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Abstract— This paper assesses and challenges whether com-
monly used methods for defining amplitude thresholds for
spike detection are optimal. This is achieved through empirical
testing of single amplitude thresholds across multiple recordings
of varying SNR levels. Our results suggest that the most
widely used noise-statistics-driven threshold can suffer from
parameter deviation in different noise levels. The spike-noise-
driven threshold can be an ideal approach to set the threshold
for spike detection, which suffers less from the parameter
deviation and is robust to sub-optimal settings.

I. INTRODUCTION

Brain Machine Interfaces are achieving significant new
capabilities [1], [2] using neural spike waveform or spike
timing in extracellular recordings. Spike detection is an
essential step in extracting neural spikes from recordings. It
not only distils the information for neural activity decoding
but also reduces the data bandwidth for hundreds or even
thousands times, making it possible for wireless transmis-
sion and achieving fully implant neural interfaces without
percutaneous wires breaching the skin.

The spike detection performance is critical for preserving
neural information and to avoid degradation of decoding
accuracy. Thresholding is the most common way for spike
detection and the values exceeding the threshold are regarded
as spikes. An adaptive and robust threshold is then crucial
facing the varying brain environment. There have been
numerous algorithms proposed in the literature for defining
the threshold. One approach is to use the computational
algorithms [3], [4], for example, Short-time Fourier Trans-
form, Wavelet Transform and template matching. There are
also some algorithmic approaches, for example, a feedback-
controlled threshold [5]. The most common approach is to
set the threshold according to the signal statistics. The noise
statistics are widely used to set a threshold. A hardware ef-
ficient estimation method is also proposed using a multiplier
to set the mean/median/standard deviation/root-mean-square
values as the threshold [6]. Others opt to set the threshold
with a robust statistical estimation [7].

Setting the threshold as T = αN , where N is the noise
statistics and α is a user-defined parameter, is a commonly
used approach of setting the threshold [8]. This approach is
especially preferred in on-implant implementation because
of its simplicity [9]. However, the adaptiveness of such an
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approach is of concern. Some studies are seeking the optimal
threshold for spike detection. In [10], it found that the noise
mean value is the best threshold driving factor among other
noise statistics. However, a single optimal multiplier that is
suitable for varying SNR levels cannot be defined. In [5],
it is assumed that the neural recording distribution consists
of an exponent component (noise) and a power component
(spikes). Here, a threshold is set at the intersection point of
two estimated distributions. The distribution estimation can
be resource-and-power-hunger in hardware, but the thresh-
old driven jointly by noise and spike information can be
heuristic. However, we have not seen anyone adopt the spike
information to set the threshold computationally efficient or
assess its suitability as a threshold driving factor.

In this paper, we investigate the performance of differ-
ent multipliers based on noise and spike statistics across
varying SNR levels. This allows us to assess the suitability
to extracting spike information and how it compares to
only using the noise level to set the threshold. Section II
describes the dataset, performance metric and threshold set-
tings. Section III shows the results we obtained from different
threshold settings. Section IV discusses the findings from the
results and analysis the challenges, and Sections V concludes
this work.

II. METHODOLOGY

A. Synthetic dataset

In order to get full control of the signal characteristics, we
have generated a synthetic dataset in different noise levels for
assessing the detection performance. The synthesising pro-
cedure is based on [8]. We use real recordings [11] from the
motor cortex of monkeys sampled at 24,414 Hz to generate
a synthetic dataset with ground truth. Synthetic recordings
are consist of noise and spikes. The noise is truncated from
the LFP removed and zero-centered real neural recordings
in which periods spikes do not appear. The noise standard
deviation (STD) is normalised to 1 and modified according
to the desired SNR. The spikes are extracted from the real
recordings using WaveClus [12] and there are 1,000 different
templates with varying amplitudes for selection. The arrival
of spikes can be simulated as a Poisson distribution with
λ equal to the firing rate. By simulating multiple Poisson
distributions of spike arrivals, multi-unit activities can be
generated. One spike is randomly selected from the template
spikes and chained with former spikes at desired arrival time.
The gaps will be filled with zeros. After chaining all spikes
from different cells, the spike amplitude will be normalised
according to the spike peak mean values resulting in the unit
average peak amplitude.
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One synthetic recording is defined with three parameters:
firing rate, number of cells and signal-to-noise ratio (SNR).
The firing rate is the single-cell spike rate which determines
the λ of each Poisson distribution, and the cell number
determines the number of Poisson distributions be simulated.
SNR is defined as the ratio of the mean value of spike peak
amplitude and the STD of the noise.

B. Threshold and spike detection

In order to find the optimal threshold derived from the
signal statistics, we have assumed to have the perfect es-
timation of the noise and spike statistics. Three indicators:
µnoise, σnoise µpeak, which are noise mean, noise STD and
spike peak mean, are used to set the threshold as following:

T = αµnoise (1)
T = αµnoise + βσnoise (2)
T = αµpeak (3)
T = αµpeak + βµnoise (4)

where α and β are user-defined parameters.
The detection occurs when the signal amplitude exceeds

the threshold. As the spikes typical lasts for 20 timestamps,
detection will be inactivated for 15 timestamps to avoid re-
detection. Detections falling within 10 samples around the
ground truth are True Positives (TPs), others will are Flse
Positives (FPs), undetected spikes are False Negatives (FNs).

C. Evaluation metrics

To evaluate the performance of different threshold settings,
we assess the detection accuracy (Acc), Span Ratio (SR) and
Deviation-to-Span Ratio (DSR). Acc is formulated as:

Acc =
TP

TP + FP + FN
(5)

which describes the detection performance jointly consider-
ing sensitive and false detection rate.

SR describes the effect of an inaccurate set of the thresh-
old parameters. The Span is defined the average multiplier
difference in different noise levels that achieves the accepted
accuracy. We prefer settings leading to large Spans, which
means the multipliers values vs. Acc curve is flat, and it
is less sensitive to the inaccurate setting of the threshold
multipliers. However, the range of the multipliers in different
settings can be different. To ensure a fair comparison among
different settings, we take the ratio of Span at 0.8 Acc to the
Span at 0.7 Acc as the metric SR to evaluate the robustness of
inaccurate setting of the threshold within the same SNR level.
More significant SR means better robustness. It can also be
regarded as a measurement for the detection performance
when the threshold is sub-optimal. The formula is given
below:

SpanA =

∑
SNR (max(MulAcc>A)− min(MulAcc>A))∑

SNR (max(Acc) > A)

SR =
Span0.8
Span0.7

(6)

where Mul is multipliers, max(·) and min(·) are operators for
max and min values, and A is the accepted accuracy level.

The DSR describes the deviation of the parameters across
different SNRs for obtaining the best detection accuracy.
Dev is the maximum difference for the multipliers that
achieve the best detection accuracy higher than the accepted
accuracy in different SNR levels. A small Dev means the best
multiplier is less deviate from one SNR level to another.
The adaptiveness of such a setting is therefore better in
different SNR levels. Taking the ratio between the Dev and
Span makes it possible to compare the settings with different
parameter space. The DSR is defined as in Eq. 7 and we here
assess the deviation at the accept accuracy level of 0.8, which
gets involved in enough noise levels and fits the intuition of
the minimum acceptable detection accuracy.

DevA = Mul[maxL(AccA)]− Mul[minL(AccA)]

SSR =
Dev0.8
Span0.8

(7)

where maxL(·) and minL(·) are operations to find the lag of
max and min values, and AccA is the max detection accuracy
in different SNR levels that are larger than A.

III. RESULTS

We have simulated 18 sets of recordings in which 2 cells
each fires at 20 Hz. Their SNRs vary from 5 to 40 with a
step of 2. Each set contains ten 4 s recordings. Threshold in
each run is set with varying α and β. Spikes are detected
according to the Section.II-B, and detection accuracy is
averaged among 10 runs.

A. T = αµnoise

We have swept α from 1 to 50, detection accuracy for
different α and SNR is given in Fig. 1.A. Curves from top
to bottom are cases SNR from high to low. The stars indicate
the top settings that achieve the highest accuracy in different
SNR. One can notice that there is a significant deviation for
the optimal α from 15 to around 30 as the SNR increases.
This indicates that the optimal threshold for spike detection
does not increase linearly with the noise levels.

B. T = αµnoise + βσnoise

As the optimal threshold increases non-linearly with the
noise mean, we tried to introduce the STD for thresholding.
Both α and β are swept from 1 to 20. Results are shown
in Fig. 1(B). Curves shown are the best combinations of the
settings that achieve the highest accuracy in different SNR
levels. The parameter deviation still exists in both the mean
and STD sides as there is no overlapping among the settings
in different SNRs. We therefore question if the noise statistic
is a good or only indicator for setting the threshold.

C. T = αµspike

Intuitively, one can set a suitable threshold in the med-
way of spike peaks and noise ground, which means the
spike peak level can be an indicator for setting the threshold.
The α in Eq. 3 is set to varying from 0.1 to 2 with a
step of 0.05. Results are shown in Fig. 1(C). DSR, which
describes the parameter deviation, is reduced dramatically
compared to Fig. 1(A), indicating that the spike guided
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Fig. 1. A) The detection accuracy using T = αµnoise for threshold with changing α and SNR. The curves from the bottom blue to the top purple are
the SNR from 5 to 40 with a step of 2, and the stars indicate the top settings that achieve the highest accuracy in different SNR. (the same for C). B) The
combination of α and β that achieves the best detection accuracy using T = αµnoise + βσnoise for threshold in different SNR. The curves from bottom
blue to top yellow are the SNR from 5 to 37 with a step of 4 (the same for D). C) The detection accuracy using T = αµpeak for threshold with changing
α and SNR. D) The combination of α and β that achieves the best detection accuracy using T = αµpeak + βµnoise for threshold in different SNR.
The overlapped region denotes the region of SNR levels and α − β combinations that suffers less from the parameter deviation for setting the optimal
threshold.

threshold suffers much less than the noise-based threshold
in different SNR levels. However, the SR is reduced, which
means the threshold is more sensitive to the inaccurate set of
the threshold. One reason is that the spike peak mean is high,
and minor changes in the multiplier can significantly change
the threshold level; another reason is that this threshold is
noise invariant. When the noise is high, some large noises
can exceed the threshold to increase the false detection.

D. T = αµspike + βµnoise

We can introduce noise awareness to the threshold by
combining spike and noise statistics. With Eq. 4 in which
α varies between 0.1 to 2 and β varies between 0.5 to
10, the top combination achieving the highest accuracy is
shown in Fig.1(D). The deviation is much less than using
Eq. 2 compared to Fig. 1(B). The accepted parameters are
overlapped at the shaded blue region, which means the SNR
in this region shares close optimal threshold settings. We
selected three α values 0.25, 0.5, 0.6 and swept the β. The
results are shown in Fig. 2. It can be observed that when α is
0.5, the DSR is minimal, and SR is also increased compared
to Fig. 1(C). The parameter deviation can be increased when
α deviates to 0.5 as DSR increases. However, the SR will
still be maintained, which means the performance of different
settings is consistent when the threshold is sub-optimal.

Such a joint spike-noise-based threshold utilises the peak
values to set the coarse-grained baseline level of the threshold
and uses the noise value to fine-tune the threshold. The
coarse-grained baseline reduces the parameter deviation, and
the fine-tuning provides noise awareness and increases the
low SNR performance. Such a finding reveals the essence of
the optimal thresholding and tells us we have forgotten an
important factor - the spike peak in the past. Moreover, this

Fig. 2. The detection accuracy using T = αµpeak+βµnoise for threshold
with changing fix α, and varying β and SNR. The curves from the bottom
blue to the top purple are different trials when SNR is increased from 5 to
40 with a step of 2. A) α = 0.25. B) α = 0.5,C) α = 0.6.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.25.477685doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477685
http://creativecommons.org/licenses/by/4.0/


TABLE I
A COMPARISON OF DIFFERENT SPIKE DETECTION METHODS IN VARYING

SNR

Noise level 0.05 0.1 0.15 0.2 Mean STD

β = 1 0.98 0.99 0.96 0.88 0.953 0.05
β = 1.5 0.99 0.99 0.97 0.92 0.968 0.031
β = 2 0.99 0.99 0.96 0.92 0.967 0.031

[6] 0.89 0.97 0.92 0.89 0.918 0.037
[8] 0.92 0.95 0.95 0.85 0.918 0.047

also fits our intuition as the threshold should be SNR-driven.

E. Application of the spike-noise based threshold to an
independent dataset

According to Fig. 2(B), the suitable settings for α and
β can be 0.5 and 1.5, respectively. In order to evaluate
the generalisation of such a finding, we have applied these
settings to a different dataset generated in [8], which has
been widely used in multiple literature [6], [13]. The results
are shown in the Table I. Compared to nearby settings, the
maximum threshold is still peak at the selected settings,
which mean there is no deviation between this dataset and
the dataset we generated. Compared to other works, such
a method achieves the highest detection accuracy and better
robustness to different noise levels, referring to the mean and
STD values of the Acc in different noise levels.

IV. DISCUSSION

A. Noise-driven threshold

The optimal threshold set only with noise statistics suffers
severely from the changing noise levels. The parameter
deviation lowers the model adaptiveness. The reason is that
noise statistics is not the only dependent factor to the optimal
threshold. The best setting for one SNR can overfit such
noise level and no longer works with the noise level changes.

B. Spike-driven threshold

Using spike peak in guidance of set the threshold can
overcome parameter deviation. A suitable parameter that
generalises well in different noise levels can be found.
However, as the spike values are more significant than the
noise, the threshold becomes more sensitive to the change
of multiplier values. When the threshold is sub-optimal, the
detection performance can be affected.

C. Spike-noise-driven threshold

Jointly using the spike and noise statistics can trade-off be-
tween parameter deviation and sub-optimal threshold degra-
dation. Using spike values can effectively reduce parameter
deviation, and using noise values reduces the effect of sub-
optimal threshold on degrading detection performance.

D. The concern on spike peak estimation

Such an approach requires robust estimation on both noise
and spikes. There are plenty of researches focusing on noise
estimation but few studies are working on the spike peak
estimation. Estimating the spike peak can be challenging

as we have no prior knowledge of the peak amplitudes
before detection. The threshold will be updated according to
the local environment in real-time adaptive spike detection.
Without a robust estimation of the spike peak amplitude, the
false detection of the spikes could lower the estimated spikes
peak amplitude and even lower the threshold leading to more
false detections. Such positive feedback could eventually
crush the spike detection algorithm. A Kalman filter or PID
control can potential be used for the spike peak estimation.

E. The concern on the optimal threshold
The optimal threshold setting we found in this paper

is T = 0.5µpeak + 1.5µnoise. However, it still needs the
verification of its suitability on the real signal recordings,
which can be challenging as there is no ground truth label.
There is also the need for a mathematical proof of whether
0.5 and 1.5 are optimal for spike detection using Eq. 4.

V. CONCLUSIONS

In this paper, we have explored the factors determining
the optimal threshold for spike detection. We have found
that an optimal threshold that generalises in the different
SNRs should be derived from both spike peak amplitudes and
noises. We also point out that the peak amplitude estimation
can be challenging. Without a robust estimation, the optimal
threshold can hardly be achieved. That leads us to our future
works on robust spike peak estimation and other thresholding
techniques independent from the noise or spikes.
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