that the tertiary structure of the 

spike protein is not conserved but that the secondary structure topology is conserved [8].  It was 

subsequently also noted that the pattern of N-linked glycosylation is highly conserved and may 

play a role in immune evasion [9].   

Automated function prediction (AFP) of novel proteins is a mature field (see [10-13] for 

reviews).  A number of groups have used approaches that leverage structure-based homology, 

focusing either on the full three-dimensional (3D) protein structure, or on the identification of 3D 

structural motifs (see, for example, [14-17]).  However, 3D structure alone is often insufficient 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.477734doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477734


4 
 

for functional annotation, as proteins possessing similar global structures can perform very 

different biological functions (for example, [18]).  Computational structural alignment methods, 

although first pioneered in the 1960s, typically have accuracies on the order of ~90% [19] and at 

least in the case of coronaviruses as described above the 3D structure is not conserved. 

Furthermore, 3D structural motifs for viral attachment proteins are often optimized for 

specifically for enzymes and are not readily able to identify viral attachment machinery.  As an 

alternative, AFP from DNA sequences relies on sequence homology [20-22], or the identification 

of sequence motifs [23, 24]. A potential weakness of this approach is that novel viruses with low 

sequence homology to pre-existing pathogens may prove less tractable to homology-based 

approaches. As a further consideration, during the early days of an emerging pandemic, steps 

such as multiple sequence alignment, phylogeny reconstruction and 3D structure prediction can 

add weeks to the timeline for response.   An accurate ML model may be able to pinpoint the 

target within seconds.   

With respect to preparedness for potential future pandemics, tools that can aid in the 

rapid deployment of therapeutic and vaccine countermeasures are clearly needed.  Specifically, 

for viral pathogens originating from the most prevalent respiratory virus families, which are key 

pathogens of concern, intervening at the localized emergence stage may prevent the transition to 

a full-blown pandemic.  Based on the earlier cited observations, we hypothesized it may be 

possible to develop a machine learning (ML) model based on predicted secondary structure 

elements and N-glycosylation features alone capable of identifying viral attachment machinery 

(the “spike” protein or its equivalent) from an unknown respiratory virus sequence.  More 

generally, we also sought to gain a further understanding of the structural features that may 
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distinguish viral attachment machinery proteins with a view toward elucidation of key structure-

function relationships. 

 

Methods  

Virus families, viral sequences, and “spike” proteins:  Five families of respiratory 

viruses were included in this study:  Coronaviridae, Paramyxoviridae, Pneumoviridae, 

Adenoviridae, and Orthomyxoviridae.  Each of the viruses within these families has a protein 

responsible for viral attachment and host cell entry, which will be referred to herein as the 

“spike” protein (see Fig. 1A).  For Coronaviruses, it is the Spike S Glycoprotein which is aptly 

named because it projects from the surface of the virion (Fig. 1B) as do the other “spike” 

proteins.  Note that for Influenza Virus A within the Orthomyxoviridae family, we selected 

Hemagglutinin as the equivalent of the “spike” although Neuraminidase is a second antigenic 

determinant.  A total of 39 sequences (ranging from 4 to 12 for each virus family) encoding 316 

proteins were utilized (see Table 1).  Specifically, we included 7 Coronaviridae sequences 

representing 7 viruses, 4 Paramyxoviridae sequences representing 4 viruses, 12 Pneumoviridae 

sequences representing 2 viruses, 8 Adenoviridae sequences representing 1 virus, and 8 

Orthomyxoviridea sequences representing 1 virus. 

Prediction of secondary structural elements:  The Jpred4 [25] secondary structure 

prediction server was used to predict structural elements for each viral sequence in the dataset.  

Jpred4 is a server that hosts Jnet, a neural network secondary structure prediction algorithm 

trained with different representations of multiple sequence alignment profiles for the same 

sequences [26].  Each residue in a protein sequence is designated as H (helical), E (extended 

sheet), or other.  Since Jpred4 predicts secondary structure on protein sequences up to 800 amino 
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acids in length, a script (Fig. S1) was written to break protein sequences into 800 residue 

segments and subsequently concatenated the results.  For each protein, the script calculated 

protein length, % H, and % E, identified the longest helix and the longest sheet and calculated % 

longest H, and % longest E, where % longest H (E) is the length of the longest H (E) in the 

protein divided by the length of the protein.  Finally, %helix, %sheet, %longest H, and %longest 

E is output.   

Prediction of N-glycosylation sites:  For the sequences described above, N-glycosylation 

sites were predicted for each protein using NetNGlyc [27, 28].  The NetNGlyc method uses 

artificial neural networks to predicts N-Glycosylation sites in proteins through analysis of the 

sequence context of Asn-Xaa-Ser/Thr sequons.  FASTA format protein sequences were entered 

on the NetNGlyc 1.0 Server (https://services.healthtech.dtu.dk).  Asparagines with overall 

positive score, denoted by ‘+’, ‘++’, ‘+++’ and ‘++++’ (each counted in their respective 

category), where ‘++++’ indicates a prediction with highest confidence based on a combination 

of overall potential score and jury agreement amongst the nine neural networks utilized, were 

predicted to be glycosylated.  The total number of glycosylation sites per protein (total N-sites) 

was the sum of the number of residues scored ‘+’ or higher.  The density was the total sites 

divided by the number of residues in the protein (as reported by NetNGlyc).   

Amino Acid Composition:  Protein sequences were obtained from nucleic acid sequences 

with Bioinformatics Toolbox in MATLAB version 2019b (MathWorks, 2021, Natick, MA, 

USA), and a letter frequency counter code was used to obtain the occurrence of each amino acid 

(AA) for each protein. The individual occurrences were divided by the corresponding protein 

amino acid length and multiplied by 100, giving %AA composition.  
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Statistical test of association:  Two-tailed t-tests for two independent samples were 

performed using XLSTAT v22.2.3 (Addinsoft, 2020 New York, USA) to assess the association 

of various features with spike vs. non-spike protein status.  Features that showed a statistically 

significant association (p-value ≤ 0.05) between spike and non-spike groups and thereby rejected 

the null hypothesis were considered for inclusion in the ML models.   

Inputs vectors for ML models:  Feature vectors were generated for each of the 316 protein 

sequences to create the full dataset.  For each protein, the following features were calculated as 

described above:  total N-sites, density, %M, %N, %S, %sheet, %helix, %longest sheet, and 

%longest helix.   The designation of spike or non-spike was also included. 

Random Forest model development:  Weka, an open-source software workbench for ML 

and data analysis [29], was utilized to develop Random Forest classifiers derived from the 

dataset described above.  Random forest is a supervised ensemble learning method that generates 

a set of decision trees maximizing the separation of the classes that are sought to be 

discriminated [30, 31].  Subsets of the data were converted into ARFF format and uploaded to 

the Weka Explorer version 3.8.4 to generate specific Random Forest models (see Table S1).  For 

each Random Forest model, a ZeroR model was also generated.  Ten-fold cross-validation was 

utilized with both algorithms.  The statistical significance of each model result was assessed by 

performing a Fisher’s exact test [32]. 

Bootstrapping:  Bootstrapping datasets were generated using the random sampling with 

replacement command in MATLAB version 2019b (MathWorks, 2021, Natick, MA, USA).  For 

each model being investigated, 1000 such datasets were generated and saved as CSV files. The 

CSV files were converted to ARFF format using a modified csv-to-arff Python routine (obtained 

from github.com/anaavila).  For the 50-50 balanced bootstrapping tests, for each dataset, 50% of 
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the feature vectors were for proteins designated as spike and the other 50% were for those 

designated as non-spike. 

 

Results and Discussion 

To examine the feasibility of using a machine learning model trained on viral sequences, 

data set was assembled consisting of 316 protein sequences for 39 respiratory viruses from five 

virus families, with each protein classified as “spike” (viral attachment machinery) or non-spike.  

Next, the associations between various features and the classification of “spike” vs. non-spike for 

the coronaviruses in the dataset were examined to look for signals indicating that certain feature 

types may help to differentiate “spike” vs. non-spike. 

It has previously been shown that across coronaviruses, prior to the emergence of SARS-

CoV-2, the tertiary structure of the spike protein is not conserved but the connectivity of 

secondary structure elements is [8].  As evidenced in Fig. 1A, the tertiary structure of the “spike” 

protein is clearly not conserved across different respiratory families.  For the coronavirus 

sequences, two-tailed t-tests were performed looking at the association of %helix, %sheet, 

%longest sheet, %longest helix, respectively, with spike vs. non-spike status.  A statistically 

significant association was observed for %sheet (p-value = 0.001), whereas none was for %helix 

(p-value = 0.087), %longest helix (p-value = 0.083) and %longest sheet (p-value = 0.208).  The 

%longest helix was examined because when predicted secondary structure topology was 

examined across the SARS-CoV-2 sequence (NC_045512.2) the spike region appeared to have 

more longer helical segments than the other regions of the sequence; %longest sheet was added 

for completeness.   
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The pattern of N-linked glycosylation of the spike protein is highly conserved (ref) and 

may play a role in immune evasion [9, 33].   Again, for the coronavirus sequences, t-tests were 

performed examining the correlation of total N-sites and density, respectively, for spike vs. non-

spike.  A significant statistical difference was found for the total N-sites (p-value < 0.0001) and 

density (p-value = 0.010).  The %AA was also examined over the coronaviruses dataset to 

determine if there were significant differences in amino acid composition for spike vs. non-spike.  

Of the 20 %AAs, a significant difference was observed for %N (p-value = 0.008), %S (p-value = 

0.030), and %M (p-value = 0.032).   

 Based on these preliminary findings, we developed Random Forest machine learning 

classifiers with a feature vector that consisted of glycosylation, amino acid composition, and 

secondary structure element related features.  To place these results in context, we compared 

classifier accuracy in each case to the ZeroR Scores for the same dataset.  The ZeroR, which 

consists of a simple classification rule which simply predicts the majority category (class), 

provides a benchmark for classification performance.  We also performed a test of association 

between the predicted and actual classes, using Fisher’s Exact Test (ref). 

Our first set of Random Forest models were developed based on the coronavirus dataset 

(see Table S1). All but one classified the proteins correctly 100% of the time with a ZeroR Score 

of 86.8% and Fisher’s Exact Test of 0.006.  A comparison of these five models suggests that 

only total N-sites and density may contribute significantly to the models.  The other model (A.1) 

involving only secondary structure—%sheet, %helix, %longest sheet, %longest helix—yielded 

96.2% correctly classified; that same set of features was then used to develop a model separately 

for each of the other four virus families.  For each of these models the % correctly classified 

ranged from 96.2% to 100% with a sensitivity ranging from 0.86 to 1.0, and a specificity ranging 
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from 0.98 to 1.0.  To place these results in context, the ZeroR Scores for these datasets ranged 

from 86.8% to 88.5%.  For each of the classifiers, there was a strong association between the 

actual classes and the class predicted by the Random Forest, with p-values ranging from 0.004 to 

0.065.  Models based on combining total N-sites, density, %sheet, %helix, and % longest helix 

were also generated for each virus family (B.1), respectively; in this case, the % correctly 

classified ranged from 93.5% to 100% (compared with ZeroR Scores from 86.5% to 87.5%), and 

Fisher’s exact test p-values ranging from 0.004 to 0.238.  These two feature sets (associated with 

the A.1 and B.1 models, respectively) were then used to create cross respiratory virus family 

models (A and B, respectively) using the full dataset, yielding %correctly classified of 97.8% 

and 98.1%, respectively.  A cross virus family model not including secondary structure elements 

(C) yielded significantly poorer results with a % correctly classified of 92%.  These data taken 

together point to the robustness of the models overall.  

Cross virus family models A and B are described in detail in Table 2.  As a crosscheck 

against overfitting, we carried out bootstrapping with 1000 datasets, using resampling with 

replacement to generate synthetic datasets with 316 data points each. For each dataset, we built a 

new Random Forest model using 10-fold cross validation and evaluated its accuracy. Ninety-five 

percent of the Random Forest models built for the bootstrapped datasets showed an accuracy of 

greater than 98%, indicating that the models were in fact not overfitted to the original 

dataset.  For model A, the mean and upper confidence intervals of the %correctly classified at the 

95% level were 98.86% and 98.90%; while for model B, they were 98.82% and 98.86%.   

Next, bootstrapping was performed with 1000 datasets that were 50-50 balanced for 

“spike” vs. non-spike to eliminate the possibility that the accuracy of the models could be due to 

the fact that non-spike was overrepresented in the database (although obviously the proportion 
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“spike” vs. non-spike is reflective of distribution).  In this 50-50 balanced bootstrapping exercise, 

each dataset was comprised of 158 “spike” and 158 non-spike proteins, randomly sampled with 

replacement.  In the balanced case, for model A, the mean and upper confidence intervals of the 

%correctly classified at the 95% level were 98.89% and 98.92%; while for model B, they were 

99.68% and 99.84% (Table S2).  This can be compared against the ZeroR score of 50% that is 

expected in a 50-50 balanced dataset.  Thus, models A and B can successfully differentiate 

“spike” from non-spike respiratory virus sequence without specifying the viral family. 

Finally, the capability of a ML model to identify the virus family from the sequence using 

the same feature vectors was explored. The Random Forest model generated was 86% accurate 

in predicting the virus family (see Table 2).  This result is particularly impressive given that the 

ZeroR baseline performance indicator was only 22.36%.   

In summary, the models developed by us in this work can correctly identify viral “spike” 

proteins from viruses (within the five viral families examined here) within seconds. The ability 

to utilize ML models to predict the protein responsible for cell entry (the “spike”) from a viral 

sequence as well as to predict the virus family of a novel viral sequence may in the future 

expedite the development of biomedical interventions for respiratory pandemics. In addition, the 

predictiveness of the models points to the underlying importance of secondary structure and N-

glycosylation in viral host cell recognition.   
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Table 1.  Respiratory Virus Sequences Used in Model Development 

Virus Family Virusa Strain Sequence 

Identifierb 

Coronaviridae SARS-CoV-2 [34] Wuhan-Hu-1 NC_045512.2 

Coronaviridae SARS-CoV-1 [35] Tor2 NC_004718.3 

Coronaviridae MERS [36] HCoV-EMC/2012 NC_019843.3 

Coronaviridae hCoV-OC43 [37] ATCC VR-759 NC_006213.1 

Coronaviridae hCoV-HKU1 [38] HKU1 NC_006577.2 

Coronaviridae hCoV-NL63 [38] Amsterdam I NC_005831.2 

Coronaviridae hCoV-229E [38] 299E NC_002645.1 

Paramyxoviridae HPIV 1 [39] Washington 1964 NC_003461.1 

Paramyxoviridae HPIV 2 [39] VIROAF10 KM190939.1* 

Paramyxoviridae HPIV 3 [39] GP NC_001796.2 

Paramyxoviridae HPIV 4a [39] M-25 NC_021928.1 

Pneumoviridae HRSV [40] Subgroup A NC_038235.1 

Pneumoviridae HRSV CA-17 LC385004.1* 

Pneumoviridae HRSV CA-15 LC385003.1* 

Pneumoviridae HRSV KW-15 LC385002.1* 

Pneumoviridae HMPV [41] PER/FPP00726/2011/A KJ627437.1* 

Pneumoviridae HMPV Isolate 00-1 NC_039199.1 

Pneumoviridae HMPV PER/IPE00957/2012/A KJ627433.1* 

Pneumoviridae HMPV Seattle/USA/SC0380/2019 MN306028.1* 

Pneumoviridae HMPV 01/KEN/2015 MK588634.1* 

Pneumoviridae HMPV USA/NM013/2016 KY474543.1* 

Pneumoviridae HMPV BuenosAires/ARG/001/2016 MG773272.1* 

Pneumoviridae HMPV AUS/183219938/2004/B KF530178.1* 

Adenoviridae HAdV [42] Type 2 J01917.1* 

Adenoviridae HAdV [43] Type 3 DQ086466.1* 

Adenoviridae HAdV [44] Type 4 KF006344.1* 

Adenoviridae HAdV [45] Type 5 AC_000008.1 

Adenoviridae HAdV [43] Type 7 AC_000018.1 
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Adenoviridae HAdV [46] Type 14 AY803294.1* 

Adenoviridae HAdV [42] Type 35 AC_000019.1 

Adenoviridae HAdV [47] Type 55  MG905110.1* 

Orthomyxoviridae Influenza Virus A 

[48] 

A/chicken/Morocco/SF5/2016 

(H9N2) 

LT598501.1* 

LT598506.1* 

LT598511.1* 

LT598516.1* 

LT598521.1* 

LT598526.1* 

LT598531.1* 

LT598536.1* 

Orthomyxoviridae Influenza Virus A A/California/07/2009 (H1N1) YP_009118626.1 

YP_009118628.1 

CY121687.1* 

KU933483.1* 

CY121682.1* 

CY121684* 

KU933488.1* 

CY121683.1* 

Orthomyxoviridae Influenza Virus A A/Berlin/3/1964 (H2N2) ACD85187.1* 

ACD85195.1* 

ACD85197.1* 

ACD85194.1* 

ACD85190.1* 

ACD85192.1* 

ACD85188.1* 

ACD85191.1* 

Orthomyxoviridae Influenza Virus A A/Shanghai/02/2013 (H7N9) NC_026425.1 

NC_026423.1 

NC_026422.1 

NC_026424.1 

NC_026429.1 

NC_026428.1 

NC_026427.1 

NC_026426.1 

Orthomyxoviridae Influenza Virus A A/ruddy turnstone/Delaware 

Bay/262/2006 (H7N3) 

ACO95657.1* 

ACO95665.1* 

ACO95667.1* 

ACO95664.1* 
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ACO95660.1* 

ACO95662.1* 

ACO95658.1* 

ACO95661.1* 

Orthomyxoviridae Influenza Virus A A/Chicken/Hong 

Kong/715.5/01 (H5N1) 

AF509025.1* 

AF509178.2* 

AF509152.2* 

AF509204.2* 

AF509100.2* 

AF509075.1* 

AF509049.1* 

AF509126.2* 

Orthomyxoviridae Influenza Virus A A/swine/France/IIIeetVilaine-

0346/2011 (H1N2) 

KC894804.1* 

KR701484.1* 

KR701483.1* 

KR701485.1* 

KC894807.1* 

KR701488.1* 

KR701487.1* 

KR701486.1* 

Orthomyxoviridae Influenza Virus A A/swine/Texas/4199-

2/1998(H3N2)) 

AEK70342.1 

AAD51248.1 

AEK70339.1 

AEK70341.1 

AEK70343.1 

AEK70344.1 

AEK70345.1 

AEK70347.1 
a MERS = Middle East Respiratory Syndrome, HPIV = human parainfluenza virus, HRSV = 

human respiratory syncytial virus, HMPV = human metapneumovirus, HAdV=human 

adenovirus; references indicate that the virus is responsible for respiratory disease. 
b A * indicates that the sequence is an NCBI Reference Sequence. 
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Table 2.  ML Models Successfully Differentiate Spike from Non-Spikea, b, c 

Model Features ZeroR  

Score 

Correctly 

Classified 

Fisher’s 

Exact Test 

Bootstrapping 

Mean/Upper  

CI (95%) 

A 

%sheet, %helix, 

%longest sheet, 

%longest helix 
87.66% 97.78% 0.0000003 98.86%/98.90% 

B 

total N-sites, density, 

%sheet, %helix, 

%longest helix 
87.66% 98.10% 0.00000009 98.82%/98.86% 

 

a For 5 virus families, 39 viral sequences, 316 individual proteins 
b Random forest (RF) scores calculated in Weka with 10-fold cross-validation (CV) 
c 1000 resampled with replacement bootstrapping datasets as input into Weka RF tests with 10-

fold CV yielding 10,000 values of “% Correctly Classified”;  
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Table 3.  ML Also Identifies Virus Families from Sequence a 

Virus 

Families 

Features 

 

ZeroR  

Score 

Correctly 

Classified 

Fisher’s 

Exact Test 

5 
total N-sites, density, 

%sheet, %helix, 

%longest helix 

32.91% 87.97% < 0.0000001 

 

a Family class used as the output attribute (instead of “spike vs. non-spike”). 
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Figure Legends 

FIG 1.  Five families of respiratory viruses and their “spike” proteins.  In (A) the identity 

and representative structure of the “spike” protein (gene name given in parentheses) is 

shown for each of the virus families studied.  PDB identifiers for structures 1-5 are also 

listed with the corresponding virus indicated.  Shown in (B) is a schematic of the 

coronavirus SARS-CoV-2 structure indicating the prominence of the spike.   

FIG 2.  Overall model development workflow.  The procedure for the development of ML 

models to differentiate Spike from non-Spike in a sequence 

FIG 3.  Random forest inputs vs. outputs.   

FIG 4.  Schematic of bootstrapping process for cross validation of selected models.  In this 

case, each of the 1000 bootstrapped datasets contains feature vectors for 316 protein 

sequences.   
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A 

1. Coronaviridae: 

Spike Glycoprotein 

(S2) 

 

2. Paramyxoviridae: 

Hemagglutinin 

Neuraminidase 

Glycoprotein (HN) 

 

3. Pneumoviridae: 

Fusion 

Glycoprotein F2 

(F) 

 

 4. Adenoviridea: 

Penton Protein 

(L2) 

 

 

5. Ortho-

myxoviridae: 

Hemagglutinin 

Glycoprotein 

(HA)   

 PDB identifier:  Organism 

1. 7KJ4:  SARS-CoV-2 

2. 1V3E:  Human parainfluenza virus 3 

3. 6OUS:  Human respiratory syncytial virus A2 

4. 3IZO:  Human adenovirus 5 

5. 2WRG:  Influenza virus A 
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and their “spike” proteins.  In (A) the identity 
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protein (gene name given in parentheses) is 

shown for each of the virus families studied.  
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FIG 2.  Overall model development workflow.  The procedure for the development of ML 

models to differentiate Spike from non-Spike in a sequence. 
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FIG 3.  Random forest inputs, cross validation, and outputs.  Data was input for 316 protein 

sequences. 
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FIG 4.  Schematic of bootstrapping process for cross validation of selected models.  In this 

case, each of the 1000 bootstrapped datasets contains feature vectors for 316 protein sequences.   
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Supplemental Material Figure Legends 

FIG S1:  Calculation of secondary structure elements.  A flowchart showing the process for 

calculating the secondary structure elements with Jpred4.   
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Table S1.  All ML Models Examined 

Model # Viral Family Features ZeroR Score Correctly 

Classified 

Fisher's 

Exact Test 

1, C.1 Coronaviridae total N-sites, density, %N, %M, %S 86.793% 100.000% 0.006 

2 Coronaviridae total N-sites, density, %M, %S 86.793% 100.000% 0.006 

3 Coronaviridae total N-sites, density 86.793% 100.000% 0.006 

4, D.1 Coronaviridae total N-sites, density, %M, %S, %sheet, 

%helix, %longest sheet, %longest helix 

86.793% 100.000% 0.006 

5, B.1 Coronaviridae total N-sites, density, %sheet, %helix, 

%longest helix 

86.793% 100.000% 0.006 

6, A.1 Coronaviridae %sheet, %helix, %longest sheet, %longest 

helix 

86.793% 96.226% 0.065 

7, A.1 Paramyxoviridae %sheet, %helix, %longest sheet, %longest 

helix 

87.097% 100.000% 0.056 

8, A.1 Pneumoviridae %sheet, %helix, %longest sheet, %longest 

helix 

88.462% 98.077% 0.004 

9, A.1 Adenorividae %sheet, %helix, %longest sheet, %longest 

helix 

87.500% 98.438% 0.015 

10, A.1 Orthomyxoviridae %sheet, %helix, %longest sheet, %longest 

helix 

87.500% 96.875 0.039 

11, B.1 Paramyxoviridae total N-sites, density, %sheet, %helix, 

%longest helix 

87.097% 93.548% 0.238 

12, B.1 Pneumoviridae total N-sites, density, %sheet, %helix, 

%longest helix 

86.462% 98.077% 0.004 

13, B.1 Adenorividae total N-sites, density, %sheet, %helix, 

%longest helix 

87.500% 98.438% 0.015 

14, B.1 Orthomyxoviridae total N-sites, density, %sheet, %helix, 

%longest helix 

87.500% 96.875% 0.039 

15, C Coronaviridae + 

Paramyxoviridae + 

Pneumoviridae + 

total N-sites, density, %N, %M, %S 87.658% 92.721% 0.011 
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Adenorividae + 

Orthomyxoviridae 

16, D Coronaviridae + 

Paramyxoviridae + 

Pneumoviridae + 

Adenorividae + 

Orthomyxoviridae 

total N-sites, density, %M, %S, %sheet, 

%helix, %longest sheet, %longest helix 

87.658% 98.101% <0.001 

17, A Coronaviridae + 

Paramyxoviridae + 

Pneumoviridae + 

Adenorividae + 

Orthomyxoviridae 

%sheet, %helix, %longest sheet, %longest 

helix 

87.658% 97.785% <0.001 

18, B Coronaviridae + 

Paramyxoviridae + 

Pneumoviridae + 

Adenorividae + 

Orthomyxoviridae 

total N-sites, density, %sheet, %helix, 

%longest helix 

87.658% 98.101% <0.001 
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Table S2.  ML Models Successfully Differentiate Spike from Non-Spike a, b, c for a 50-50 balanced bootstrapping dataset d 

Model* Features Bootstrapping 

Mean/Upper CI 

(95%) 

 A-50-50 

%sheet, %helix, 

%longest sheet, 

%longest helix 

98.89% / 98.92% 

B-50-50 

total N-sites, density, 

%sheet, %helix, 

%longest helix 

99.68%/99.84% 

a For 5 virus families, 39 viral sequences, 316 individual proteins  
b Random forest (RF) scores calculated in Weka with 10-fold cross-validation (CV) 
c 1000 resampled with replacement bootstrapping datasets as input into Weka RF tests with 10-fold CV yielding 10,000 values of “% 

Correctly Classified” 
d Each model has 158 spike and 158 non-spike proteins, randomly sampled with replacement 
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FIG. S1:  Calculation of secondary structure elements.  A flowchart showing the process for 

calculating the secondary structure elements with Jpred4.   
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