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ABSTRACT 
 Glioblastoma (GBM) exhibits populations of cells that drive tumorigenesis, 
treatment resistance, and disease progression. Cells with such properties have been 
described to express specific surface and intracellular markers or exhibit specific 
functional features including being slow-cycling or quiescent with the ability to generate 
proliferative progenies. In GBM, each of these cellular fractions was shown to harbor 
cardinal features of cancer stem cells 1-7. In this study we focus on the comparison of 
these cells and present evidence of great phenotypic and functional heterogeneity in brain 
cancer cell populations with stemness properties, especially between slow-cycling cells 
and cells phenotypically defined based on the expression of markers commonly used to 
enrich for cancer stem cells (CSCs). Our data support the cancer stem cell mosaicism 
model with slow-cycling cells representing critical tesserae.  
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INTRODUCTION 
 The cancer stem cell paradigm originated from studies of acute myeloid leukemia, 
which contains a subpopulation of cells showing stem-like cell properties, i.e., long-term 
self-renewal, the ability to generate a large number of phenotypically distinct progenies, 
and tumor-initiating potential 8. Tumor cells with these features, defined as cancer stem 
cells, were subsequently identified in solid tumors, including GBM 1-6. The relevance of 
this paradigm is supported by the functional role of CSCs in tumor growth and recurrence 
and the association between stem cell signature (i.e., stemness) and poor patient 
prognosis 9. Diverse GBM cell populations defined phenotypically, based on the 
expression of markers such as CD133, CD44, ITGB8, PTPRZ1, or SOX2 7,9-16, or based 
on fundamental functional characteristics, including being slow-cycling 5,6,17, exhibit the 
hallmark traits of CSCs. Although these cellular fractions may represent overlapping 
populations contributing to tumorigenesis, they can also define distinct lineages of cells 
or cellular states with different functions regulating tumor progression and treatment 
resistance. Are these lineages distinct from one another? Do they exhibit a unique profile 
of treatment resistance? The goal of this study is to address the question of CSC 
population heterogeneity with a specific focus on comparing slow-cycling cancer cells 
with cellular populations phenotypically characterized based on the expression of defined 
canonical CSC markers. We present phenotypic, genomic, and functional profiling, 
including comparing drug sensitivity. 
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MATERIAL AND METHODS 
GBM patient-derived cell lines. Human GBM tumor specimens were cultured as 
previously described using the gliomasphere assay 5,6,17,18. Informed consent was 
acquired from patients and the experiments were conformed to and were approved by 
Institutional Review Board committee. Cells were cultured in serum-free conditions in 
NeuroCult NS-A Proliferation solution with 10% proliferation supplement (STEMCELL 
Technologies; Cat# 05750 and #05753) supplemented with 10 ng/ml basic fibroblast 
growth factor and 20 ng/ml human epidermal growth factor.  
 
Isolation of slow-cycling cells. Slow-cycling cells (SCCs) were isolated as described 
by Hoang and colleagues 6. Briefly, primary glioblastoma cells were labeled with 
CellTrace dye (Invitrogen) followed by a chase period of 5-10 days. Proliferation 
assessment of the cells was based on CellTrace fluorescence intensity decay rate over 
time measured by flow cytometry. SCCs were defined as the top 5-10% brightest cells.  
 
Antibodies. ITGB8 (R&D Systems, MAB4775), PTPRZ1 (BD Biosciences, 610179), 
SOX2 (R&D Systems, MAB2018), CD44 (Biolegend, 103007), CD133 (Miltenyi Biotec, 
130-113-668). 
 
TMZ treatment. Cells were treated with 50uM or 500uM Temozolomide (TMZ, Sigma-
Aldrich, T2577) 1 day after plating.  
 
Live/dead assay. After 3 days and 10 days of TMZ treatment, cocultured 
mCherry+/CD133high cells and Wasabi+/SCCs were processed to single cells and labeled 
with fixable live/dead near-infrared fluorescent reactive dye (Invitrogen, L34975). The 
percentages of dead cells (live/dead dye+) were then compared through flow cytometry 
between CD133high cells and SCCs in response to the different concentrations of TMZ. 
 
Lentivirus transduction. hGBM-L0 were transduced with vector pLV[exp]-
CMV>mCherry (product ID LVS -VB191217-1841qsh-C, VectorBuilder) to constitutively 
express the fluorescent protein mCherry by following the manufacturer instructions. 
mCherry expressing transduced cells were isolated by flow cytometry. 
 
Flow cytometry. All flow cytometric studies were performed at the University of Florida 
Interdisciplinary Center for Biotechnology Flow Cytometry Core. The different cells 
populations were sorted out using a BD FACSAria II cytometer. BD LSR II or BD 
FACSymphony A3 cytometers were used for measuring and comparing cell viability and 
percentage of CD133+ ITGB8+, CD44+, PTPRZ1+, SOX2+ cells and SCCs. 
 
Bulk RNA sequencing. RNAseq was performed as previously described 6. SCCs 
isolated from nine different GBM patient-derived lines (L0, L1, L2, R24-01, R24-03, R24-
23, R24-26, R24-37, R24-47) were sequenced for paired end 150 runs. Offline data were 
analyzed on the University of Florida High-Performance Cluster (HiPerGator). Briefly, low-
quality reads and adaptors of fastq data were trimmed by trim_galore (Babraham 
Bioinformatics) then reads exceeding Q30 were aligned to Gencode v23 human genome 
by RSEM 19 to extract sample gene expression.  
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Single-cell RNA sequencing. Single-cell RNA sequencing data were derived from 
Darmanis and colleagues 20. Malignant cells were selected (n=1091) based on the 
published metadata. Genes were considered positively expressed if the mean value of 
TMP > 0.2. Genes expressed in less than 30 cells were excluded. The group size was 
determined based on the expression distribution of the different CSC markers. The 
number of cells per group included in the study was defined by a homogenous range of 
max/min ratio (MMR) of expression lacking univariate outlier using box plot methods 
(Supp. Table 1). This identified the top 2% cells representing the CSC populations with 
the highest expression of each marker (i.e., 22 cells). Similarly, the top 2% cells for lipid 
metabolism and cell cycle score were used to define SCCs and FCCs, respectively. 
Escape package 21 was used for pathway enrichment analysis and the establishment of 
the lipid metabolism score. Cell cycle score was defined using Tirosh et. al. signature 
6,22,23. G1S and G2M scores were defined and a new cell cycle score (CCS), based on 
the sum of G1S and G2M scores, was assigned to each cell. To visualize the level of 
cellular homology between groups, we used upset plots and Venn diagrams by Upset 
package 24 and Venny 25, respectively. Box plots for lipid metabolism signature score, 
CSC marker expression level, and cell cycle score were generated by ggplot2. Log10 or 
linear scale was applied based on the data distribution to achieve optimal visualization. 
Limma package 26 was used to identify differentially expressed genes (DEGs) between 
groups composed exclusively of private cells (n=22 for SCC, n=20 for FCC, n=19 for 
SOX2, n=18 for CD133, PTPRZ1, and CD44, and n=17 for ITGB8). p-values were 
adjusted using Bonferroni procedure, and the significance cutoff was set at 0.005. 
Ggplot2 and ggrepel packages 27 were used to generate volcano plots comparing gene 
expression levels between SCCs and each of the other groups. Uniform Manifold 
Approximation and Projection (UMAP）  feature of Seurat 4.0 28,29 was used as a 
deconvolution method to visualize the similarity or divergence between groups. 
Subsequently, trajectory analysis was integrated with Monocle 3 package. SCCs were 
set as a putative start point. A gradient color scale was applied to reflect pseudotime 
differences. The 1000 most variable genes were identified using CancerSubtypes 
package 30. Three-dimension principal component analysis was applied using Base -R. 
Hierarchical clustering was performed using pheatmap 31. The DEGs between SCC and 
CD133 were derived as described above. A drug target enrichment between SCC and 
CD133 was applied by Drugbank signature (version December 2021) 32 through Gene 
Set Enrichment Analysis, with a cutoff of False Discovery Rate (FDR) set at <0.05. 
Heatmap (heatmap.2 package) 27 was used to visualize the predicted drug sensitivity of 
the groups. All codes can be obtained upon request. 
 
Statistical tests. Wilcoxon rank sum test was applied for non-parametric pairwise 
comparison between reference group and each of the other groups (Fig. 2). One-way 
ANOVA combined with Bonferroni method were applied to compare cell death and cell 
ratio between different TMZ concentrations (Fig. 4B-C, Supp. Fig. 4D). p-values were 
adjusted for multiplicity using the Bonferroni method. 
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RESULTS 
Slow-cycling cells express a wide range of CSC markers 
In GBM, we identified a subpopulation of cells displaying reduced cell cycle frequency 
and enriched in tumor-initiating and treatment-resistant cells exhibiting specific 
metabolism and enhanced infiltrative capacity 6,33,34. Demonstration of the stemness 
properties in SCCs and their progenies begs the question of how this lineage compares 
to the population of CSCs defined based on the expression of specific markers. Multiple 
experimental approaches can be used to identify, isolate, and study cancer SCCs 
(reviewed by Basu and colleagues) 35. We used label-retaining assays utilizing CellTrace 
dyes to interrogate these cells in GBM patient-derived lines 6,17,33 and evaluated by flow 
cytometry the expression of markers commonly used to enrich CSCs such as CD44, 
CD133, ITGB8, PTPRZ1, and SOX2. Our results indicate that although SCCs express 
markers of CSCs, not 100% of them are positive, revealing some phenotypic overlap and 
suggesting heterogeneity and distinction between these groups of cells (Fig. 1A-B). 
Additionally, we isolated SCCs by FACS from nine different primary GBM patient-derived 
cell lines and extracted RNA to be interrogated for bulk RNA sequencing analysis. In the 
SCCs, we observed a wide range of expression of the different CSC markers between 
the nine patients (Fig. 1C). Together, these data reveal that the property of being slow-
cycling and the expression of canonical CSC markers do not seem to be mutually 
inclusive.  
 
Single-cell transcriptomics identify multiple populations of CSCs 
To further compare these populations of cells and quantify their state and potential 
dynamical structures we interrogated a single-cell RNA sequencing dataset 20 and defined 
SCCs based on the highest score (top 2%) of a recently reported metabolic signature 
(Supp. Table 2) 6, thereby identifying 22 cells (Supp. Table 3). Similarly, CSC 
populations were defined by the top 22 cells with the highest expression level of CD133, 
SOX2, PTPRZ1, ITGB8, or CD44 (Supp. Table 3). Fast-cycling cells (FCCs) were also 
included in our study and were delineated as the top 22 cells with the highest G1S/G2M 
cell cycle score, as previously described (Supp. Table 3, Supp. Fig. 1A) 6,22,23. We then 
compared the metabolic signature score, each CSC marker expression level, and cell 
cycle score between all populations as defined with the criteria described above. SCCs 
demonstrated a significantly greater lipid metabolism signature score than every other 
population (Fig. 2A). Interestingly, CD44high cells exhibited the closest lipid score from 
SCCs compared to the classical CSC populations, with FCCs showing the furthest score 
from SCCs. Each CSC population (CD133high, SOX2high, PTPRZ1high, ITGB8high, CD44high) 
displayed significant overexpression of their respective marker compared to the other 
groups (Fig. 2B-F). Finally, FCCs demonstrated a higher cell cycle score than the other 
populations (Fig. 2G). Similar to the results from our bulk RNA sequencing studies 
presented on figure 1C, each of the 22 SCCs express heterogeneous expression levels 
of the CSC markers (CD133, SOX2, PTPRZ1, ITGB8, and CD44) ranging between 
several orders of magnitude (Fig. 2H).   
 
Heterogeneity between CSC populations  
Each group was composed of 22 cells defining populations with limited (up to 7% between 
CD44high and ITGB8high groups) to no overlap (Fig. 3A, Supp. Fig. 2). Upset plot indicated 
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that SCCs represent a unique population with none of the 22 cells being included in the 
other groups (CD133high, SOX2high, PTPRZ1high, ITGB8high, CD44high, and FCC), which all 
share at least one cell with each other (Fig. 3A, Supp. Fig. 2). Twenty cells were unique 
to FCCs, nineteen cells were exclusive to SOX2high populations, whereas eighteen cells 
were specific to CD133high, PTPRZ1high, and CD44high cells, and seventeen to ITGB8high 
cells. Three cells were common between PTPRZ1high and CD44high groups. CD133high and 
SOX2high populations shared two cells. Finally, the following paired populations had one 
cell in common: CD133high/ITGB8high, SOX2high/ITGB8high, PTPRZ1high/ITGB8high, 
ITGB8high/CD44high, CD133high/FCC, and ITGB8high/FCC. We used the dimensionality 
reduction technique uniform manifold approximation and projection (UMAP) 28,36 for 
topological comparison of the cellular fractions. We found that both SCCs and CD44high 
cells showed tight clustering, with CD44high cells being the closest neighbors of SCCs, 
and CD133high cells being the farthest ones (Fig. 3B). Even though cells were not 
harvested in a time series, they may be at different developmental stages. We therefore 
performed a trajectory analysis using Monocle3 37 to model the potential relationships 
between groups of cells as a trajectory of gene expression changes. Interestingly, our 
pseudotemporal cell trajectory analysis placed SCCs at one end of pseudotime (close to 
CD44high cells) and CD133high cells at the opposite, divergent end. These results further 
support great distinctions between SCCs and CD133high cells (Fig. 3C). Gene expression 
was compared between SCCs and the other cell populations. We identified sets of genes 
differentially regulated using the limma package 26 with a cutoff of log fold change (LogFC) 
greater than 2 or lower than -2. (Supp. Table 4, Supp. Fig. 3). A three-dimension 
principal component analysis was performed with the unique cells from each group using 
PCA scores calculated with the top 1000 variable genes across all populations. Three-
dimensional imaging plotted to visualize the linear relationship between groups indicated 
that CD133high, SOX2high, PTPRZ1high, ITGB8high, and FCCs were closely distributed and 
distant from SCCs and CD44high cells, which showed greater spreading and independent 
clustering (Fig. 3D). The expression level of these top 1000 variable genes was also 
represented as a heatmap, further illustrating the differential transcriptomic regulation 
between all of these populations (Fig. 3E).  
 
Functional profiling of TMZ sensitivity 
Temozolomide (TMZ) represents the standard-of-care chemotherapy used to treat GBM. 
The co-existence of phenotypically and functionally distinct subpopulations of cells 
exhibiting stemness properties may translate in remarkable heterogeneity of drug 
sensitivity. To address the question of specific drug response between cell populations, 
we functionally compared the effect of TMZ particularly between SCCs and CD133high 
cells. These two cell populations were isolated from a primary GBM patient line (hGBM-
L0) 6,33. mCherry-tagged CD133 cells and Wasabi-tagged SCCs were isolated by flow 
cytometry (Fig. 4A, Supp. Fig.4A) and co-cultured and treated with specific doses of 
TMZ (Fig. 4B-D, Supp. Fig.4B-C). Both populations of cells exhibit a different level of 
TMZ sensitivity, with CD133high cells demonstrating significantly greater cell death 
compared to SCCs (Fig. 4B, Supp. Fig.4B), resulting in changes over time of the ratio 
SCC/CD133 in response to treatment (Fig. 4C-D, Supp. Fig.4C-D). These studies 
support the model of a heterogeneous pool of cells with CSC properties in GBM (i.e., 
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SCCs vs. CD133high cells), with a dynamic distribution that can be differentially regulated 
by therapies.  
 
Genomic profile predicting heterogeneity of drug-sensitivity 
We used genomic profiling to further characterize the difference between SCCs and 
CD133high cells and identify potential drugs predicted to target specifically SCCs versus 
CD133high cells. DEGs between SCC and CD133high groups (Fig. 4E) were used for drug 
target enrichment identification using the comprehensive online drugbank signature 
database through Gene Set Enrichment Analysis (GSEA) 32. Four drugs, including the 
humanized monoclonal antibody against CD44 Bivatuzumab, plasminogen activators 
Lanoteplase and Tenecteplase, as well as Na+/K+ ATPase inhibitor Istaroxime, were 
predicted to specifically target SCCs, whereas CD133high cells were predicted to be 
sensitive to nine different other drugs (Fig. 4F). These results further illustrate the 
intratumoral functional differences between cell lineages and encourage us to functionally 
investigate the effect of these drugs in future studies.  
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DISCUSSION:  
Do populations of CSCs represent intermediate phenotypes along the spectrum of a 
single lineage? Do these cells present partial or complete functional redundancy with 
phenotypic distinction? Do CSCs exist as a homogeneous cellular population or do 
multiple CSCs co-exist in a given tumor? Do they reside at different stages or points of 
the same spectrum? Our study attempts to address these fundamental questions by 
further characterizing the CSC model in GBM.  
Our results reveal differences in cell cycle kinetics, phenotypic and genomic profiles, and 
treatment sensitivity between multiple CSC populations and suggest distinct lineages or 
lineages with only partial overlap with a differential contribution to disease presentation 
and evolution. Specifically, our laboratory identified and characterized a subpopulation of 
slow-cycling cells in GBM 6,17,33. These cells represent a reservoir of tumor-initiating and 
treatment-resistant cells exhibiting CSC properties with the ability to give rise to highly 
proliferative progenies maintaining lineage specificity. Even though the progenies of 
SCCs can exhibit similar proliferative profiles to other cancer cell populations in response 
to specific cues and environment, their fate seems lineage-dependent and follow distinct 
transcriptional trajectories 6,34. The present study was designed to compare SCCs with 
established populations of CSCs. A combination of flow cytometry and bulk and single-
cell RNA sequencing analyses revealed a substantial diversity of transcriptional profiles 
between SCCs and cells expressing the following CSC markers CD133, CD44, ITGB8, 
PTPRZ1 and SOX2. Together these results suggest that SCCs represent a distinct cell 
lineage with only a limited level of transcriptional redundancy. Of note, our study 
compared SCCs with only a few CSC populations; however additional markers could be 
selected, such as L1CAM, KLF4, integrin a6, ALDH, Nestin, Olig2, NANOG, ABCG2, or 
CD15 7,9,11,38-42. Importantly, due to the lack of definite, universal and exclusive markers 
or functions identifying CSCs, discussion and controversy surrounding the 
conceptualization and contextualization of the cancer stem cell model and its hierarchical 
organization and regulation continue. We used a specific lipid metabolism signature, 
which we previously demonstrated to identify slow-cycling cells and their progenies, to 
classify cells as SCCs from a single cell RNA sequencing dataset 20. We compared these 
cells with different CSCs populations defined based on the high expression of canonical 
CSC markers (i.e., CD133, ITGB8, CD44, PTPRZ1, and SOX2). Our results showed a 
lack of cellular overlap between SCCs and the other CSC populations, further supporting 
lineage specificity (Fig. 3A, Supp. Fig. 2).  
Using a coculture dual-color system, in which CD133+ cells were tagged with the 
fluorescent protein mCherry and SCCs with the fluorescent protein Wasabi, we were able 
to compare in real time lineage dynamics in response to treatment. Our results indicated 
that SCCs and their progenies are more tolerant to TMZ than the CD133high cell lineage 
(Fig. 4D-F, Supp. Fig. 4B-D). Similarly, Reinartz and colleagues demonstrated specific 
subclone dynamism and functional consequences of intratumoral heterogeneity of drug 
resistance in GBM 43. This work also supports GBM as a disease with the co-existence 
of polyclonal collections of cellular hierarchies combining cancer stem cell and classical 
stochastic models. Oren and colleagues used a high-complexity expressed barcode 
lentiviral library for simultaneous tracing of cell clonal origin and proliferative and 
transcriptional profiling. Their results show the existence of treatment-resistant persisters 
in lung cancers, with their fate being lineage-dependent and characterized by metabolic 
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reprogramming of anti-oxidant and lipid pathways 44. This data is in line with our previous 
study demonstrating that, under treatment pressure, slow-cycling cancer stem cells give 
rise to lineage-specific cycling persisters that repopulate the tumors and are also marked 
by up-regulated fatty acid metabolic pathways and anti-oxidant programs 6. These 
pathways, especially autophagy and lipid droplets metabolism that we reported being 
increased in SCCs 6, represent candidate regulators of diapause 45-47, which is a potential 
mechanism by which SCCs may enter or exhibit drug-tolerant persister (DTP) state 48,49. 
Diapause is a defined state of physiological dormancy characterized by a dormant stage 
of suspended embryonic development triggered by stress. Two recent studies suggest 
that tumor cells can engage diapause-like pathways enabling cancer treatment escape 
48,49. Rehman and colleagues reported that colorectal cancer cells are equipotent in their 
ability to enter the DTP state by activating diapause-like transcriptional programs to 
survive therapy. Conversely, our data suggest a different scenario in GBM, which display 
great heterogeneity characterized by diverse populations of cells, especially cancer stem 
cells with distinct treatment sensitivity, suggesting a varied capacity to stimulate 
diapause-like mechanisms to enter the DTP state. Considering this heterogeneity, 
therapeutic strategies aiming to eliminate cells with stemness properties will have to be 
combinatorial and target every individual lineage.  
Diversity in CSCs populations is now well recognized. However, the precise hierarchical 
organization and the plasticity of this organization between CSC populations and non-
CSCs are very complex and challenging to appreciate and understand fully. The potential 
hierarchical link between SCCs and the classical CSCs could be further investigated 
using lineage tracing assays, similar to the report by Lan and colleagues 50. This study 
used DNA barcoding and fate mapping to demonstrate a model with functionally distinct 
cells in GBM with a conserved proliferative hierarchy in which slow-cycling stem-like cells 
give rise to rapidly cycling progenitors, showing extensive self-renewing capability with 
the ability to generate terminally differentiated cells.  
GBM are spatially organized complex ecosystems with heterogeneity across the tumor 
microenvironment, where specific CSC lineages may be selected based on their spatial 
distribution within the tumor 9, defining niche-specific cell-cell interactions. Understanding 
of the dynamic transcriptional and spatial fluctuations of each CSC lineage, and the 
interconnection and interconversion of these populations will be paramount for developing 
precision and effective therapies. The use of sophisticated high-throughput approaches, 
which may combine mathematical modeling, artificial intelligence, single-cell RNA 
sequencing, 3D model systems, multiplex imaging, and spatial transcriptomics, will help 
map and understand this dynamically adaptive complex system and uncover the 
mechanisms underlying its resilience that is the root of its resistance to treatment.  
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FIGURE LEGENDS 
 
Figure 1. Expression level of CSCs markers in GBM SCCs. SCCs, identified as 
CellTrace retaining cells (top 5-10%) 5,6, were labeled with the following antibodies anti- 
CD133, ITGB8, CD44, PTPRZ1 and SOX2. Protein expression was measured by flow 
cytometry. A) Representative flow plots indicating the gates immunoreactive for the 
different CSC markers. B) Bar graph representing the percentage of SCCs that are 
positive (dark grey) or negative (light grey) for the different CSC markers. C) SCCs were 
FAC sorted from nine GBM patients and bulk RNA sequencing analysis was performed. 
The box plot indicates the level of CSC marker expression in SCCs for each patient, 
represented as transcript per million (TPM). The results identified SCCs in every patient 
and showed that SCCs exhibit a wide range of expression levels of CSC markers. 
Whiskers represent the 95% confidence interval and the box characterizes the 
interquartile range (IQR; 25th-50th-75th percentiles). 
 
Figure 2. Gene signature scores and gene expression levels derived from 
scRNAseq comparing SCC, CSCs and FCC groups. Deconvolution score of lipid 
metabolism signature (A), expression of CD133 (B), SOX2 (C), PTPRZ1 (D), ITGB8 (E), 
CD44 (F), and cell cycle score (G). All pairwise comparisons comparing groups to the 
reference population (i.e., SCC-A, CD133-B, SOX2-C, PTPRZ1-D, ITGB8-E, CD44-F, 
FCC-G) were statistically significant (n=22, Wilcoxon test, all p-values adjusted for 
multiple comparisons using Bonferroni method were <0.001). error bars represent the 
95% confidence interval and the box characterizes the IQR. H) Expression of CSC marker 
in SCCs. 
 
Figure 3. Transcriptomic differences between populations. A) Upset plot showing 
private or shared cells among groups. Set size is 22 cells for each group. B) UMAP 
projection of scRNA-seq data showing subsets of distinct cellular clusters. C) Trajectory 
analysis using Monocle3 coupled with Seurat single-cell data analysis package used for 
UMAP projection. D) Screenshot of a 3D-PCA using the top 1000 most variable genes. 
E) Heatmap displays groups’ hierarchical clustering using the top 1000 variable genes. 
 
Figure 4. Functional assessment of the difference in drug sensitivity. A) Isolated 
from hGBM-L0, SCCs and CD133high cells were co-cultured and treated with TMZ. B) 
Three days after initiating TMZ treatment, cell death was evaluated by flow cytometry 
using live/dead dye incorporation assay. Mean +/- SEM. one-way ANOVA. p-values were 
adjusted for multiplicity using the Bonferroni method. Results indicate distinct TMZ 
sensitivity between SCCs and CD133high cells. C) Ten days after TMZ treatment, the ratio 
SCC/CD133 was compared between the experimental conditions. Results show a 
significant increase of the ratio, indicating a greater resistance to TMZ of SCCs compared 
to CD133high cells. Mean +/- SEM. one-way ANOVA. p-values were adjusted for 
multiplicity using the Bonferroni method. D) Representative micrographs of co-cultured 
SCCs and CD133+ cells treated with TMZ. Scale bars, 100um. E) Hierarchical clustering 
using DEGs between SCCs and CD133high cells. F) Drug target enrichment score 
between SCC and CD133high groups. Drug IDs in red are agents specific to SCC. Drug 
IDs in yellow are specific to CD133high cells. Drug ID: DB06245: Lanoteplase; DB00031: 
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Tenecteplase; DB06157: Istaroxime; DB06550: Bivatuzumab; DB08515: (3AR,6R,6AS)-
6-((S)-((S)-CYCLOHEX-2-ENYL) (HYDROXY)METHYL)-6A-METHYL-4-OXO-
HEXAHYDRO-2H-FURO[3,2-C]PYRROLE-6-CARBALDEHYDE; DB04141: 2-Hexyloxy-
6-Hydroxymethyl-Tetrahydro-Pyran-3,4,5-Triol; DB04799: 6-Hydroxy-5-undecyl-4,7-
benzothiazoledione; DB07401: Azoxystrobin; DB07763: (5S)-3-ANILINO-5-(2,4-
DIFLUOROPHENYL)-5-METHYL-1,3-OXAZOLIDINE-2,4-DIONE; DB07778: (S)-
famoxadone DB08330: METHYL (2Z)-3-METHOXY-2-{2-[(E)-2-
PHENYLVINYL]PHENYL}ACRYLATE; DB08453: 2-Nonyl-4-quinolinol 1-oxide; 
DB08690:Ubiquinone Q2. 
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SUPPLEMENTAL FIGURE/TABLE LEGENDS 
 
Supplemental Figure 1 (related to Figure 2). Cell cycle score. Scatter plot 
representing the cell cycle scores of SCCs (red, n=22) and FCCs (orange, n=22). 
 
Supplemental Figure 2 (related to Figure 3). Pairwise Venn Diagrams. The numbers 
in the overlapped areas of each Venn Diagram represent the number of cells in common 
between the two groups. The non-overlapping sections show the number of cells private 
to each population. 
 
Supplemental Figure 3 (related to Figure 3). Volcano plots comparing gene 
expression between SCC and each of the other groups. Red dots represent 
significantly upregulated genes in SCCs. Blue dots are significantly downregulated genes 
in SCCs. CSC markers (CD133, SOX2, PTPRZ1, ITGB8, CD44) were annotated. 
Differentially Expressed Genes (DEGs) were filtered based on LogFC over than 2 or less 
than -2 with an adjusted p-value set as 0.05. 
 
Supplemental Figure 4 (related to Figure 4). Gating strategy for sorting CD133+ cells 
and SCCs and functional TMZ sensitivity assay. A) Primary hGBM-L0 cells 5,6 were 
transduced to constitutively express the fluorescent reporter tag Wasabi or mCherry. 
Wasabi expressing cells were labeled with CellTrace Violet and chased for one week 
before isolating SCCs (top 10%). mCherry-tagged CD133 immunoreactive cells were also 
FAC sorted and co-cultured with wasabi-tagged SCCs at an initial 40/60 ratio of 
SCC/CD133. The cells were then cultured and treated with various doses of TMZ. B) 
Gating strategy to measure cell death. The percentage of dead cells was quantified by 
flow cytometry after incubating the cultures with live/dead fixable reactive dye. The gating 
strategy is presented. C) The ratio of SCC/CD133 cells was evaluated by quantifying 
using flow cytometry the percentage of wasabi+ cells and mCherry+ cells in the different 
experimental groups. Representative flow dot plots are presented. D) Graph represents 
the mean of the ratio wasabi/mCherry, measured three days post-TMZ treatment, +/- 
SEM, one-way ANOVA. p-values were adjusted for multiplicity using the Bonferroni 
method. 
 
Supplemental Table 1. List of max/min ratio (MMR) of expression of each CSC marker.  
 
Supplemental Table 2. List of 56 genes defining SCC-enriched lipid metabolism 
signature 6. 
 
Supplemental Table 3. Complete list of malignant cell ID identified from Darmanis and 
colleagues 20 with the level of expression of CD133, ITGB8, CD44, PTPRZ1, and SOX2, 
as well as lipid metabolism signature and cell cycle scores. 
 
Supplemental Table 4. List of genes differentially regulated between SCCs and the other 
cell populations extracted from scRNA Seq dataset 20.  
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Supplemental Figure 1 (related to figure 2)
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Supplemental Figure 2 (related to figure 3)
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