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Abstract

Background: Transporters form a significant proportion of the proteome and play an important role

in mediating the movement of compounds across membranes. Transport proteins are di�cult to

characterize experimentally, so there is a need for computational tools that predict the substrates

transported in order to annotate the large number of genomes being sequenced. Recently we

developed a dataset of eleven substrate classes from Swiss-Prot using the ChEBI ontology as

the basis for the definition of the classes.

Results: We extend our earlier work TranCEP , which predicted seven substrate classes, to the new

dataset with eleven substrate classes. Like TranCEP , TooT-SC combines pairwise amino acid

composition (PAAC) of the protein, with evolutionary information captured in a multiple sequence

alignment (MSA) using TM-Co↵ee, and restriction to important positions of the alignment using

TCS. Our experimental results show that TooT-SC significantly outperforms the state-of-the-art

predictors, including our earlier work, with an overall MCC of 0.82 and the MCC for the eleven

classes ranging from 0.66 to 1.00.

Conclusion: TooT-SC is a useful tool with high performance covering a broad range of substrate

classes. The results quantify the contribution made by each type of information used during the

prediction process. We believe the methodology is applicable more generally for protein sequence

analysis.

Keywords: protein sequence analysis; evolutionary information; positional information; regional

information; sequential information; compositional information; transport proteins; substrate class;

classification
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Background

Transport proteins play important roles in biological processes [1] and form a large proportion of

all proteins in an organism [2], yet existing tools for the annotation of transporters that predict the

substrates of transport reactions lag behind tools for other kinds of proteins, such as for predicting

enzymes involved in metabolic reactions. Many tools rely simply on homology or orthology to predict

transporters. These tools include the metabolic network tools merlin [3–5], Pantograph [6], and

TransATH [7] that process the complete proteome and predict each transport reaction, which means

identifying the transport protein and the specific substrate, as well as cellular compartment.

Among the tools for de novo prediction of substrate class, FastTrans [8] claims to be the

state-of-the-art. The de novo prediction tools predict the type of substrate from a general subset

of substrate types, without attempting to predict the specific substrate [9–13], due to the limited

number of transporters annotated with specific substrates. Until now, these tools have reached a

maximum of seven substrate types [13] [8].

In 2019 we developed a dataset [14] that defined substrate classes in terms of the ChEBI ontology for

Chemical Entities of Biological Interest [15]. Transporters in Swiss-Prot that have‘ GO annotations

of functional transport activity of a substrate contain a link to the ChEBI term for the particular

substrate as part of the GO term. The ChEBI hierarchy allowed us to group substrates into classes

giving us eleven well-defined classes with sufficient number of examples for machine learning. To

the best of our knowledge, these data contain the highest number of substrate classes being used to

predict the substrate class of a transporter.

This paper extends our previous work TranCEP [16]. This work follows the same methodology,

however, using the new dataset with eleven classes. As before we studied the impact of protein

composition, protein evolution, and the specificity-determining positions within the protein sequence.

The best approach, which defines TooT-SC , involves utilizing the PAAC encoding scheme, the

TM-Coffee MSA algorithm [?], and the transitive consistency score (TCS) algorithm [17] to create

vectors as input to build a suite of SVM classifiers, one for distinguishing each substrate class. The

difference between the work on TranCEP and TooT-SC are
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• the different datasets with eleven versus seven substrate classes;

• the definition of substrate classes using the ChEBI ontology;

• using the Swiss-Prot annotation of the substrate of a transport protein rather than manual

annotation by the researchers;

• building the multi-class SVM classifier as a collection of one-versus-rest binary SVM classifiers

(like TrSSP [13]) rather than as one-versus-one classifiers; and

• using the SVM probabilities to classify a test protein.

Readers seeking more background on work in this area, and the details of the methodology are

referred to our previous paper on TranCEP [16] and the PhD thesis [18] of the first author.

Materials and Methods

Dataset

The dataset was constructed from Swiss-Prot using the ChEBI ontology [15] as described in [14].

The dataset contains 11 substrate classes, with the largest being the inorganic cations class with 601

samples and the smallest being the nucleotide class with 24 samples, as presented in Table 1. The

data were randomly partitioned (stratified by class) into training (90%) and testing (10%) sets. We

refer to the data in Table 1 as DS-SC.

Databases

We used the same databases as before: Swiss-Prot database when searching for similar sequences;

and the UniRef50-TM database, which consists of the entries in UniRef50 that have the keyword

transmembrane, inside TM-Coffee [19] when constructing MSAs. Since dataset was derived from

Swiss-Prot, we removed the exact hits of test sequences from the two databases Swiss-Prot

and UniRef50-TM.

Algorithm

Algorithm 1 presents the template for constructing the vectors required for the SVM classifiers.

It combines evolutionary (E), positional (P), and compositional (C) information. The first two

are optional. We used TM-Coffee to compute the MSA that conserves the TMSs and the TCS to
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determine a reliability index for each position (column) in the MSA. We experimented with three

composition schemes, AAC, PAAC, and PseAAC, as well as the optional use of TM-Coffee and the

TCS.

Algorithm 1 Template for constructing the composition vector

function comp vec(seq s)

// Evolutionary (E) step, optional

Retrieve up to 120 hits S to s from Swiss-Prot using blastp

Construct an MSA from S using TM-Co↵ee

// Positional (P) step, optional

Determine the informative positions (columns) in the MSA using TCS

Filter the uninformative positions from the MSA

// Compositional (C) step, mandatory

return Vector-encoding composition of the filtered MSA using AAC, PAAC, or PseAAC

end function

Algorithm 2 shows the composition vectors being used to build a set of SVM classifiers. In this

case, multi-class classification is done using a collection of binary classifiers as one-versus-rest for

each of the eleven classes.

Algorithm 3 presents the prediction algorithm. Here we use the probability of each class prediction

as returned by the SVM to determine the classification.

Algorithm 2 Building the SVM classifiers

Require: training set T of sequences labeled with classes C1, ..., Cn

Ensure: set of SVMs svm(i), distinguishing class Ci from other classes

procedure Build SVMs(T : a set of seqs; svm: a set of SVMs)

for all seq s in T do

v(s)  COMP VEC( s )

end for

for all (Ci) in classes do

Cî : {C1, ..., Cn}� Ci

svm(i)  SVM.build({v(s) : s 2 T \ (Ci [ Cî)}, probability= T)

end for

end procedure
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Algorithm 3 Prediction

Require: test sequence s

Require: set of SVMs svm(i) distinguishing classes Ci from other classes

Ensure: result is the predicted class Cp

function predict class(seq s)

v  COMP VEC( s )

c  array of length n

for all Ci in {C1, ..., Cn} do

c[i]  probability of class i (svm(i) applied to v)

end for

Cp  argmax(c)

return Cp

end function

Training

We used SVM with an RBF kernel, as implemented in the R e1071 library (version 1.6-8), utilizing

a one-against-the-rest approach in which n binary classifiers are trained, one for each class. The

classifier i is trained with all the samples of class i as a positive class and the rest as a negative class.

The final predicted class is the class with the highest probability among the n predictions. Both the

cost and � parameters of the RBF kernel were optimized by performing a grid search using the tune

function in the library (cost range: 2(1...5), � range: 2(�18...2)).

Methods

We experimented with nine methods with different combinations of inforamation:

• AAC, PAAC, and PseAAC using only compositional information;

• TMC-AAC, TMC-PAAC, and TMC-PseAAC using evolutionary and compositional

information; and

• TMC-TCS-AAC, TMC-TCS-PAAC, and TMC-TCS-PseAAC using evolutionary,

positional, and compositional information.

The method used in TooT-SC is TMC-TCS-PAAC, the method that achieved the best

performance during cross-validation.
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Performance evaluation

The performance of each method on the DS-SC training set was determined using ten-fold

cross-validation (10-CV). We repeated the 10-CV process ten times with different random partitions,

to make the error estimation more stable, and reported the performance variations between the runs

by computing the standard deviation.

Four performance metrics were considered:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FN + TN + FP

MCC =
(TP ⇥ TN � FP ⇥ FN)p

(TP + FP )⇥ (TP + FN)⇥ (TN + FP )⇥ (TN + FN)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of

false positives, and FN is the number of false negatives.

The Matthews Correlation Coefficient (MCC) is less influenced by imbalanced data and is arguably

the best single assessment metric in this case [20–22]. The overall performance across all classes was

the micro-average of the individual results due to the imbalanced dataset.

Statistical analysis

In this analysis, Student’s (two-tailed, paired) t-tests were applied, and the average number of

informative residues, as determined by TCSs, in different segments of a protein sequence was computed.

For each substrate class, pairwise comparisons between the means of important positions in different

segments were performed. The differences were considered statistically significant when the P-value

of the Student’s t-test was less than 0.0001.
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Results and Discussion

Methods evaluation

Since the data are imbalanced, we focused on the MCC when comparing the performances of

the different models. Table 2 presents the overall accuracy values and MCCs of the SVM models

for the nine methods, sorted from the best to the worst according to the MCC. The details of the

performance for each method are available in Supplementary Material 1. the comparisons among the

different methods for the eleven classes in terms of the MCC are presented in Figure 1. The SVM

model that utilized PAAC encoding outperformed those that utilized AAC and PseAAC encoding

by 27% and 15%, respectively, in terms of the overall MCCs. This model shows exceptionally high

performance in the water and nucleotide classes. In addition, all of the SVM models that utilized

evolutionary data performed notably better overall than the SVM models that did not. The top

model, TMC-TCS-PAAC, which is the method chosen for our predictor TooT-SC , incorporates

the use of the PAAC with evolutionary data in the form of MSA with positional information, in

which columns that have a reliability below 4 are filtered out. We found that the performance

peaked using this threshold and started to decline when columns with a reliability index greater

than 4 were filtered out. The TMC-TCS-PAAC method yielded an overall MCC of 0.77 during

cross-validation. Table 4 shows the impact of evolutionary information and positional information on

the composition-encoding PAAC.

The use of evolutionary information in the form of MSA on the composition-encoding PAAC showed

a considerable positive impact in most of the substrate classes, where the average improvement of

the MCC was 126.41%, with the highest improvement being in the C1 (nonselective) class (347%).

The baseline encoding PAAC for the C2 (water) substrate class showed a high discriminatory power

with an MCC of 0.96, with the incorporation of additional information having a slightly negative

impact of 1.01%.

The further use of positional information by filtering out the unreliable columns from the MSA

showed an average improvement of 128.57% compared to the baseline compositions. The impact of

positional information over that already achieved by evolutionary information showed a positive
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impact in most substrate classes; the highest was in the C5 (organic anions) class, where the MCC

improved by 6.38% with TMC-TCS-PAAC. However, the impact was slightly negative in the C1

(nonselective), C2 (water), C3 (inorganic cations), and C9 (nucleotides) classes.

Comparison with other published work

The top two tools with the best reported performance are TrSSP [13] and FastTrans [8]. Since the

original code was not available for TrSSP or FastTrans, we reimplemented the methods to the best of

our ability. We compared the performance of the TooT-SC method with our implementation of the

TrSSP and FastTrans methods. All of the methods were trained using the DS-SC training set and

tested using its testing set. It should be noted that our implementation of the TrSSP method [13]

achieved a similar macroaverage MCC to that reported in the original paper (0.41) on their dataset.

However, it was not possible to reproduce the reported performance of the FastTrans method [8], for

which our implementation on their same dataset achieved a macroaverage MCC of 0.47, while their

reported macroaverage MCC was 0.87.

A comparison between the TooT-SC method and our implementation of the other state-of-the-art

methods on the DS-SC benchmark dataset is presented in Table 5. The TooT-SC method scored

higher than the other methods for all of the substrate classes in terms of the accuracy, sensitivity,

and MCC. Overall, the TooT-SC method scored an overall MCC of 0.82, which outperformed the

TrSSP method by 26% and the FastTrans method by 115%.

Positional information analysis

See Supplementary Material 2.

Conclusion

We have developed TooT-SC for the de novo prediction of substrates for membrane transporter

proteins that combines information based on the amino acid composition, evolutionary information,

and positional information. TooT-SC is able to classify transport proteins into eleven classes according

to their transported substrate (i.e., nonselective, water, inorganic cations, inorganic anions, organic

anions, organo-oxygens, amino acids and derivatives, other organonitrogens, nucleotides, organic
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heterocyclics, and miscellaneous); to the best of our knowledge, this is the highest number of classes

offered by a de novo prediction tool. The TooT-SC method first incorporates the use of evolutionary

information by taking 120 similar sequences and constructing an MSA using TM-Coffee. Next, it

uses the positional information by filtering out unreliable positions, as determined by the TCS, and

then uses the PAAC. The TooT-SC method achieved an overall MCC of 0.82 on an independent

testing set, which is a 26% improvement over the state-of-the-art method. In addition, we evaluated

the impact of each factor on the performance by incorporating evolutionary information and filtering

out unreliable positions. We observed that the PAAC encoding outperforms other combinational

variations. However, it does not show compelling performance on its own; the enhanced performance

comes mainly from incorporating evolutionary and positional information.

Analysis of the location of the informative positions reveals that there are more statistically

significant informative positions in the TMSs compared to the non-TMSs and there are more

statistically significant informative positions that occur close to the TMSs compared to regions far

from them.

In moving from the previous gold standard dataset with seven substrate classes to our new dataset

with eleven substrate classes, even with the same approach, the overall MCC rose from 0.69 to

0.82. The impact of the positional information is statistically significant more often with the new

dataset. The datasets do use different classes, however, we would like to think that the improvement

is due to using substrate classes defined in terms of the ChEBI ontology, and selecting proteins in

Swiss-Prot with curated GO annotations clearly indicating the substrate in terms of ChEBI.

Availability of data and materials
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Figures

Fig 1. Performance of methods on the substrate classes.

This figure shows the cross-validation MCC performance of the different methods on the eleven

substrate classes. The dotted line represents the performance of TooT-SC , which is TCS-TMC-PAAC.
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Tables

Table 1. Dataset DS-SC

ID Substrate class Training Testing Total

C1 Nonselective 24 2 26

C2 Water 24 2 26

C3 Inorganic cations 541 60 601

C4 Inorganic anions 92 10 102

C5 Organic anions 97 10 107

C6 Organo-oxygens 157 17 174

C7 Amino acids and derivatives 142 15 157

C8 Other organonitrogens 144 16 160

C9 Nucleotides 22 2 24

C10 Organic heterocyclics 34 3 37

C11 Miscellaneous 99 11 110

Total 1,376 148 1,524

Table 2. Overall cross-validation performance of the methods. For each method, the table

presents the accuracy and MCC as the mean ± SD across the ten runs of the 10-fold cross-validation.

Method Accuracy MCC

TMC-TCS-PAAC 82.53 ± 0.12 0.7772 ± 0.0019

TMC-PAAC 81.92 ± 0.12 0.7695 ± 0.0014

TMC-AAC 79.84 ± 0.13 0.7430 ± 0.0014

TMC-PseAAC 79.46 ± 0.30 0.7374 ± 0.0038

TMC-TCS-AAC 79.33 ± 0.24 0.7360 ± 0.0035

TMC-TCS-PseAAC 79.03 ± 0.27 0.7324 ± 0.0037

PAAC 58.93 ± 0.45 0.4610 ± 0.0069

PseAAC 54.80 ± 0.76 0.3999 ± 0.0108

AAC 52.21 ± 0.60 0.3628 ± 0.0091
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Table 3. Detailed TooT-SC performance. The

table presents the performance as the mean ± SD across the ten runs of the 10-fold cross-validation.

Class ID Sensitivity Specificity Accuracy MCC

C1 75.00 ± 0.00 99.78 ± 0.00 99.21 ± 0.00 0.7979 ± 0.0000

C2 95.83 ± 0.00 99.85 ± 0.00 99.74 ± 0.00 0.9376 ± 0.0000

C3 95.19 ± 0.47 86.92 ± 0.28 89.36 ± 0.21 0.7936 ± 0.0046

C4 64.35 ± 1.97 99.24 ± 0.18 96.38 ± 0.19 0.7252 ± 0.0155

C5 68.04 ± 0.49 98.40 ± 0.13 95.66 ± 0.14 0.6974 ± 0.0084

C6 83.44 ± 0.52 98.97 ± 0.12 96.72 ± 0.15 0.8543 ± 0.0066

C7 84.08 ± 0.95 98.55 ± 0.16 96.56 ± 0.18 0.8357 ± 0.0085

C8 71.46 ± 0.95 96.84 ± 0.27 93.42 ± 0.22 0.6830 ± 0.0084

C9 80.91 ± 1.92 99.98 ± 0.04 99.61 ± 0.05 0.8904 ± 0.0132

C10 82.35 ± 0.00 100.00 ± 0.00 99.47 ± 0.00 0.9050 ± 0.0000

C11 55.96 ± 1.09 97.95 ± 0.16 94.21 ± 0.20 0.5858 ± 0.0136

Overall 82.53 ± 0.12 0.7772 ± 0.0019

Table 4. Impact of factors on performance for PAAC. This table notes the MCC and

the differences in the MCC for the cross-validation performance of the methods using evolutionary

information with TM-Coffee, and positional information with TCS. The differences in MCC are

shown in the Delta column. The percentage improvement (loss) is also shown. The use of evolutionary

information in the form of an MSA on the composition-encoding PAAC improved the MCC by

an average of 126.41%. The further use of positional information by filtering out the unreliable

columns from the MSA boosted the MCC of the composition encodings by an average of 128.57%.

Class MCC TMC-PAAC TMC-TCS-PAAC TMC-TCS-PAAC

ID to PAAC to PAAC to TMC-PAAC

PAAC TMC-PAAC TMC-TCS Delta % Delta % Delta %

PAAC

C1 0.18 0.82 0.80 0.64 347.27 0.61 336.01 -0.02 -2.52

C2 0.96 0.95 0.94 -0.01 -1.01 -0.02 -2.40 -0.01 -1.41

C3 0.47 0.81 0.79 0.33 70.12 0.32 67.25 -0.01 -1.68

C4 0.31 0.69 0.73 0.38 120.32 0.41 131.69 0.04 5.16

C5 0.37 0.66 0.70 0.29 78.83 0.33 90.23 0.04 6.38

C6 0.44 0.84 0.85 0.40 88.82 0.41 92.11 0.01 1.74

C7 0.38 0.83 0.84 0.44 116.44 0.45 119.06 0.01 1.21

C8 0.36 0.64 0.68 0.28 75.77 0.32 87.23 0.04 6.52

C9 0.69 0.91 0.89 0.22 31.72 0.20 29.02 -0.02 -2.05

C10 0.34 0.91 0.91 0.57 168.32 0.57 166.96 0.00 -0.51

C11 0.15 0.58 0.59 0.43 293.97 0.44 297.15 0.00 0.81

Average 0.36 126.41% 0.37 128.57% 0.01 1.24%
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Table 5.

Comparison between TooT-SC and the state-of-art methods. This table presents the performance of

the proposed tool TooT-SC built with the complete training set and run on the independent testing

set of DS-SC and the corresponding results for the TrSSP and FastTrans methods trained and tested

with the same dataset. This table shows the specificity, sensitivity, accuracy and MCC for each

of the eleven substrate types; the overall accuracy and MCC; and the macroaverage accuracy and

MCC. The overall accuracy was calculated as the number of correct predictions divided by the total

number of predictions, and the overall MCC was calculated from the multi-class confusion matrix.

Class Specificity Sensitivity Accuracy MCC

ID TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC TrSSP FastTrans TooT-SC

C1 100.00 100.00 100.00 0.00 0.00 50.00 98.18 97.70 99.22 0.00 0.00 0.70

C2 99.32 100.00 100.00 100.00 100.00 100.00 99.08 100.00 100.00 0.81 1.00 1.00

C3 80.68 76.14 88.64 91.67 86.67 96.67 83.08 74.56 91.37 0.68 0.50 0.83

C4 98.55 95.65 100.00 60.00 40.00 70.00 94.74 87.63 97.69 0.64 0.33 0.83

C5 98.55 97.83 97.83 80.00 50.00 90.00 96.43 91.40 96.95 0.78 0.51 0.81

C6 96.95 96.18 97.71 64.71 35.29 76.47 91.53 84.16 94.78 0.64 0.35 0.76

C7 97.74 87.97 100.00 73.33 40.00 86.67 93.91 77.27 98.45 0.72 0.20 0.92

C8 94.70 96.21 96.21 56.25 25.00 87.50 88.52 83.33 94.78 0.50 0.25 0.77

C9 99.32 99.32 100.00 100.00 0.00 100.00 99.08 96.59 100.00 0.81 -0.02 1.00

C10 98.62 100.00 100.00 33.33 66.67 100.00 96.43 98.84 100.00 0.31 0.81 1.00

C11 99.27 95.62 100.00 27.27 36.36 45.45 92.31 86.73 95.49 0.42 0.31 0.66

Overall 72.97 57.43 85.81 0.65 0.44 0.82

Macroaverage 93.94 88.93 97.16 0.57 0.39 0.84
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Additional Files

Additional file 1 — Supplementary Material 1

Tables with detailed performance of each of the nine methods on the eleven classes.

Additional file 2 — Supplementary Material 2

Results and discussion on the positional information.
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Supplementary Material 1: Detailed Performance per Class per Method

This contains the detailed cross-validation performance in substrate specificity prediction. The

following tables show the mean ± SD of the ten different runs of the ten-fold cross validation for

each combination of approaches.

Table 1. AAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 13.75 ± 3.95 99.59 ± 0.05 96.48 ± 0.20 0.2110 ± 0.0581

Water 37.92 ± 3.65 99.60 ± 0.06 97.25 ± 0.16 0.4748 ± 0.0372

Inorganic cations 87.08 ± 0.56 61.26 ± 0.88 64.61 ± 0.65 0.3364 ± 0.0124

Inorganic anions 13.80 ± 2.05 98.32 ± 0.31 87.68 ± 0.53 0.1716 ± 0.0349

Organic anions 32.06 ± 1.57 96.90 ± 0.22 87.18 ± 0.38 0.3060 ± 0.0176

Organo-oxygens 44.71 ± 2.91 92.42 ± 0.38 80.03 ± 0.61 0.3179 ± 0.0243

Amino acids and derivatives 30.99 ± 2.68 93.32 ± 0.50 79.93 ± 0.79 0.2109 ± 0.0281

Other organonitrogens 33.89 ± 1.79 95.56 ± 0.20 82.73 ± 0.36 0.3022 ± 0.0162

Nucleotides 41.36 ± 3.98 99.49 ± 0.10 97.32 ± 0.23 0.4724 ± 0.0397

Organic heterocyclics 23.82 ± 4.26 99.37 ± 0.11 95.43 ± 0.25 0.3194 ± 0.0440

Miscellaneous 10.91 ± 2.01 98.66 ± 0.24 87.22 ± 0.42 0.1539 ± 0.0370

Overall 52.21 ± 0.60 0.3628 ± 0.0091

Table 2. PseAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 12.08 ± 5.36 99.74 ± 0.06 96.84 ± 0.24 0.2176 ± 0.0897

Water 32.92 ± 4.14 99.51 ± 0.08 97.08 ± 0.19 0.4094 ± 0.0402

Inorganic cations 88.37 ± 0.46 63.65 ± 0.61 67.30 ± 0.53 0.3915 ± 0.0114

Inorganic anions 8.15 ± 1.93 99.21 ± 0.19 88.84 ± 0.44 0.1481 ± 0.0420

Organic anions 38.76 ± 2.02 97.00 ± 0.38 88.52 ± 0.60 0.3758 ± 0.0233

Organo-oxygens 48.03 ± 2.41 92.70 ± 0.36 81.55 ± 0.81 0.3578 ± 0.0271

Amino acid and derivatives 32.25 ± 2.25 93.23 ± 0.54 80.75 ± 0.86 0.2259 ± 0.0270

Other organonitrogens 41.94 ± 1.58 96.07 ± 0.25 85.10 ± 0.37 0.3982 ± 0.0133

Nucleotides 42.73 ± 3.83 99.46 ± 0.06 97.43 ± 0.14 0.4774 ± 0.0313

Organic heterocyclics 22.35 ± 3.16 99.18 ± 0.18 95.27 ± 0.27 0.2804 ± 0.0317

Miscellaneous 21.62 ± 1.19 98.39 ± 0.17 88.48 ± 0.30 0.2797 ± 0.0149

Overall 54.80 ± 0.76 0.3999 ± 0.0108

Table 3. PAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 10.00 ± 3.51 99.71 ± 0.09 96.95 ± 0.16 0.1830 ± 0.0587

Water 93.33 ± 2.91 99.99 ± 0.03 99.78 ± 0.10 0.9607 ± 0.0174

Inorganic cations 88.98 ± 0.65 69.21 ± 0.96 71.91 ± 0.56 0.4745 ± 0.0096

Inorganic anions 24.24 ± 2.35 98.46 ± 0.26 90.06 ± 0.43 0.3130 ± 0.0316

Organic anions 38.76 ± 1.77 96.69 ± 0.40 88.86 ± 0.49 0.3666 ± 0.0193

Organo-oxygens 54.20 ± 1.51 93.83 ± 0.51 84.65 ± 0.67 0.4447 ± 0.0211

Amino acids and derivatives 47.39 ± 2.25 93.91 ± 0.26 84.40 ± 0.43 0.3815 ± 0.0193

Other organonitrogens 39.58 ± 2.68 95.54 ± 0.33 85.11 ± 0.36 0.3648 ± 0.0194

Nucleotides 68.64 ± 3.98 99.54 ± 0.10 98.41 ± 0.21 0.6901 ± 0.0371

Organic heterocyclics 27.35 ± 3.41 99.23 ± 0.08 95.85 ± 0.13 0.3390 ± 0.0297

Miscellaneous 11.01 ± 1.93 98.43 ± 0.20 88.24 ± 0.40 0.1475 ± 0.0358

Overall 58.93 ± 0.45 0.461 ± 0.0069
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Table 4. TMC-AAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 72.08 ± 4.41 99.73 ± 0.04 99.07 ± 0.10 0.7675 ± 0.0300

Water 95.83 ± 0.00 99.85 ± 0.00 99.73 ± 0.00 0.9376 ± 0.0000

Inorganic cations 93.77 ± 0.28 86.86 ± 0.49 88.45 ± 0.29 0.7748 ± 0.0053

Inorganic anions 59.24 ± 2.31 98.87 ± 0.12 95.48 ± 0.23 0.6610 ± 0.0200

Organic anions 68.04 ± 2.38 97.98 ± 0.11 95.08 ± 0.22 0.6727 ± 0.0175

Organo-oxygens 80.83 ± 0.36 98.61 ± 0.22 95.89 ± 0.23 0.8210 ± 0.0095

Amino acids and derivatives 80.07 ± 0.67 97.84 ± 0.17 95.23 ± 0.19 0.7782 ± 0.0081

Other organonitrogens 70.28 ± 2.14 95.81 ± 0.28 92.09 ± 0.26 0.6372 ± 0.0133

Nucleotides 81.82 ± 0.00 99.90 ± 0.07 99.52 ± 0.09 0.8719 ± 0.0219

Organic heterocyclics 72.35 ± 2.48 99.80 ± 0.13 98.91 ± 0.16 0.8032 ± 0.0277

Miscellaneous 46.57 ± 1.75 98.24 ± 0.17 93.58 ± 0.23 0.5269 ± 0.0186

Overall 79.84 ± 0.13 0.743 ± 0.0014

Table 5. TMC-PseAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 63.33 ± 5.12 99.78 ± 0.06 98.93 ± 0.14 0.7220 ± 0.0411

Water 95.83 ± 0.00 99.93 ± 0.00 99.82 ± 0.00 0.9574 ± 0.0000

Inorganic cations 94.49 ± 0.59 84.49 ± 0.49 87.28 ± 0.36 0.7561 ± 0.0072

Inorganic anions 59.57 ± 1.76 99.43 ± 0.09 96.09 ± 0.16 0.7065 ± 0.0143

Organic anions 64.54 ± 1.55 98.94 ± 0.11 95.80 ± 0.14 0.7070 ± 0.0112

Organo-oxygens 80.19 ± 0.82 97.92 ± 0.23 95.09 ± 0.21 0.7887 ± 0.0081

Amino acids and derivatives 74.65 ± 1.29 98.55 ± 0.18 95.30 ± 0.23 0.7732 ± 0.0110

Other organonitrogens 72.50 ± 1.40 95.37 ± 0.48 91.88 ± 0.55 0.6390 ± 0.0207

Nucleotides 32.73 ± 4.18 99.79 ± 0.10 98.41 ± 0.12 0.4780 ± 0.0418

Organic heterocyclics 88.82 ± 4.11 99.87 ± 0.08 99.49 ± 0.15 0.9132 ± 0.0261

Miscellaneous 53.43 ± 1.30 98.18 ± 0.19 94.03 ± 0.25 0.5781 ± 0.0164

Overall 79.46 ± 0.30 0.7374 ± 0.0038

Table 6. TMC-PAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 75.00 ± 0.00 99.85 ± 0.05 99.30 ± 0.06 0.8185 ± 0.0141

Water 98.33 ± 2.15 99.85 ± 0.00 99.79 ± 0.05 0.9510 ± 0.0115

Inorganic cations 95.25 ± 0.28 88.26 ± 0.19 90.11 ± 0.14 0.8072 ± 0.0029

Inorganic anions 63.80 ± 1.99 98.80 ± 0.17 95.86 ± 0.23 0.6896 ± 0.0178

Organic anions 68.04 ± 1.75 97.65 ± 0.06 94.86 ± 0.18 0.6556 ± 0.0146

Organo-oxygens 83.63 ± 0.67 98.61 ± 0.18 96.35 ± 0.19 0.8397 ± 0.0079

Amino acids and derivatives 82.96 ± 1.28 98.49 ± 0.10 96.34 ± 0.16 0.8257 ± 0.0085

Other organonitrogens 66.39 ± 1.68 96.70 ± 0.27 92.67 ± 0.17 0.6412 ± 0.0084

Nucleotides 85.45 ± 1.92 99.96 ± 0.06 99.66 ± 0.07 0.9090 ± 0.0185

Organic heterocyclics 83.24 ± 4.81 100.00 ± 0.00 99.50 ± 0.14 0.9096 ± 0.0272

Miscellaneous 54.34 ± 1.33 98.09 ± 0.16 94.18 ± 0.16 0.5811 ± 0.0110

Overall 81.92 ± 0.12 0.7695 ± 0.0014
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Table 7. TMC-TCS-AAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 70.00 ± 2.64 99.66 ± 0.09 98.93 ± 0.13 0.7365 ± 0.0288

Water 100.00 ± 0.00 99.85 ± 0.00 99.82 ± 0.00 0.9599 ± 0.0000

Inorganic cations 92.88 ± 0.34 85.96 ± 0.70 87.52 ± 0.40 0.7562 ± 0.0071

Inorganic anions 54.57 ± 1.76 98.98 ± 0.23 95.21 ± 0.35 0.6346 ± 0.0278

Organic anions 64.43 ± 2.89 97.65 ± 0.17 94.42 ± 0.33 0.6294 ± 0.0245

Organo-oxygens 83.63 ± 0.31 98.06 ± 0.27 95.67 ± 0.26 0.8168 ± 0.0097

Amino acids and derivatives 82.68 ± 1.34 98.07 ± 0.18 95.75 ± 0.32 0.8049 ± 0.0149

Other organonitrogens 68.54 ± 0.98 96.35 ± 0.31 92.36 ± 0.29 0.6428 ± 0.0115

Nucleotide 70.45 ± 3.21 99.79 ± 0.11 99.16 ± 0.17 0.7698 ± 0.0415

Organic heterocyclics 70.00 ± 2.32 99.86 ± 0.04 98.90 ± 0.09 0.8000 ± 0.0178

Miscellaneous 49.39 ± 1.99 98.41 ± 0.17 93.94 ± 0.29 0.5602 ± 0.0229

Overall 79.33 ± 0.24 0.736 ± 0.0035

Table 8. TMC-TCS-PseAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 58.33 ± 0.00 99.65 ± 0.04 98.67 ± 0.04 0.6545 ± 0.0089

Water 95.83 ± 0.00 99.87 ± 0.04 99.75 ± 0.04 0.9435 ± 0.0096

Inorganic cations 93.84 ± 0.29 85.50 ± 0.48 87.57 ± 0.33 0.7594 ± 0.0061

Inorganic anions 58.59 ± 1.49 98.90 ± 0.15 95.42 ± 0.13 0.6585 ± 0.0092

Organic anions 62.58 ± 1.46 97.46 ± 0.19 94.05 ± 0.29 0.6061 ± 0.0183

Organo-oxygen s 80.89 ± 0.79 98.67 ± 0.12 95.92 ± 0.11 0.8239 ± 0.0047

Amino acids and derivatives 78.24 ± 1.35 97.84 ± 0.12 94.98 ± 0.18 0.7660 ± 0.0095

Other organonitrogens 68.96 ± 1.39 97.15 ± 0.20 93.16 ± 0.22 0.6752 ± 0.0108

Nucleotides 76.82 ± 2.58 99.62 ± 0.06 99.06 ± 0.10 0.7618 ± 0.0232

Organic heterocyclics 75.00 ± 2.08 99.85 ± 0.05 99.04 ± 0.08 0.8294 ± 0.0145

Miscellaneous 48.89 ± 2.44 97.71 ± 0.18 93.16 ± 0.33 0.5158 ± 0.0255

Overall 79.03 ± 0.27 0.7324 ± 0.0037

Table 9. TMC-TCS-PAAC Performance
Substrate class Sensitivity Specificity Accuracy MCC

Nonselective 75.00 ± 0.00 99.78 ± 0.00 99.21 ± 0.00 0.7979 ± 0.0000

Water 95.83 ± 0.00 99.85 ± 0.00 99.74 ± 0.00 0.9376 ± 0.0000

Inorganic cations 95.19 ± 0.47 86.92 ± 0.28 89.36 ± 0.21 0.7936 ± 0.0046

Inorganic anions 64.35 ± 1.97 99.24 ± 0.18 96.38 ± 0.19 0.7252 ± 0.0155

Organic anions 68.04 ± 0.49 98.40 ± 0.13 95.66 ± 0.14 0.6974 ± 0.0084

Organo-oxygens 83.44 ± 0.52 98.97 ± 0.12 96.72 ± 0.15 0.8543 ± 0.0066

Amino acids and derivatives 84.08 ± 0.95 98.55 ± 0.16 96.56 ± 0.18 0.8357 ± 0.0085

Other organonitrogens 71.46 ± 0.95 96.84 ± 0.27 93.42 ± 0.22 0.6830 ± 0.0084

Nucleotides 80.91 ± 1.92 99.98 ± 0.04 99.61 ± 0.05 0.8904 ± 0.0132

Organic heterocyclics 82.35 ± 0.00 100.00 ± 0.00 99.47 ± 0.00 0.9050 ± 0.0000

Miscellaneous 55.96 ± 1.09 97.95 ± 0.16 94.21 ± 0.20 0.5858 ± 0.0136

Overall 82.53 ± 0.12 0.7772 ± 0.0019
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Supplementary Material 2: Positional Information Analysis

It is difficult to isolate the exact residues that are key to inferring the substrate class; the results

suggest that evolutionary information, obtained by MSA, is the main source for achieving a high

prediction performance. In addition, the TCS informative positions (with TCSs � 4) can help to

filter out unnecessary noise and obtain a clearer signal to further improve the prediction. Using the

TCS informative positions filtered out an average of 31% ± 19% of the sequence. However, when we

attempted to filter out more positions (by using a TCS score cutoff stricter than 4), the performance

started to deteriorate.

To visualize the informative positions relative to the hydropathy scale of amino acids, the hydropathy

scale proposed by [1] was utilized, and the average hydropathy of each column in the MSA was

computed. Higher positive scores indicate that amino acids in that region have hydrophobic properties

and are likely located in a transmembrane ↵-helix segment. The TCS of each column in the alignment

is noted on the hydropathy plot through color coding. Figure 1 shows diverse examples. The red

shades correspond to the informative columns (TCS � 4), while the gray and white shades correspond

to noninformative columns that are filtered out by TooT-SC . In Figure 1 (a) and (b), the regions

with high positive average hydropathy values appear to be more informative than those with lower

values. However, in Figure 1 (c) and (d), the difference between the informative positions with high

and low hydropathy values is not as clear.

To measure the informative positions relative to different segments of the protein sequence, we

divided the protein sequence positions into those in the TMS and those not in the TMS. Those in

the TMS were divided into the interior one-third positions, and the remaining exterior positions in

the TMS. The non-TMS positions were divided into those near a TMS, that is, within 10 positions,

and the remaining positions were considered far from a TMS. The location of the TMS was retrieved

from the Swiss-Prot database under the subcellular location topology section. Table 1 shows a

breakdown of where the informative positions, as determined by the TCS, are located with respect

to the TMS regions.

For instance, in Figure 1 (a), 41.04% of the residues of the sequence with UniProt-ID Q59NP1 are

informative (i.e., correspond to informative columns in the alignment); thus, 58.96% of this sequence

is filtered out. In this case, the residues in the TMSs of this protein are indeed more informative than

those of the other proteins, where 100% of them are informative. On the other hand, only 29.19% of

the residues in non-TMSs are informative. The difference is not as significant in the sequence with

UniProt-ID Q9NY37 in Figure 1 (c), where the informative positions in the TMSs are similar to

those of non-TMS positions. Details of the sequences in the figure are presented in Table 2.

Table 3 presents a pairwise comparison between informative positions in the TMS and non-TMS

regions. The sequences in all of the substrate classes except the C1 (nonselective) substrate class have

significantly more informative positions in the TMS regions than in the non-TMS regions. Similarly,

there is a significant difference between the informative positions close to TMSs and positions far

from TMSs in all sequences that belong to all substrate classes except the C1 (nonselective) and C8

(other organonitrogens) classes, as shown in Table 4. In contrast, there is no difference between the

informative positions in the central one-third of the TMS regions and the remaining exterior regions

in the sequences that belong to the C1 (nonselective), C2 (water), C5 (organic anions), C8 (other

organonitrogens), C9 (nucleotides), C10 (organic heterocyclics), and C11 (miscellaneous) classes; the

difference is significant in the sequences that belong to the C3 (inorganic cations), C4 (inorganic

anions), C6 (organo-oxygens), and C7 (amino acids and derivatives) classes, as presented in Table 5.
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Fig 1. Average Kyte-Doolittle hydropathy of the MSAs with TCSs.

The figure indicates that the columns highlighted in red are informative and used by TooT-SC . The

TooT-SC considers a column to be informative if it has a TCS of at least 4 (shades of red) and filters

out the other columns (gray and white). In (a), Q59NP1 contains 251 residues, and the alignment

of Q59NP1 with other homologous sequences has 692 columns; only 151 of them are informative

(highlighted in shades of red). In (b), Q8BFW9 contains 622 residues, and the alignment of Q8BFW9

with other homologous sequences has 2,414 columns; only 439 of them are informative. In (c), Q9NY37

contains 505 residues, and the alignment of Q9NY37 with other homologous sequences has 2,568

columns; only 508 of them are informative. In (d), Q9Y584 contains 194 residues, and the alignment

of Q9Y584 with other homologous sequences has 1,644 columns; only 79 of them are informative.

(a) Q59NP1 (b) Q8BFW9

(c) Q9NY37 (d) Q9Y584
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Table 1.

Positional information. This table presents information on the sites retained by the TCS filtering

step. For each class of substrates in the dataset, the table presents the average sequence length

(SeqLth), the average number of TMS regions (TMS), and the average total number of residues in

the TMS regions (TMSLth). It also presents the average of the number of positions retained by

the filtering step (Positions: Num) and the average of the number as a percentage of the total

sequence length (Positions: %Seq). It notes the total number of sites that occur in the TMS regions

(TMS: Num) and the non-TMS regions (non-TMS: Num). For the TMS regions, it presents the

average number of informative sites that occur in the central one-third of the TMS regions (TMS:

Interior: Num), and in the remaining exterior regions outside of the central one-third of the TMS

regions (TMS: Exterior: Num). For the non-TMS regions, it presents the average number of

informative sites that occur close to the TMS regions (within 10 positions of the TMS) (non-TMS:

Close: Num) and the remaining sites far from the TMS regions (non-TMS: Far: Num).
Class SeqLth TMS TMSLth Positions TMS Non-TMS
ID Num %Seq Num Interior Exterior Num Close Far

Num Num Num Num
C1 322 4 81 200 64.35 63 22 41 138 35 103
C2 273 6 126 203 74.72 121 42 79 82 57 25
C3 681 7 149 387 57.23 126 45 81 250 65 185
C4 575 8 168 376 62.01 142 50 92 215 73 142
C5 598 10 203 417 70.69 179 62 117 233 91 142
C6 461 10 203 325 70.45 177 62 115 144 70 74
C7 467 10 206 306 67.33 170 59 111 136 83 53
C8 537 4 83 347 39.34 70 24 46 133 37 96
C9 403 6 129 282 71.25 122 43 79 159 79 80
C10 497 12 241 402 79.86 218 76 142 183 95 88
C11 639 7 149 349 47.44 110 38 72 164 54 110

Table 2. Examples of the informative residue distributions with respect to TMSs and non-TMSs.

This table shows the details of individual sequences in Figure 1. The table presents the sequence

length (SeqLth), the number of TMS regions (TMS), and the total number of residues in the TMS

regions (TMSLth). It also presents the number of informative positions retained by the filtering

step (Positions: Num) and that number as a percentage of the total sequence length (Positions:

% Seq). It also denotes the total number of informative sites that occur in the TMS regions (TMS:

Num), as well as that number as a percentage of the total TMS length (TMS: % Seq). In addition,

the total number of informative sites that occur in the non-TMS regions (non-TMS: Num) are

reported, as well as that number as a percentage of the total non-TMS length (non-TMS: % Seq).
UniProt-ID SeqLth TMS TMSLth Positions TMS non-TMS

Num % Seq Num % Seq Num % Seq
Q59NP1 251 2 42 103 41.04 42 100.00 61 29.19
Q8BFW9 622 12 252 386 62.06 246 97.62 140 37.84
Q9NY37 505 2 42 355 70.30 31 73.81 324 69.98
Q9Y584 194 3 63 78 40.21 32 50.79 46 35.11
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Table 3. Statistical analysis of the informative position rates in the TMS and

non-TMS regions. All of the data are reported as the sample mean ± SD. The locations of the TMS

regions are shown as annotated by the Swiss-Prot database. There are statistically significant

(P-value <0.0001) informative positions in the TMS regions compared to the non-TMS regions in the

sequences from all classes except for the nonselective class, where the difference is not significant.
Class ID TMS non-TMS P-value

C1 80.74±23.46 58.69±22.43 0.0007
C2 95.58±9.43 57.48±12.14 <0.0001
C3 78.31±28.07 49.57±22.49 <0.0001
C4 79.81±27.38 53.94±25.36 <0.0001
C5 88.74±20.17 60.55±19.79 <0.0001
C6 85.35±15.54 56.20±16.58 <0.0001
C7 81.95±16.90 55.28±17.58 <0.0001
C8 46.18±44.77 34.39±33.03 <0.0001
C9 94.67±6.00 59.84±6.84 <0.0001
C10 90.45±14.48 69.15±17.63 <0.0001
C11 55.77±37.82 41.13±27.80 <0.0001

Table 4. Statistical analysis of the informative

position rates close to TMS regions and far from TMS regions. All of the data are reported as the

sample mean ± SD. For the non-TMS regions, there are statistically significant (P-value <0.0001)

informative positions that occur close to the TMS regions (within 10 positions of the TMS) compared

to other regions far from TMS regions in the sequences that belong to most classes, except the

C1 (nonselective) and C8 (Other organonitrogens) classes, where the differences are not significant.
Class ID Close Far P-value

C1 78.24±23.09 53.31±26.22 0.002
C2 76.58±10.97 38.59±15.94 <0.0001
C3 66.82±26.47 43.77±22.95 <0.0001
C4 67.26±26.48 47.89±26.31 <0.0001
C5 78.15±19.54 50.94±21.79 <0.0001
C6 69.96±14.50 45.09±19.63 <0.0001
C7 69.18±17.71 43.39±20.65 <0.0001
C8 38.10±41.33 30.53±30.93 0.001
C9 76.60±06.79 49.55±11.43 <0.0001
C10 80.52±14.54 58.05±23.81 <0.0001
C11 49.91±33.30 34.75±26.89 <0.0001

Table 5. Statistical analysis of the informative position rates in the interior and exterior TMS

regions. All of the data are reported as the sample mean ± SD. For the TMS regions, there is no

difference between the informative positions in the central one-third of the TMS regions and the

remaining exterior regions in the sequences that belong to the C1 (nonselective), C2 (water), C5

(organic anions), C8 (other organonitrogens), C9 (nucleotides), C10 (organic heterocyclics), and C11

(miscellaneous) classes. The difference is significant in the sequences that belong to the C3 (inorganic

cations), C4 (inorganic anions), C6 (organo-oxygens), and C7 (amino acids and derivatives) classes.
Class ID Interior Exterior P-value

C1 80.66±24.30 80.21±23.55 0.6485
C2 98.44±07.03 94.92±10.54 0.0003
C3 80.92±28.99 77.48±28.05 <0.0001
C4 81.74±28.33 79.10±27.18 <0.0001
C5 90.09±19.91 88.25±20.49 0.0001
C6 87.65±17.15 84.68±15.50 <0.0001
C7 83.93±17.22 81.31±16.97 <0.0001
C8 47.03±45.76 45.86±44.65 0.0641
C9 97.82±4.81 93.32±6.95 0.0001
C10 92.73±14.89 89.75±14.52 0.0002
C11 56.88±39.33 55.45±37.52 0.03335
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