1 2	Metabolic strategies shared by basement residents of the Lost City hydrothermal field
3	William J. Brazelton ^{1#} , Julia M. McGonigle ^{1,2} , Shahrzad Motamedi ¹ , H. Lizethe Pendleton ¹ ,
4 5	Katrina I. Twing ^{1*} , Briggs C. Miller ¹ , William J. Lowe ¹ , Alessandrina M. Hoffman ¹ , Cecilia A. Prator ¹ , Grayson L. Chadwick ³ , Rika E. Anderson ⁴ , Elaina Thomas ⁴ , David A. Butterfield ⁵ ,
6	Karmina A. Aquino ⁶ , Gretchen L. Früh-Green ⁶ , Matthew O. Schrenk ⁷ , Susan Q. Lang ⁸
7 8	
9	¹ School of Biological Sciences, University of Utah, Salt Lake City, UT
10	² Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME
11	³ Department of Molecular and Cell Biology, University of California, Berkeley, CA
12	⁴ Department of Biology, Carleton College, Northfield, MN
13	⁵ Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA
14	⁶ Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
15	⁷ Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI
16	⁸ School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC,
17	USA
18 19	*Present address:
19 20	Department of Microbiology, Weber State University, Ogden, UT, USA
20 21	Department of Microbiology, weber State Oniversity, Ogden, 01, 05A
22	[#] Corresponding author: william.brazelton@utah.edu
23	
24	
25	Running title:
26	Metabolic strategies of Lost City's basement residents
27	
28	
29	Abstract word count: 228
30	Importance word count: 147
31	Text word count: 5,251
32	

33 ABSTRACT

34 Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are 35 36 released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we 37 investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor 38 environments where the products of geochemical reactions, such as hydrogen (H₂), formate, and 39 methane, may be the only available sources of energy for biological activity. Our deep 40 sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a 41 few key species of archaea and bacteria that are likely to play critical roles in the subseafloor 42 microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to 43 phylum *Nitrospirae*) as a prevalent sulfate-reducing bacterium that may be responsible for much 44 of the consumption of H₂ and sulfate in Lost City fluids. Metagenome-assembled genomes 45 (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered 46 from venting fluids and represent potential methanogenic and acetogenic members of the 47 subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-48 like sequences that may be unique to hydrothermal and subsurface alkaline environments where 49 hydrogen and formate are much more abundant than carbon dioxide. The results of this study 50 include multiple examples of metabolic strategies that appear to be advantageous in 51 hydrothermal and subsurface environments where energy and carbon are provided by 52 geochemical reactions.

- 53
- 54
- 55

56 IMPORTANCE

57	The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy
58	and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process
59	known as serpentinization that releases hydrogen and creates unusual environmental conditions
60	where simple organic carbon molecules are more stable than dissolved inorganic carbon. This
61	study provides an initial glimpse into the kinds of microbes that live deep within the seafloor
62	where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City
63	chimneys. The metabolic strategies that these microbes appear to be using are also shared by
64	microbes that inhabit other sites of serpentinization, including continental subsurface
65	environments and natural springs. Therefore, the results of this study contribute to a broader,
66	interdisciplinary effort to understand the general principles and mechanisms by which
67	serpentinization-associated processes can support life on Earth and perhaps other worlds.
68	
69	
70	
71	
72	

73 INTRODUCTION

74 The fixation of carbon dioxide into organic carbon by autotrophic organisms is the foundation of 75 all ecosystems on Earth. Even in subsurface environments, organic carbon is provided by 76 fixation of carbon dioxide by chemoautotrophs or else from the degradation of organic carbon 77 originally produced in photosynthetic ecosystems and transported into the subsurface. However, 78 organic carbon can form abiotically in hydrothermal environments, particularly in those that 79 favor a set of geochemical reactions collectively known as serpentinization (McCollom & 80 Seewald, 2007; Martin et al., 2008). Microbial communities in serpentinizing environments are 81 likely to benefit from the abiotic synthesis of simple organic compounds, but the processes and mechanisms that may allow this to occur are unknown. 82 83

84 The Lost City hydrothermal field is located near the summit of the Atlantis Massif, a submarine 85 mountain formed by the uplift of ultramafic rocks from Earth's upper mantle and emplacement 86 onto the seafloor along a major fault zone (Kelley et al., 2005; Karson et al., 2006; Früh-Green et 87 al., 2018). Serpentinization of the Atlantis Massif results in the generation of hydrogen gas (H_2) 88 and hydrothermal fluids that are rich in formate, methane, and perhaps other forms of organic carbon (Proskurowski et al., 2008; Lang et al., 2012, 2018). Dissolved inorganic carbon is 89 90 vanishingly rare in the pH 9-11 hydrothermal fluids that vent from Lost City chimneys because it 91 is either reduced to formate or methane or else precipitated as carbonate minerals (Proskurowski 92 et al., 2008; Ternieten, Früh-Green & Bernasconi, 2021). Sulfate, in contrast, appears to be an 93 available oxidant throughout the subseafloor because it is never completely consumed by the 94 relatively moderate hydrothermal conditions within the Atlantis Massif (Kelley et al., 2005; Lang 95 & Brazelton, 2020).

96

97	Dense biofilm communities coating the surfaces of Lost City chimneys are capable of utilizing
98	this bounty of energy and carbon released from the mantle (Lang et al., 2018; McGonigle, Lang
99	& Brazelton, 2020). However, these biofilms form in mixing zones where warm, anoxic
100	hydrothermal fluids vent into cold, oxic seawater. These conditions may not be representative of
101	subseafloor environments within the Atlantis Massif where habitats are probably confined to
102	sparsely distributed fractures and channels within rocks that have limited exposure to seawater
103	(Früh-Green et al., 2018; Motamedi et al., 2020). In particular, dissolved inorganic carbon is
104	provided by ambient seawater to chimney biofilm communities, while its availability is severely
105	limited in subseafloor habitats dominated by the products of serpentinization.
106	
107	The microbiology of fluids venting from Lost City chimneys has been explored in only one study
108	(Brazelton et al., 2006), as all other microbiological research at Lost City has focused on the
109	chimney biofilms (Brazelton et al., 2010, 2011; Lang et al., 2012, 2018; McGonigle, Lang &
110	Brazelton, 2020; Lang & Brazelton, 2020). That early census of microbial diversity identified
111	several novel 16S rRNA sequences, but they were poorly classified due to the limitations of
112	microbial taxonomy at the time (Brazelton et al., 2006). In particular, the presence of potential
113	sulfate-reducing bacteria (SRB) in Lost City fluids has been a mystery despite clear
114	biogeochemical trends that indicate widespread SRB activity in the subseafloor (Lang et al.,
115	2018; Lang & Brazelton, 2020).
116	
117	A deep-sea expedition to the Lost City in 2018 was designed to fill this knowledge gap by

118 investigating the microbiology and biogeochemistry of fluids venting from Lost City chimneys

119	(Lang et al., 2021). We exploited natural biogeochemical trends in fluids venting from distinct
120	chimney locations within the Lost City field to test hypotheses about subseafloor microbial
121	metabolic activity. Here we report initial results from the sequencing of DNA and RNA in Lost
122	City fluids, including the first sequences of metagenomes and metatranscriptomes from Lost City
123	hydrothermal fluids. We identify a few key archaea and bacteria that appear to be indicative of
124	subseafloor habitats strongly influenced by serpentinization. These results highlight metabolic
125	strategies and adaptations that are common to life fueled by the products of serpentinization,
126	including the potential use of formate and other simple forms of organic carbon as the primary
127	sources of carbon for the ecosystem.
128	
129	
130	RESULTS
131	Characteristics of Lost City hydrothermal fluid samples
132	Hydrothermal fluid samples were collected from actively venting chimneys at the Lost City
133	hydrothermal field (Figure 1; Supplemental Figure S1) using ROV Jason during the 2018 Lost
134	
	City expedition aboard R/V Atlantis (AT42-01). This study includes 39 samples of hydrothermal
135	City expedition aboard R/V <i>Atlantis</i> (AT42-01). This study includes 39 samples of hydrothermal fluids that were dedicated to DNA and RNA sequencing, including analyses of amplicon
135 136	
	fluids that were dedicated to DNA and RNA sequencing, including analyses of amplicon
136	fluids that were dedicated to DNA and RNA sequencing, including analyses of amplicon sequence variants (ASVs), metagenomes, and metatranscriptomes (Table 1; Supplemental
136 137	fluids that were dedicated to DNA and RNA sequencing, including analyses of amplicon sequence variants (ASVs), metagenomes, and metatranscriptomes (Table 1; Supplemental
136 137 138	fluids that were dedicated to DNA and RNA sequencing, including analyses of amplicon sequence variants (ASVs), metagenomes, and metatranscriptomes (Table 1; Supplemental Table S1).

142 ¹ in all samples, although the two samples with the highest temperatures had the least number of
143 cells (**Table 1**).

144

- 145 Fluids venting from Markers 3 and C contained ASV compositions that were notably distinct
- 146 from those of all other fluids (Figure 1), including high relative abundances of
- 147 *Thermodesulfovibrionia*, *Desulfotomaculum*, and *Bipolaricaulota* (Figure 2; Supplemental
- 148 **Table S2**). In addition, Marker 3 fluids were rich in metagenomic sequences classified as family
- 149 *Methanosarcinaceae*, which includes the dominant archaeal phylotype previously detected in
- Lost City chimneys (Schrenk et al., 2004; Brazelton et al., 2010, 2011). The greater
- 151 representation of archaeal sequences in the metagenomes suggests a bias against archaeal
- 152 sequences in the ASV dataset.

153

154 Fluids venting from Camel Humps contained a remarkably even distribution of ASVs that 155 included Sulfurovum, Sulfurospirillum, and Thiomicrorhabdus at similar abundances as taxa 156 typically associated with ambient seawater (e.g., Alteromonas, Roseobacter, Halomonas). The 157 overall microbial community structure of Sombrero fluids is broadly similar to that of Camel 158 Humps fluids, although warmer and more sulfidic Sombrero fluids included greater proportions 159 of taxa that were also abundant in fluids from Markers 3 and C (Figure 2). Fluid samples from 160 the chimneys at Markers 2 and 8 were dominated by bacteria that are ubiquitous in chimney 161 surface biofilm communities (Brazelton et al., 2006, 2010).

162

In general, the proportion of ambient seawater in each hydrothermal fluid sample, as measuredby Mg concentration, did not predict the presence of microbes likely to inhabit anoxic,

165	subseafloor environments. Instead, the distribution of anaerobic taxa most likely to be strongly
166	linked with serpentinization (e.g., Methanosarcinaceae, Thermodesulfovibrionia,
167	Desulfotomaculum, and Bipolaricaulota) was strongly chimney-specific, indicating a strong
168	influence of subsurface conditions that is only weakly mitigated by the mixture of seawater
169	during sampling. Detailed comparisons of the hydrothermal fluid samples are provided in the
170	Supplemental Material.
171	
172	Metagenome-Assembled Genomes (MAGs)
173	A total of 305 MAGs with at least 50% estimated completion were recovered from the pooled
174	"all fluids" assembly and the six chimney-specific assemblies (Supplemental Figure S3;
175	Supplemental Table S4). MAGs that were representative of the taxa enriched in Markers 3 and
176	C, as well as MAGs that contained key genes associated with the metabolism of H ₂ , sulfate,
177	formate, and methane, were selected for additional analyses.
178	
179	Re-assembly and manual refinement of these sequences (Supplemental Material) resulted in 30
180	refined and curated MAGs (Figure 3) that are at least medium-quality (>50% complete, <10%
181	redundancy, (Bowers et al., 2017). Generally, these MAGs are most abundant in Marker 3,
182	Calypso, or Sombrero, and they are nearly absent in Camel Humps and Marker 2.
183	(Unfortunately, metagenomic sequences could not be obtained from Marker C or Marker 8). A
184	single Methanosarcinaceae MAG was especially abundant in the fluids from Marker 3 (Figure
185	3). Each of these MAGs represent new species (or else represent novel taxa we have previously
186	detected at Lost City), and our phylogenetic analyses indicate that the Methanosarcinaceae,

187	Thermodesulfovibrionales, and Bipolaricaulota MAGs most likely represent novel genera
188	(Supplemental Figures S5-S7).
189	
190	Below, we briefly describe key features of these MAGs that seem relevant to an initial
191	exploration of the Lost City subseafloor ecosystem, focusing on genes associated with the
192	metabolism of H ₂ , formate, sulfur, and methane. Additional information about each MAG is
193	reported in the Supplemental Material, including detailed descriptions of genomic content and
194	predicted protein functions (Supplemental Tables S5-S6).
195	
196	Hydrogenases
197	[NiFe]-hydrogenases typically associated with H ₂ oxidation were found in
198	Thermodesulfovibrionales MAG-1293 (HyaAB), Methanocellales MAG-838 (HyaAB), and
199	Bipolaricaulota MAG-1503 (HoxYH) (Figure 4). Of these, the Thermodesulfovibrionales MAG
200	was by far the most abundant in venting fluids (Figure 3). Methanosarcinaceae MAG-1276
201	encodes two hydrogenases associated with methanogenesis: F_{420} -reducing hydrogenase (FrhAB)
202	and Ech hydrogenase (EchCE). It also encodes a formate dehydrogenase that can provide
203	electrons to MvhD and HdrABC instead of the H2-oxidizing Vho/Vht enzyme (Costa et al.,
204	2013). Thus, Lost City Methanosarcinaceae may power methanogenesis with electrons from
205	both H ₂ and formate. The same MvhD-HdrABC complex, without FDH, was also found in
206	MAGs classified as ANME-1, <i>Natronincolaceae</i> , and Bipolaricaulota (Supplemental Table S5).
207	
208	In addition, the Methanosarcinaceae and ANME-1 MAGs contain a complete 14-gene cluster
209	(mbhA-N) encoding membrane-bound hydrogenase (Mbh) (Figure 5; Supplemental Figure

210	$\mathbf{S8}$). For each predicted gene in the cluster, the homologs in the <i>Methanosarcinaceae</i> and
211	ANME-1 MAGs are more similar to each other than to any other sequences in public databases.
212	The same gene cluster, with conserved synteny, is also found in methanogens belonging to the
213	order Methanomicrobiales and in heterotrophs of the order Thermococcales (Thauer et al.,
214	2010). The MbhL subunits from these methanogens have only 42-45% identities with the Lost
215	City MbhL sequences reported here, which have greater similarly (~49% identities) to MbhL
216	sequences from Thermococcus. Bipolaricaulota MAG-1503 also includes a predicted MbhL
217	sequence, which is most closely related to two Bipolaricaulota MAGs from hydrothermal
218	systems: the Mid-Cayman Rise (Zhou et al., 2020) and Guaymas Basin (Dombrowski, Teske &
219	Baker, 2018) (Figure 5).
220	
221	[NiFe]-hydrogenase sequences (HyaAB) were also highly abundant in Sombrero and Camel
222	Humps fluids (Supplemental Table S7), where they were primarily encoded by
223	Thiomicrorhabdus. We did not prioritize the analysis of Thiomicrorhabdus MAGs because our
224	prior work indicated that they inhabit oxygenated biofilm communities on chimney surfaces
225	(Brazelton & Baross, 2010). We previously noted the absence of hydrogenase sequences
226	phylogenetically linked with these bacteria (Brazelton, Nelson & Schrenk, 2012), but recent
227	sequencing of additional genomes from Thiomicrospira, Thiomicrorhabdus, and
228	Hydrogenovibrio (Scott et al., 2018) has revealed that many of the hydrogenase sequences in
229	Lost City metagenomes are affiliated with these taxa after all.
230	
231	[FeFe]-hydrogenases typically associated with the production of H_2 during fermentation were
232	represented by HndCD sequences in several MAGs (Figure 4). This hydrogenase is capable of

233	H_2 oxidation with reduction of NADP in some organisms (Kpebe et al., 2018), but the presence
234	of only one subunit in multiple Lost City MAGs (Figure 4) is curious and has unknown
235	implications for the ability of these organisms to either consume or produce H ₂ .
236	
237	Formate dehydrogenase and transporters
238	Formate dehydrogenase (FDH) catalyzes the reversible oxidation of formate to carbon dioxide,
239	and various forms of FDH have diverse physiological roles in all three domains of life (Maia,
240	Moura & Moura, 2015). Oxidation of formate was detected in all Lost City fluid samples,
241	including those with significant contributions from ambient seawater (Supplemental Table S8).
242	
243	We identified at least three kinds of FDH in Lost City fluids plus two distinct variants of FDH-
244	like sequences. (1) NAD(P)-dependent FDH catalyzing formate oxidation in bacteria (K00123;
245	FdoG/FdhF/FdwA) was detected in <i>Thermodesulfovibrionales</i> and WOR-3 MAGs. (2) NAD(P)-
246	dependent FDH catalyzing reduction of carbon dioxide into formate (K05299; FdhA) was
247	detected in Bipolaricaulota, Thermodesulfovibrionales, Desulfotomaculum, and Dehalococcoidia
248	MAGs. (3) F_{420} -dependent FDH catalyzing formate oxidation in methanogens (FdhA) was
249	detected in the Methanosarcinaceae MAG. (4) A divergent FDH-like sequence was detected in
250	Methanosarcinaceae, ANME-1, Bipolaricaulota, and Thermodesulfovibrionales MAGs. (5)
251	Another divergent FDH-like sequence was detected in the WOR-3 MAG (Figure 4).
252	
253	The divergent FDH-like sequence shared by the Methanosarcinaceae, ANME-1, Bipolaricaulota,
254	and Thermodesulfovibrionales MAGs is also found in MAGs and SAGs (single-amplified
255	genomes) from three continental serpentinite-hosted springs: the Voltri Massif in Italy (Brazelton

256 et al., 2017), The Cedars in California, USA (Suzuki, Nealson & Ishii, 2018), and Hakuba Happo 257 hot springs in Japan (Merino et al., 2020) (Figure 6; Supplemental Figure S9). All of these 258 sequences from serpentinizing systems are more similar to each other than to any other 259 sequences in public databases. 260 261 The formate transporters FdhC and FocA that were previously identified in Lost City chimney 262 biofilms (Lang et al., 2018; McGonigle, Lang & Brazelton, 2020) were also detected in the 263 metagenomes of venting fluids reported here, but they were only present at very low coverage 264 (Supplemental Table S7), suggesting that they are specific to organisms inhabiting chimney 265 biofilms. None of the MAGs highlighted by this study contain any known formate transporters. 266 A lack of canonical formate transporters was also reported recently for a formate-utilizing 267 methanogen in serpentinite-hosted, hyperalkaline groundwaters (Fones et al., 2021). Therefore, 268 transport of formate into the cells of organisms inhabiting hyperalkaline subsurface 269 environments may be carried out by uncharacterized proteins. 270 271 **Sulfate reduction** 272 Surprisingly, the samples of sulfidic fluids collected from the chimney at Marker 2 (Table 1) did 273 not contain elevated levels of taxa expected to represent sulfate-reducing bacteria (SRB) 274 (Figures 2-3) or the genes encoding dissimilatory sulfite reductase (DsrAB) (Figure 7). Instead, 275 Marker 2 fluids are dominated by aerobic bacteria that are likely to be adapted to chimney 276 biofilms or to shallow subsurface zones with exposure to ambient seawater. Potential SRB such 277 as Thermodesulfovibrionales were most abundant in the fluids venting from Marker 3, Marker C, 278 Sombrero, and Calypso (Figures 2-3).

279

280	The other potential SRB in Lost City fluids include Desulfotomaculum, Desulfocapsa, and
281	Desulfobulbus. Desulfotomaculum have been implicated as potential SRB in Lost City chimney
282	biofilms (Gerasimchuk et al., 2010), but the Desulfotomaculum MAGs have neither
283	hydrogenases nor carbon fixation enzymes, so their ability to reduce sulfate is dependent on the
284	availability of organic matter. Furthermore, some Desulfotomaculum species are known to be
285	incapable of sulfate reduction despite encoding DsrAB (Imachi et al., 2006). They do encode the
286	nitrogenase enzyme required for nitrogen fixation, as do the Methanosarcinaceae, ANME-1, and
287	Thermodesulfovibrionales MAGs (Figure 4). Desulfobulbus sequences were very rare in fluids
288	from Markers 3 and C. Desulfocapsa were moderately abundant in Marker 3 fluids, but no
289	MAGs classified as Desulfocapsa could be recovered during this study. Additionally, most of the
290	dsrAB sequences in Lost City fluids were affiliated with Thermodesulfovibrionales or
291	Desulfotomaculum; no dsrAB sequences belonging to Desulfocapsa or Desulfobulbus were
292	identified in high-coverage contigs.
293	
294	Methane oxidation
295	Methane is present in Lost City fluids at a remarkably constant concentration of ~1 mM, while
296	
	concentrations of H ₂ , sulfate, sulfide, and other chemicals vary widely (Kelley et al., 2005; Lang
297	concentrations of H_2 , sulfate, sulfide, and other chemicals vary widely (Kelley et al., 2005; Lang et al., 2012; Aquino et al., In Revision). The source of the methane, i.e. whether it is synthesized
297	et al., 2012; Aquino et al., In Revision). The source of the methane, i.e. whether it is synthesized
297 298	et al., 2012; Aquino et al., In Revision). The source of the methane, i.e. whether it is synthesized abiotically as a product of serpentinization or released from carbon stored within basement rocks,
297 298 299	et al., 2012; Aquino et al., In Revision). The source of the methane, i.e. whether it is synthesized abiotically as a product of serpentinization or released from carbon stored within basement rocks, remains uncertain (Kelley & Früh-Green, 1999; Wang et al., 2018; Klein, Grozeva & Seewald,

302

303	The primary candidates for the anaerobic oxidation of methane at Lost City are the ANME-1
304	archaea, which are most abundant in Calypso fluids (Figures 2-3). The absence of cytochromes
305	and presence of hydrogenases in the ANME-1 MAG was noted by (Chadwick et al., 2021) as
306	consistent with the genomic features of the so-called "freshwater" clade of ANME-1, for which
307	the genus "Candidatus Methanoalium" was proposed. One of the shared features within this
308	clade, including the Lost City ANME-1 MAG, is a novel HdrABC-MvhADG complex, which is
309	involved in the transfer of electrons derived from H_2 in methanogens. Therefore, this clade of
310	ANME-1 may be involved in the H ₂ -fueled production of methane instead of, or in addition to,
311	the oxidation of methane. Distinguishing between methanogenesis and the anaerobic oxidation of
312	methane with genomic data alone is notoriously difficult (Chadwick et al., 2021), and the
313	Methanosarcinaceae and ANME-1 MAGs reported here contain features that are potentially
314	consistent with both the production and oxidation of methane.
315	
316	Potential methanotrophic bacteria were represented by ASVs classified as the
317	gammaproteobacterial family Methylomonaceae (e.g. Methylobacterium), but they are expected
318	to represent chimney biofilm communities (Brazelton et al., 2006) and were not abundant in any
319	of the fluids included in this study. ASVs classified as Methyloceanibacter, various species of
320	which can aerobically oxidize methane, methanol, or other methylated compounds (Vekeman et
321	al., 2016), were prominent in Marker C fluids and very rare or absent in all other fluids
322	(Supplemental Table S2).
323	

324 Carbonic anhydrase

325	At the high pH conditions of Lost City fluids, dissolved bicarbonate and carbonate are more
326	stable than carbon dioxide, and the potential use of bicarbonate or carbonate as carbon sources
327	has been explored in studies of continental sites of serpentinization (Suzuki et al., 2014, 2017;
328	Kohl et al., 2016; Miller et al., 2018; Kraus et al., 2021; Fones et al., 2021). Carbonic anhydrase
329	catalyzes the reversible conversion between bicarbonate and carbon dioxide, which may enable
330	cells to utilize bicarbonate obtained from the environment. Methanosarcinaceae MAG-1276
331	encodes a carbonic anhydrase that shares 59-85% amino acid identities with sequences found in
332	three other MAGs from Lost City (classified as NPL-UPA2 and Bipolaricaulota) and in one
333	MAG from the Hakuba Happo hot spring (Nobu et al., 2021). These novel carbonic anhydrase
334	sequences share only 35-41% amino acid identities with previously characterized proteins, e.g.
335	the beta class carbonic anhydrases from <i>Clostridium aceticum</i> (Supplemental Figure S10). The
336	Lost City carbonic anhydrase sequences retain each of the conserved residues highlighted by
337	(Smith & Ferry, 2000) for beta class carbonic anhydrases. In addition, the Methanosarcinaceae
338	MAG includes a predicted high-affinity bicarbonate transporter (SbtA).
339	

340 Glycine reductase

Glycine may be generated abiotically in high-H₂ conditions or released as a primary thermogenic
degradation production of biomass (Amend & Shock, 1998; Aubrey, Cleaves & Bada, 2009;
Lang et al., 2013; Dick & Shock, 2021). The reduction of glycine to acetyl-phosphate is
catalyzed by glycine reductase, which has been identified in metagenomes from multiple
serpentinite-hosted springs (Nobu et al., 2021). Seven of the Lost City MAGs encode glycine
reductase, and in most of these genomes, glycine reductase (GrdEBCA) is in a gene cluster that
includes selenium transferase (SelA), selenocysteine-specific elongation factor (SelB), and

348	thioredoxin (TrxA) (Supplemental Table S5), consistent with the gene organization of bacteria
349	that conserve energy by reduction of glycine (Andreesen, 2004). Each of these MAGs also
350	encodes partial Wood-Ljungdahl pathways, suggesting that they may use glycine reductase as
351	part of the reductive glycine pathway for carbon fixation (Sánchez-Andrea et al., 2020).
352	
353	ATP synthase
354	The production of ATP is catalyzed by the enzyme ATP synthase, which diverged into distinct
355	archaeal and bacterial versions early in the evolution of life (Müller & Grüber, 2003). A few of
356	the bacterial MAGs in this study encode the archaeal form of ATP synthase (A-type) instead of
357	the bacterial form (F-type). These include Dehalococcoidia MAG-844, Paceibacteria MAG-855,
358	WOR-3 MAG-1066, and all three NPL-UPA2 MAGs (Supplemental Table S5). Chloroflexi,
359	Paceibacteria (previously named candidate phylum OD1), and NPL-UPA2 bacteria have also
360	been observed to encode A-type ATP synthase in The Cedars, a continental serpentinite spring
361	(Suzuki et al., 2017; Suzuki, Nealson & Ishii, 2018), suggesting that the A-type ATP synthase
362	may provide advantages to both bacteria and archaea in the high pH, highly reducing conditions
363	created by serpentinization.
364	
365	In addition, ATP synthase was completely absent in three of the Paceibacteria MAGs, as was the
366	case for multiple Paceibacteria MAGs from The Cedars (Suzuki et al., 2017). Natronincolaceae
367	MAG-1138 also lacks any ATP synthase genes, and its genomic content suggests an obligate
368	fermentative lifestyle (Supplemental Material). Other genera within family Natronincolaceae
369	include Alkaliphilus and Serpentinicella, which have been isolated from the Prony Bay

370 hydrothermal field (Mei et al., 2016; Postec et al., 2021).

371

372 **DISCUSSION**

373 Distinct zones of microbial activity in Lost City's basement

- 374 The massive edifice of Poseidon towers 60 meters above the center of the Lost City
- 375 hydrothermal field (Figure 1). Alkaline hydrothermal fluids flow from the serpentinite basement
- and throughout the Poseidon structure, exiting at multiple locations across the field. The
- differing flow paths that lead to each location have distinct residence times (Moore et al., 2021)
- and produce distinct chemical and microbiological compositions of the venting fluids (Lang et
- al., 2012, 2018, 2021; Aquino et al., In Revision).

380

381 For example, the venting locations Marker 3 and Camel Humps sit only a few meters from each 382 other at the summit of Poseidon, but the fluids venting from each structure appear to have taken 383 different paths, which is reflected in their distinct microbial communities. Marker 3 fluids are 384 dominated by a few archaeal and bacterial species that have the genomic potential to metabolize 385 H₂, formate, and sulfate. Genes encoding methanogenesis, sulfate reduction, and carbon fixation 386 are much more abundant in Marker 3 fluids than genes encoding aerobic respiration (Figure 7; 387 Supplemental Figures S12-S15). In contrast, Camel Humps fluids host a diverse assemblage of 388 bacteria capable of using oxygen, nitrate, and nitrite as oxidants. These taxonomic and metabolic 389 patterns are generally similar between ribosomal gene and ribosomal RNA datasets (Figure 2) 390 and between metagenomes and metatranscriptomes (Figures 3 and 7) from the same locations, 391 indicating that the most abundant organisms in these fluids were likely to have been 392 metabolically active at the time of sampling.

393

394 Sulfate reduction is limited to a few taxa in the subseafloor 395 Previous studies of Lost City hydrothermal fluids have revealed a consistent trend across the 396 field in which the consumption of H₂ and sulfate is correlated with the production of hydrogen 397 sulfide (Proskurowski et al., 2008; Lang et al., 2012, 2018). Therefore, sulfate-reducing bacteria 398 (SRB) are expected to be widespread and metabolically active in the subsurface environments 399 below the Lost City chimneys. 400 401 The metagenomic results presented here indicate a single, novel species of 402 *Thermodesulfovibrionales* as the SRB that is most likely to be responsible for these trends. It 403 dominates the fluids at Marker C, Marker 3, and Calypso, and it accounts for most of the genes 404 associated with sulfate reduction and H₂ oxidation in these fluids. It also includes multiple 405 formate dehydrogenases and various genes indicative of organic carbon oxidation 406 (Supplemental Table S5), suggesting metabolic flexibility that is not dependent on the 407 availability of H₂ and inorganic carbon. 408 409 The Lost City Thermodesulfovibrionales belong to a novel clade associated with deep subsurface 410 environments and hot springs that shares only 82-87% nucleotide identities with characterized 411 Thermodesulfovibrio species (Supplemental Figure S7). This clade also includes a 16S rRNA 412 sequence from highly alkaline borehole fluids associated with serpentinization of the Samail 413 Ophiolite in Oman (Rempfert et al., 2017). Thermodesulfovibrionales are not abundant in other 414 sites of serpentinization, although DsrB sequences with similarity to Thermodesulfovibrio were 415 detected in alkaline borehole fluids from the Coast Range Ophiolite (Sabuda et al., 2020). Sulfate 416 concentrations are much higher in borehole fluids from the Samail Ophiolite (up to 3.9 mM) and

417	the Coast Range Ophiolite	(up to 0.4 mM) compared to most	natural springs associated with

- 418 serpentinization (e.g. <0.02 mM in the Tablelands, Voltri Massif, and The Cedars) (Brazelton et
- 419 al., 2017; Rempfert et al., 2017; Sabuda et al., 2020; Cook et al., 2021). An exception is Ney
- 420 Springs, where sulfate can be as high as 12.9 mM, but the potential SRB detected there did not
- 421 include *Thermodesulfovibrionales* (Trutschel et al., In Revision).
- 422

423 H₂-fueled metabolism is limited to a few taxa in the subseafloor

- 424 Lost City fluids contain copious quantities of H_2 (1-7 mM, with subsurface concentrations
- 425 predicted to reach 14 mM; (Kelley et al., 2005; Aquino et al., In Revision), which is expected to
- 426 be a tremendous boost to life in the subseafloor. Surprisingly, only two taxa
- 427 (*Thermodesulfovibrionales* and *Methanosarcinaceae*) that are abundant in Lost City fluids
- 428 encode hydrogenases known to be associated with H₂ oxidation. Therefore, the ability of the
- subseafloor ecosystem to be powered by H₂ may depend on one species of bacteria and one
- 430 species of archaea.
- 431

432 Another type of hydrogenase, known as membrane-bound hydrogenase (Mbh), was also detected

433 in *Methanosarcinaceae*, ANME-1, and Bipolaricaulota genomes (Figure 5). In *Thermococcus*

434 and *Pyrococcus*, Mbh is responsible for H₂ production during anaerobic, heterotrophic growth,

435 and some bacteria use Mbh in coordination with FDH to convert formate into H_2 (Schut et al.,

436 2013; Nobu et al., 2015). In heterotrophic Bipolaricaulota, Mbh has been proposed to couple the

437 production of H₂ with ATP synthesis in coordination with the MvhAGD-HdrABC complex

438 (Youssef et al., 2019). In methanogens, the role of Mbh is unclear, but each of the methanogens

439 that encode Mbh can utilize either formate or H_2 as their sole source of electrons. In H_2 -saturated

Lost City fluids, biological production of additional H₂ seems highly unfavorable, and the
sequence divergence between the Lost City sequences and these previously characterized Mbh
prevents any firm conclusions on whether they are more likely to catalyze the consumption or
production of H₂.

444

445 Formate metabolism may operate via unknown mechanisms in the subseafloor

Formate forms abiotically in the high-pH, reducing conditions of serpentinizing fluids, and it isthe second-most abundant form of carbon in Lost City fluids after methane and the second-most

448 available reductant after dissolved H₂ (Lang & Brazelton, 2020). Much of the biomass in Lost

449 City chimneys is produced from formate that is derived from carbon originating in Earth's

450 mantle (Lang et al., 2018). Formate is the preferred substrate for methanogens in at least one

451 other site of serpentinization where carbon dioxide is limiting (Fones et al., 2021). However,

452 none of the taxa highlighted by this study contain any known formate transporters, and

453 surprisingly few encode formate dehydrogenase (FDH), the enzyme that catalyzes the oxidation

454 of formate. A remarkable exception is *Thermodesulfovibrionales*, which encodes three distinct

455 forms of FDH.

456

A divergent, FDH-like sequence with unknown function was shared by four of the key taxa in
this study (*Thermodesulfovibrionales*, *Methanosarcinacae*, ANME-1, and Bipolaricaulota).
These sequences form a distinct clade that includes sequences from continental serpentinite
springs, suggesting that this gene represents a shared, unknown metabolic strategy in
serpentinizing fluids (Figure 6).

462

463	In the highly reducing conditions of Lost City fluids, biosynthetic pathways are more
464	energetically favorable than in typical environments, and the synthesis of some biomolecules can
465	even be energy-yielding (Amend et al., 2011; Dick & Shock, 2021). Therefore, the ability to
466	incorporate formate directly into metabolic pathways, rather than first oxidizing it to carbon
467	dioxide, could be a competitive advantage in Lost City's basement, where formate is 100-1,000
468	times more abundant than carbon dioxide (Lang & Brazelton, 2020). Potential evidence for this
469	hypothesis is the prevalence of partial and complete Wood-Ljungdahl pathways among Lost City
470	bacteria (Supplemental Table S5). Eight of these genomes do not encode a known FDH,
471	suggesting that they may be able to use formate, rather than carbon dioxide, as the substrate for
472	carbon fixation and perhaps acetogenesis. Some acetogens can use formate as their sole source of
473	energy and carbon, although FDH may be still required to supply carbon dioxide as an electron
474	acceptor (Jain et al., 2020).
475	
476	In the absence of FDH, pyruvate formate lyase (PfID), which is encoded by some of the same
477	genomes with partial Wood-Ljungdahl pathways (Bipolaricaulota, NPL-UPA2, and
478	Dehalococcoidia), might catalyze the reduction of formate directly into acetyl-CoA and pyruvate
479	(Zelcbuch et al., 2016). However, this activity has only been demonstrated in E. coli, and its
480	relevance to these taxa in the unusual environmental conditions of Lost City requires further
481	research.
482	

482

483 Conclusions

484 This study has highlighted multiple examples of metabolic strategies shared among the archaea485 and bacteria most likely to inhabit subsurface habitats underlying the Lost City hydrothermal

486 field. These shared strategies appear to be advantageous for life in environments that are rich in 487 H₂ (e.g., hydrogenases), provide a steady supply of simple organic molecules (e.g., formate 488 dehydrogenase, pyruvate formate lyase, and glycine reductase), lack carbon dioxide (e.g., 489 carbonic anhydrase), and make typical ATP synthesis too difficult or unnecessary. 490 491 Many of the predicted proteins associated with these metabolic strategies are not closely related 492 to any previously characterized enzymes, but they are shared by diverse archaea and bacteria in 493 Lost City and other sites of serpentinization (e.g., Prony Bay, The Cedars, Hakuba Happo, and 494 Voltri Massif), strongly suggesting the influence of horizontal gene transfer among these 495 systems. The functions of these proteins are mostly unknown and require further study, but the 496 results presented here indicate that they are likely to be important clues for understanding the 497 ecology, physiology, and evolution of microbes adapted to these conditions. 498 499 If potential extraterrestrial habitats are evaluated for their ability to support a robust ecosystem 500 over geological time scales (Cabrol, 2018), then it is critical to identify and understand the 501 metabolic pathways of key organisms that form the foundations of ecosystems that are 502 potentially relevant for astrobiology. All ecosystems on the surface of the Earth are based on 503 autotrophs that rely on the availability of sunlight and carbon dioxide. The most promising 504 extraterrestrial habitats in our solar system (Schulte et al., 2006; Waite et al., 2017; Jones, 505 Goordial & Orcutt, 2018; Michalski et al., 2018), however, are dark, rock-hosted environments 506 where simple organic molecules may be more biologically available than carbon dioxide. The 507 organisms and metabolic pathways highlighted by this study can help us to understand the 508 biological advantages and limitations of such conditions.

509

510 METHODS

- 511 Collection of hydrothermal fluid samples
- 512 Hydrothermal fluid samples were collected from actively venting chimneys at the Lost City
- 513 hydrothermal field (Figure 1) using ROV Jason during the 2018 Lost City expedition aboard
- 514 R/V Atlantis (AT42-01). On the seafloor, venting fluids were slowly pumped through 0.2 μm
- 515 Millipore Sterivex cartridge filters or into acid-washed Kynar bags with the HOG sampler (Lang
- 516 & Benitez-Nelson, 2021). Samples intended for RNA extractions were collected into 2 L Kynar
- 517 bags containing 67 mL of a stop solution (97.5% 200 proof ethanol, 2.5% Trizol LS; Thermo

518 Fisher). Fluid temperatures were monitored in real-time during sampling with a probe embedded

519 into the sampler intake. Concentrations of sulfate, hydrogen sulfide, and magnesium were

520 measured according to standard methods (Butterfield & Massoth, 1994). Additional sampling

521 methods are provided in the **Supplemental Material**.

522

523 Sequencing of DNA and RNA

524 Extraction of DNA and RNA from Sterivex filters was conducted as described previously

525 (Brazelton et al., 2017; Thornton et al., 2020), with minor modifications described in the

526 Supplemental Material. Sequencing of amplicons generated from 16S rRNA genes and cDNA

527 was performed at the Genomics Core Facility at Michigan State University on an Illumina MiSeq

528 instrument using dual-indexed Illumina fusion primers targeting the V4 region of the 16S rRNA

- 529 gene (Kozich et al., 2013). Amplicon sequence variants (ASVs) were inferred from 16S rRNA
- amplicon sequences with DADA2 v. 1.10.1 (Callahan et al., 2016). Paired-end sequencing (2 x
- 531 125 bp) of metagenomic libraries was conducted at the University of Utah High-Throughput

532	Genomics Core Facility at the Huntsman Cancer Institute with an Illumina HiSeq2500 platform.
533	Metatranscriptome sequencing was conducted with a 150 cycle paired-end run on a NovaSeq
534	6000. Methods for the assembly and binning of metagenomes, including all downstream analyses
535	are provided in the Supplemental Material.
536	
537	Data Availability
538	Amplicon sequences are available via NCBI BioProject PRJNA672129, and metagenome and
539	metatranscriptome sequences are available via BioProject PRJNA779602. MAGs are associated
540	with the same BioProject and are individually accessible via BioSamples SAMN23474158 -
541	SAMN23474187. In addition, GenBank accessions are listed for each MAG in Supplemental
542	Table S4. Protocols, metadata, and additional data are provided in a Zenodo-archived GitHub
543	repository accessible via DOI: 10.5281/zenodo.5798015, and on the BCO-DMO page for project
544	658604: https://www.bco-dmo.org/award/658604.
545	
546	Acknowledgements
547	We thank the Scientific Party of the 2018 Lost City expedition (AT42-01), including the crews
548	of R/V Atlantis and ROV Jason. In addition, we gratefully acknowledge invaluable mentorship
549	for many years from John Baross and Deborah Kelley. Mitch Elend, Christopher Thornton, and
550	Alex Hyer provided critical technical support before, during, and after the expedition. University
551	of Utah students enrolled in BIOL 3270 / 5270 assisted in the analysis of metagenomic data.
552	

553	This work was supported by NSF awards to Brazelton and Lang (OCE-1536702/1536405), the					
554	NASA Astrobiology Institute Rock-Powered Life team, a NASA Postdoctoral fellowship to					
555	McGonigle, the Swiss National Science Foundation, and the Deep Carbon Observatory.					
556						
557	References					
558	Amend JP, McCollom TM, Hentscher M, Bach W. 2011. Catabolic and anabolic energy for					
559	chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types.					
560	Geochimica et Cosmochimica Acta 75:5736–5748. DOI: 10.1016/j.gca.2011.07.041.					
561	Amend JP, Shock EL. 1998. Energetics of Amino Acid Synthesis in Hydrothermal Ecosystems.					
562	Science 281:1659–1662. DOI: 10.1126/science.281.5383.1659.					
563	Andreesen JR. 2004. Glycine reductase mechanism. Current Opinion in Chemical Biology					
564	8:454–461. DOI: 10.1016/j.cbpa.2004.08.002.					
565	Aquino KA, Früh-Green GL, Rickli J, Bernasconi SM, Lang SQ, Lilley MD, Butterfield DA. In					
566	Revision. Multi-stage evolution of the Lost City hydrothermal vent fluids. Geochimica et					
567	Cosmochimica Acta.					
568	Aubrey AD, Cleaves HJ, Bada JL. 2009. The role of submarine hydrothermal systems in the					
569	synthesis of amino acids. Origins of Life and Evolution of Biospheres 39:91–108.					
570	Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F,					
571	Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A,					
572	Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM,					
573	Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ,					
574	Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T,					
575	Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-					
576	Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Murat Eren A,					
577	Schriml L, Banfield JF, Hugenholtz P, Woyke T. 2017. Minimum information about a					

- 578 single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of 579 bacteria and archaea. Nature Biotechnology 35:725–731. DOI: 10.1038/nbt.3893. 580 Brazelton WJ, Baross JA. 2010. Metagenomic Comparison of Two Thiomicrospira Lineages 581 Inhabiting Contrasting Deep-Sea Hydrothermal Environments. PLoS ONE 5:e13530. 582 DOI: 10.1371/journal.pone.0013530. 583 Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C, Edwards RL, 584 Baross JA. 2010. Archaea and bacteria with surprising microdiversity show shifts in 585 dominance over 1,000-year time scales in hydrothermal chimneys. Proceedings of the 586 National Academy of Sciences 107:1612–1617. DOI: 10.1073/pnas.0905369107. 587 Brazelton WJ, Mehta MP, Kelley DS, Baross JA. 2011. Physiological Differentiation within a 588 Single-Species Biofilm Fueled by Serpentinization. *mBio* 2:e00127-11. DOI:
- 589 10.1128/mBio.00127-11.
- 590 Brazelton WJ, Nelson B, Schrenk MO. 2012. Metagenomic Evidence for H2 Oxidation and H2
- 591 Production by Serpentinite-Hosted Subsurface Microbial Communities. *Frontiers in*592 *Microbiology* 2:268. DOI: 10.3389/fmicb.2011.00268.
- 593 Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Methane- and Sulfur-Metabolizing
- 594 Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem. *Applied* 595 and Environmental Microbiology 72:6257–6270. DOI: 10.1128/AEM.00574-06.
- 596 Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA, Lang SQ, Lilley MD, Früh-Green
- 597 GL, Schrenk MO. 2017. Metagenomic identification of active methanogens and
- 598 methanotrophs in serpentinite springs of the Voltri Massif, Italy. *PeerJ* 5:e2945. DOI:
- 599 10.7717/peerj.2945.
- Butterfield DA, Massoth GJ. 1994. Geochemistry of north Cleft segment vent fluids: temporal
 changes in chlorinity and their possible relation to recent volcanism. *Journal of Geophysical Research* 99:4951–4968. DOI: 10.1029/93JB02798.

- 603 Cabrol NA. 2018. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective
- on the Robotic Exploration of Biosignatures. *Astrobiology* 18:1–27. DOI:

605 10.1089/ast.2017.1756.

- 606 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2:
- 607 High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13:581–
- 608 583. DOI: 10.1038/nmeth.3869.
- 609 Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C,
- 610 Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson
- 611 GW, Wegener G, Boetius A, Orphan VJ. 2021. Comparative genomics reveals electron
- 612 transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic
- 613 *archaea*. DOI: 10.1101/2021.09.25.461819.
- 614 Cook MC, Blank JG, Rietze A, Suzuki S, Nealson KH, Morrill PL. 2021. A Geochemical
- 615 Comparison of Three Terrestrial Sites of Serpentinization: The Tablelands, the Cedars,

and Aqua de Ney. *Journal of Geophysical Research: Biogeosciences*

- 617 126:e2021JG006316. DOI: 10.1029/2021JG006316.
- 618 Costa KC, Lie TJ, Xia Q, Leigh JA. 2013. VhuD Facilitates Electron Flow from H2 or Formate to
- 619 Heterodisulfide Reductase in Methanococcus maripaludis. *Journal of Bacteriology*
- 620 195:5160–5165. DOI: 10.1128/JB.00895-13.
- 621 Dick JM, Shock EL. 2021. The Release of Energy During Protein Synthesis at Ultramafic-
- 622 Hosted Submarine Hydrothermal Ecosystems. *Journal of Geophysical Research:*

623 *Biogeosciences* 126:e2021JG006436. DOI: 10.1029/2021JG006436.

- 624 Dombrowski N, Teske AP, Baker BJ. 2018. Expansive microbial metabolic versatility and
- biodiversity in dynamic Guaymas Basin hydrothermal sediments. *Nature*
- 626 *Communications* 9:4999. DOI: 10.1038/s41467-018-07418-0.
- 627 Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, Boyd ES. 2021.
- 628 Diversification of methanogens into hyperalkaline serpentinizing environments through

629 adaptations to minimize oxidant limitation. *The ISME Journal* 15:1121–1135. DOI:

630 10.1038/s41396-020-00838-1.

- 631 Früh-Green GL, Orcutt BN, Rouméjon S, Lilley MD, Morono Y, Cotterill C, Green S, Escartin J,
- John BE, McCaig AM. 2018. Magmatism, serpentinization and life: Insights through
- drilling the Atlantis Massif (IODP Expedition 357). *Lithos* 323:137–155.
- 634 Gerasimchuk AL, Shatalov AA, Novikov AL, Butorova OP, Pimenov NV, Lein AYu, Yanenko AS,
- 635 Karnachuk OV. 2010. The search for sulfate-reducing bacteria in mat samples from the
- lost city hydrothermal field by molecular cloning. *Microbiology* 79:96–105. DOI:
- 637 10.1134/S0026261710010133.

638 Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu Y-L, Hugenholtz P, Kimura N, Wagner M,

639 Ohashi A, Harada H. 2006. Non-Sulfate-Reducing, Syntrophic Bacteria Affiliated with

- 640 Desulfotomaculum Cluster I Are Widely Distributed in Methanogenic Environments.
- 641 Applied and Environmental Microbiology 72:2080–2091. DOI: 10.1128/AEM.72.3.2080-
- 642 2091.2006.

Jain S, Dietrich HM, Müller V, Basen M. 2020. Formate Is Required for Growth of the

644 Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui Lacking Hydrogen-

- 645 Dependent Carbon Dioxide Reductase (HDCR). *Frontiers in Microbiology* 11:59. DOI:
- 646 10.3389/fmicb.2020.00059.

547 Jones RM, Goordial JM, Orcutt BN. 2018. Low Energy Subsurface Environments as

648 Extraterrestrial Analogs. *Frontiers in Microbiology* 9:1605. DOI:

649 10.3389/fmicb.2018.01605.

650 Karson JA, Früh-Green GL, Kelley DS, Williams EA, Yoerger DR, Jakuba M. 2006. Detachment

- shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N. *Geochemistry,*
- 652 *Geophysics, Geosystems* 7. DOI: 10.1029/2005GC001109.

653 Kelley DS, Früh-Green GL. 1999. Abiogenic methane in deep-seated mid-ocean ridge

- environments: Insights from stable isotope analyses. *Journal of Geophysical Research: Solid Earth* 104:10439–10460. DOI: 10.1029/1999JB900058.
- 656 Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM,
- 657 Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K,
- 658 Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A,
- 659 Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP. 2005. A Serpentinite-
- 660 Hosted Ecosystem: The Lost City Hydrothermal Field. *Science* 307:1428–1434. DOI:
- 661 10.1126/science.1102556.
- 662 Klein F, Grozeva NG, Seewald JS. 2019. Abiotic methane synthesis and serpentinization in
- 663 olivine-hosted fluid inclusions. *Proceedings of the National Academy of Sciences*
- 664 116:17666–17672. DOI: 10.1073/pnas.1907871116.
- 665 Kohl L, Cumming E, Cox A, Rietze A, Morrissey L, Lang SQ, Richter A, Suzuki S, Nealson KH,
- 666 Morrill PL. 2016. Exploring the metabolic potential of microbial communities in ultra-
- basic, reducing springs at The Cedars, CA, USA: Experimental evidence of microbial
- 668 methanogenesis and heterotrophic acetogenesis. *Journal of Geophysical Research:*
- 669 *Biogeosciences* 121:1203–1220. DOI: 10.1002/2015JG003233.
- 670 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a Dual-
- 671 Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence
- Data on the MiSeq Illumina Sequencing Platform. *Applied and Environmental*
- 673 *Microbiology* 79:5112–5120. DOI: 10.1128/AEM.01043-13.
- 674 Kpebe A, Benvenuti M, Guendon C, Rebai A, Fernandez V, Le Laz S, Etienne E, Guigliarelli B,
- 675 García-Molina G, de Lacey AL, Baffert C, Brugna M. 2018. A new mechanistic model for
- an O2-protected electron-bifurcating hydrogenase, Hnd from Desulfovibrio
- 677 fructosovorans. *Biochimica et Biophysica Acta (BBA) Bioenergetics* 1859:1302–1312.
- 678 DOI: 10.1016/j.bbabio.2018.09.364.

679 Kraus EA, Nothaft D, Stamps BW, Rempfert KR, Ellison ET, Matter JM, Templeton AS, Boyd

- 680 ES, Spear JR. 2021. Molecular Evidence for an Active Microbial Methane Cycle in
- 681 Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman. *Applied*
- 682 *and Environmental Microbiology* 87:e02068-20. DOI: 10.1128/AEM.02068-20.
- Labidi J, Young ED, Giunta T, Kohl IE, Seewald J, Tang H, Lilley MD, Früh-Green GL. 2020.
- 684 Methane thermometry in deep-sea hydrothermal systems: Evidence for re-ordering of
- 685 doubly-substituted isotopologues during fluid cooling. *Geochimica et Cosmochimica Acta*

686 288:248–261. DOI: 10.1016/j.gca.2020.08.013.

- 687 Lang SQ, Benitez-Nelson B. 2021. Hydrothermal Organic Geochemistry (HOG) sampler for
- 688 deployment on deep-sea submersibles. Deep Sea Research Part I: Oceanographic

689 *Research Papers* 173:103529. DOI: 10.1016/j.dsr.2021.103529.

- 690 Lang SQ, Brazelton WJ. 2020. Habitability of the marine serpentinite subsurface: a case study
- 691 of the Lost City hydrothermal field. *Philosophical Transactions of the Royal Society A:*

692 *Mathematical, Physical and Engineering Sciences* 378:20180429. DOI:

693 10.1098/rsta.2018.0429.

Lang SQ, Früh-Green GL, Bernasconi SM, Brazelton WJ, Schrenk MO, McGonigle JM. 2018.

695 Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City

696 hydrothermal field. *Scientific Reports* 8:755. DOI: 10.1038/s41598-017-19002-5.

- Lang SQ, Früh-Green GL, Bernasconi SM, Butterfield DA. 2013. Sources of organic nitrogen at
- the serpentinite-hosted Lost City hydrothermal field. *Geobiology* 11:154–169. DOI:
- 699 10.1111/gbi.12026.
- Lang SQ, Früh-Green GL, Bernasconi SM, Lilley MD, Proskurowski G, Méhay S, Butterfield DA.
- 701 2012. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted
- 702 system. *Geochimica et Cosmochimica Acta* 92:82–99.

Lang SQ, Lilley MD, Baumberger T, Früh-Green GL, Walker SL, Brazelton WJ, Kelley DS,

- Elend M, Butterfield DA, Mau AJ. 2021. Extensive decentralized hydrogen export from
 the Atlantis Massif. *Geology* 49. DOI: 10.1130/G48322.1.
- 706 Maia LB, Moura JJG, Moura I. 2015. Molybdenum and tungsten-dependent formate
- 707 dehydrogenases. *JBIC Journal of Biological Inorganic Chemistry* 20:287–309. DOI:
- 708 10.1007/s00775-014-1218-2.
- Martin W, Baross J, Kelley D, Russell MJ. 2008. Hydrothermal vents and the origin of life.

710 *Nature Reviews Microbiology* 6:805–814. DOI: 10.1038/nrmicro1991.

711 McCollom TM, Seewald JS. 2007. Abiotic Synthesis of Organic Compounds in Deep-Sea

712 Hydrothermal Environments. *Chemical Reviews* 107:382–401. DOI: 10.1021/cr0503660.

713 McGonigle JM, Lang SQ, Brazelton WJ. 2020. Genomic Evidence for Formate Metabolism by

714 *Chloroflexi* as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems.

715 *Applied and Environmental Microbiology* 86:e02583-19. DOI: 10.1128/AEM.02583-19.

716 Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C, Ollivier B, Quéméneur M. 2016.

717 Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium

isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia.

- 719 *International Journal of Systematic and Evolutionary Microbiology* 66:4464–4470. DOI:
- 720 10.1099/ijsem.0.001375.

721 Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, Kurokawa K, Hongoh Y.

2020. Single-Cell Genomics of Novel Actinobacteria With the Wood–Ljungdahl Pathway

723 Discovered in a Serpentinizing System. *Frontiers in Microbiology* 11:1031. DOI:

724 10.3389/fmicb.2020.01031.

Michalski JR, Onstott TC, Mojzsis SJ, Mustard J, Chan QHS, Niles PB, Johnson SS. 2018. The
 Martian subsurface as a potential window into the origin of life. *Nature Geoscience*

727 11:21–26. DOI: 10.1038/s41561-017-0015-2.

728	Miller HM.	, Chaudhry	' N.	Conrad ME	Bill M	, Kopf SH	, Tem	pleton A	NS. 2	2018.	Large	carbon
-----	------------	------------	------	-----------	--------	-----------	-------	----------	-------	-------	-------	--------

isotope variability during methanogenesis under alkaline conditions. *Geochimica et*

730 *Cosmochimica Acta* 237:18–31. DOI: 10.1016/j.gca.2018.06.007.

- 731 Moore WS, Frankle JD, Benitez-Nelson CR, Früh-Green GL, Lang SQ. 2021. Activities of
- 732 223Ra and 226Ra in Fluids From the Lost City Hydrothermal Field Require Short Fluid
- 733 Residence Times. Journal of Geophysical Research: Oceans 126:e2021JC017886. DOI:
- 734 10.1029/2021JC017886.
- 735 Motamedi S, Orcutt BN, Früh-Green GL, Twing KI, Pendleton HL, Brazelton WJ. 2020. Microbial
- 736 Residents of the Atlantis Massif's Shallow Serpentinite Subsurface. Applied and

737 *Environmental Microbiology* 86:e00356-20. DOI: 10.1128/AEM.00356-20.

738 Müller V, Grüber G. 2003. ATP synthases: structure, function and evolution of unique energy

converters. *Cellular and Molecular Life Sciences CMLS* 60:474–494. DOI:

740 10.1007/s000180300040.

741 Nobu MK, Nakai R, Tamazawa S, Mori H, Toyoda A, Ijiri A, Suzuki S, Kurokawa K, Kamagata

742 Y, Tamaki H. 2021. Unique metabolic strategies in Hadean analogues reveal hints for

743 *primordial physiology*. DOI: 10.1101/2021.04.20.440570.

- Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T. 2015. Microbial dark
- 745 matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.
 746 *The ISME Journal* 9:1710–1722. DOI: 10.1038/ismej.2014.256.

747 Postec A, Quéméneur M, Lecoeuvre A, Chabert N, Joseph M, Erauso G. 2021. Alkaliphilus

- serpentinus sp. nov. and Alkaliphilus pronyensis sp. nov., two novel anaerobic
- alkaliphilic species isolated from the serpentinite-hosted Prony Bay Hydrothermal Field
- 750 (New Caledonia). *Systematic and Applied Microbiology* 44:126175. DOI:
- 751 10.1016/j.syapm.2020.126175.

752 Proskurowski G, Lilley MD, Seewald JS, Fru h-Green GL, Olson EJ, Lupton JE, Sylva SP,

753 Kelley DS. 2008. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field.

Science 319:604–607. DOI: 10.1126/science.1151194.

755 Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton

- AS. 2017. Geological and Geochemical Controls on Subsurface Microbial Life in the
- 757 Samail Ophiolite, Oman. *Frontiers in Microbiology* 8:56. DOI: 10.3389/fmicb.2017.00056.
- Sabuda MC, Brazelton WJ, Putman LI, McCollom TM, Hoehler TM, Kubo MDY, Cardace D,

759 Schrenk MO. 2020. A dynamic microbial sulfur cycle in a serpentinizing continental

- 760 ophiolite. *Environmental Microbiology* 22:2329–2345. DOI: 10.1111/1462-2920.15006.
- 761 Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ, Bar-Even A,

762 Claassens NJ, Stams AJM. 2020. The reductive glycine pathway allows autotrophic

growth of Desulfovibrio desulfuricans. *Nature Communications* 11:5090. DOI:

764 10.1038/s41467-020-18906-7.

765 Schrenk MO, Kelley DS, Bolton SA, Baross JA. 2004. Low archaeal diversity linked to

subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic

767 Ridge. Environmental Microbiology 6:1086–1095. DOI: 10.1111/j.1462-

768 2920.2004.00650.x.

Schulte M, Blake D, Hoehler T, McCollom T. 2006. Serpentinization and Its Implications for Life
on the Early Earth and Mars. *Astrobiology* 6:364–376. DOI: 10.1089/ast.2006.6.364.

Schut GJ, Boyd ES, Peters JW, Adams MWW. 2013. The modular respiratory complexes

involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea

- and their evolutionary implications. *FEMS Microbiology Reviews* 37:182–203. DOI:
- 774 10.1111/j.1574-6976.2012.00346.x.

Scott KM, Williams J, Porter CMB, Russel S, Harmer TL, Paul JH, Antonen KM, Bridges MK,

776 Camper GJ, Campla CK, Casella LG, Chase E, Conrad JW, Cruz MC, Dunlap DS,

777 Duran L, Fahsbender EM, Goldsmith DB, Keeley RF, Kondoff MR, Kussy BI, Lane MK,

778	Lawler S, Leigh BA, Lewis C, Lostal LM, Marking D, Mancera PA, McClenthan EC,						
779	McIntyre EA, Mine JA, Modi S, Moore BD, Morgan WA, Nelson KM, Nguyen KN, Ogburn						
780	N, Parrino DG, Pedapudi AD, Pelham RP, Preece AM, Rampersad EA, Richardson JC,						
781	Rodgers CM, Schaffer BL, Sheridan NE, Solone MR, Staley ZR, Tabuchi M, Waide RJ,						
782							
783	Mikhailova N, Palaniappan K, Pillay M, Reddy TBK, Shapiro N, Stamatis D, Varghese N,						
784	Woyke T, Boden R, Freyermuth SK, Kerfeld CA. 2018. Genomes of ubiquitous marine						
785	and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a						
786	diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous						
787	environments: Hydrogenovibrio, Thiomicrorhabdus, Thiomicrospira. Environmental						
788	Microbiology 20:2686–2708. DOI: 10.1111/1462-2920.14090.						
789	Smith KS, Ferry JG. 2000. Prokaryotic carbonic anhydrases. FEMS Microbiology Reviews						
790	24:335–366. DOI: 10.1111/j.1574-6976.2000.tb00546.x.						
791	Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A, Morrill PL, Inagaki F, Kuenen JG, Nealson						
792	KH. 2017. Unusual metabolic diversity of hyperalkaliphilic microbial communities						
793	associated with subterranean serpentinization at The Cedars. The ISME Journal						
794	11:2584–2598. DOI: 10.1038/ismej.2017.111.						
795	Suzuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A, Sorokin DY, Tenney A, Meng						
796	X, Morrill PL, Kamagata Y, Muyzer G, Nealson KH. 2014. Physiological and genomic						
797	features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental						
798	serpentinizing site. Nature Communications 5:3900. DOI: 10.1038/ncomms4900.						
799	Suzuki S, Nealson KH, Ishii S. 2018. Genomic and in-situ Transcriptomic Characterization of the						
800	Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized						
801	Groundwater. Frontiers in Microbiology 9:3141. DOI: 10.3389/fmicb.2018.03141.						

802 Ternieten L. Früh-Green GL. Bernasconi SM. 2021. Distribution and Sources of Carbon in 803 Serpentinized Mantle Peridotites at the Atlantis Massif (IODP Expedition 357). Journal of 804 Geophysical Research: Solid Earth 126:e2021JB021973. DOI: 10.1029/2021JB021973. 805 Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. 2010. Hydrogenases from 806 Methanogenic Archaea, Nickel, a Novel Cofactor, and H₂ Storage. Annual Review of 807 Biochemistry 79:507–536. DOI: 10.1146/annurev.biochem.030508.152103. 808 Thornton CN, Tanner WD, VanDerslice JA, Brazelton WJ. 2020. Localized effect of treated 809 wastewater effluent on the resistome of an urban watershed. *GigaScience* 9. DOI: 810 10.1093/gigascience/giaa125. 811 Trutschel LR, Chadwick GL, Kruger B, Blank JG, Brazelton WJ, Dart ER, Rowe AR. In Revision. 812 Microbial sulfur oxidation in an extremely high pH marine-like terrestrial serpentinizing 813 system: Ney Springs. Science of The Total Environment. 814 Vekeman B, Kerckhof F-M, Cremers G, de Vos P, Vandamme P, Boon N, Op den Camp HJM, 815 Heylen K. 2016. New Methyloceanibacter diversity from North Sea sediments includes 816 methanotroph containing solely the soluble methane monooxygenase. *Environmental* 817 Microbiology 18:4523–4536. DOI: 10.1111/1462-2920.13485. 818 Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, Grimes J, Perry ME, Miller 819 KE, Bouquet A, Lunine JI, Brockwell T, Bolton SJ. 2017. Cassini finds molecular 820 hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 821 356:155–159. DOI: 10.1126/science.aai8703. 822 Wang DT, Reeves EP, McDermott JM, Seewald JS, Ono S. 2018. Clumped isotopologue 823 constraints on the origin of methane at seafloor hot springs. Geochimica et 824 Cosmochimica Acta 223:141–158. DOI: 10.1016/j.gca.2017.11.030. 825 Youssef NH, Farag IF, Rudy S, Mulliner A, Walker K, Caldwell F, Miller M, Hoff W, Elshahed M. 2019. The Wood–Ljungdahl pathway as a key component of metabolic versatility in 826

- 827 candidate phylum Bipolaricaulota (Acetothermia, OP1). *Environmental Microbiology*828 *Reports* 11:538–547. DOI: 10.1111/1758-2229.12753.
- 829 Zelcbuch L, Lindner SN, Zegman Y, Vainberg Slutskin I, Antonovsky N, Gleizer S, Milo R, Bar-
- 830 Even A. 2016. Pyruvate Formate-Lyase Enables Efficient Growth of Escherichia coli on
- Acetate and Formate. *Biochemistry* 55:2423–2426. DOI: 10.1021/acs.biochem.6b00184.
- 832 Zhou Z, Liu Y, Pan J, Cron BR, Toner BM, Anantharaman K, Breier JA, Dick GJ, Li M. 2020.
- 833 Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic
- compounds in deep ocean hydrothermal plumes. *The ISME journal* 14:3136–3148. DOI:
- 835 10.1038/s41396-020-00745-5.

836

Tables and Figures Brazelton et al. "Metabolic strategies shared by basement residents of the Lost City hydrothermal field"

Tables

1. Sample overview including temp and chemistry

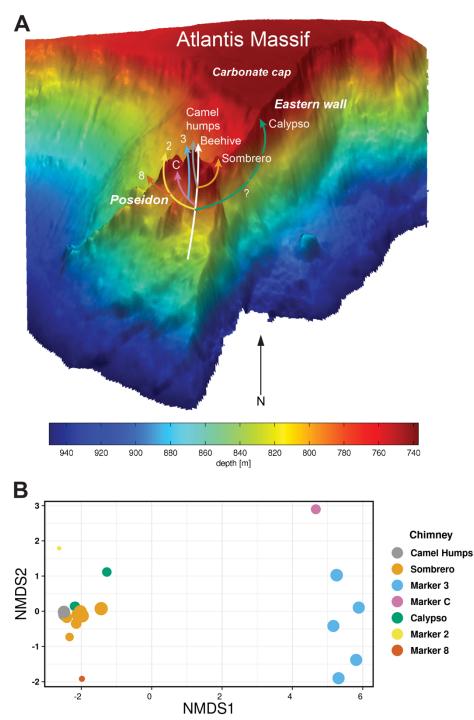
Figures

- 1. Map and ordination
- 2. 16S bubbles
- 3. MAG bubbles
- 4. MAG presence/absence of key genes
- 5. MBH phylogeny
- 6. FDH phylogeny
- 7. Key gene bubbles

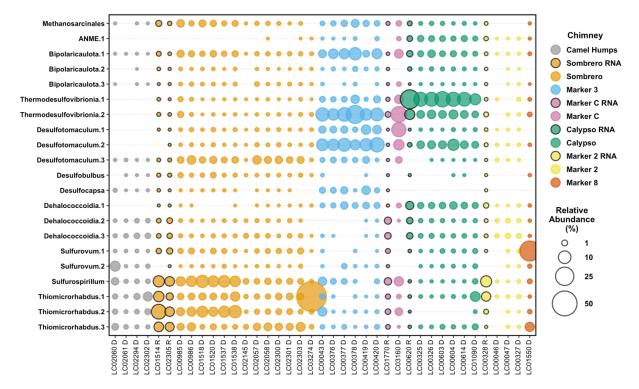
Supplemental Figures

- 1. Extended map figure
- 2. Chimney photos
- 3. Metagenome analysis workflow
- 4. Kaiju bubbles
- 5. Phylogeny Methanosarcinales 16S + mcrA
- 6. Phylogeny Bipolaricaulota 16S
- 7. Phylogeny Thermodesulfovibrionales 16S
- 8. Phylogeny + gene order mbhL
- 9. Phylogeny + gene order FDH
- 10. Phylogeny carbonic anhydrase
- 11. Phylogeny GrdB
- 12. Hydrogenase bubbles
- 13. Acetate/formate bubbles
- 14. Methanogenesis bubbles
- 15. Acetogenesis bubbles

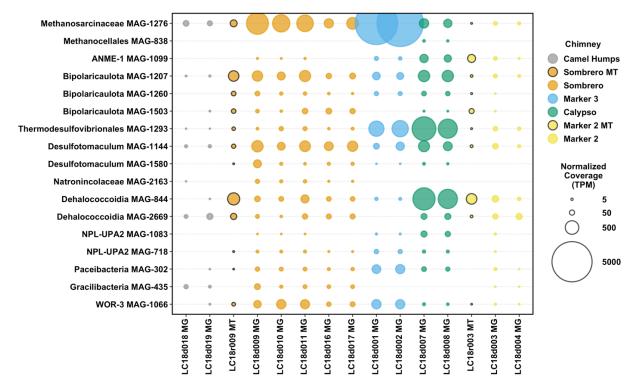
Supplemental Tables (Excel files)

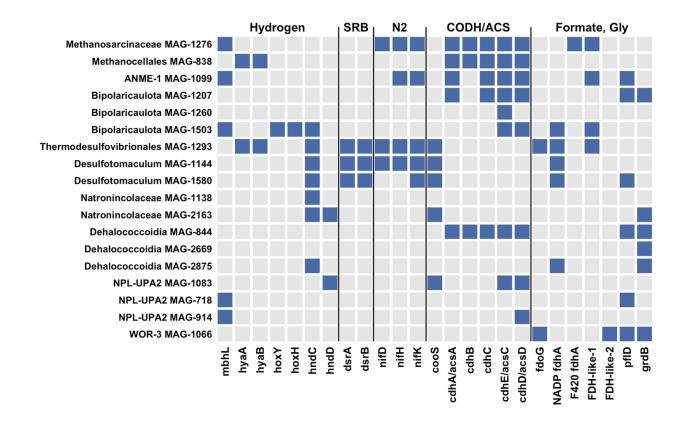

- 1. Sample info
- 2. Full 16S count table including contaminants
- 3. Kaiju tables
- 4. MAG taxonomy, completeness, coverage table
- 5. MAG gene presence absence tables
- 6. MAG annotations for transporters, dbCAN, FeGenie
- 7. KO coverage table
- 8. Incubation experiment results

Github Repo


- 1. Protocols
- 2. Kaiju Krona plots
- 3. NCBI SRA and GenBank metadata
- 4. MAG sequences and annotations
- 5. Alignments and sequences for phylogenetic trees
- 6. R code for plots
- 7. Python scripts for metagenomic analyses

Chimney location	Meta- genome libraries	Meta- transcrip tome libraries	16S rRNA amplicon libraries (DNA)	16S rRNA amplicon libraries (RNA)	Cells per mL	Max T (°C)	pН	Sulfide (mmol/ kg)	Sulfate (mmol/ kg)	Mg (mmol/ kg)
Camel Humps	2	0	4	0	4.3 x 10 ⁴	41	8.1	0.02	24	47
Sombrero1	3	1	7	1	5.9 x 10 ⁴	13	8.0	0.002	27	54
Sombrero2	2	0	6	1	6.3 x 10 ⁴	52	8.7	0.12	18	36
Marker 3	2	0	6	0	6.3 x 10 ⁴	21	8.6	0.20	23	45
Marker C	0	0	1	1	3.8 x 10 ⁴	80	10.1	0.39	16	31
Calypso	2	0	6	1	4.8 x 10 ⁴	24	9.3	1.3	15	30
Marker 2	2	1	3	1	2.6 x 10 ⁴	58	9.5	1.8	8	15
Marker 8	0	0	1	0	7.5 x 10 ⁴	42	9.9	1.8	9	19


Table 1. Overview of hydrothermal fluid samples collected from Lost City chimneys. Cell numbers are the median of all samples collected from that location. Temperatures and chemistry values are reported for one representative sample collected from that location, typically the sample for which the most chemistry and/or sequence data was available.


Figure 1. The Lost City hydrothermal field is located at 30°N, west of the Mid-Atlantic Ridge, on the southern wall of the Atlantis Massif. Part A shows a three-dimensional view of the field (after Kelley et al., 2005) featuring the massive Poseidon structure, which is composed of several actively venting chimneys. Hypothetical flow paths are informed by the aqueous geochemistry results reported here, by Aquino et al. (in review), and by prior studies referenced in the main text. Part B is a non-metric multidimensional scaling (NMDS) ordination of 16S rRNA amplicon sequence data where each data point represents the microbial community composition of one hydrothermal fluid sample. Sizes of data points are scaled to the measured sulfate concentration of that sample (Table 1).

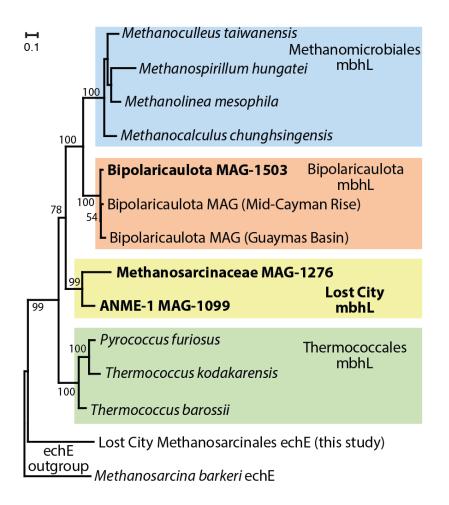

Figure 2. Relative abundances of selected ASVs in Lost City hydrothermal fluid samples. Amplicon libraries were generated from both DNA and RNA extractions; bubbles representing relative abundances in RNA libraries are highlighted with black borders. ASVs were selected to highlight the taxa that were the focus of this study, as well as additional taxa that are expected to be associated with hydrothermal environments and provide context for interpreting differences among fluid samples. A full table of ASV counts is provided in **Supplemental Table S2**.

Figure 3. Abundance of refined MAGs in Lost City hydrothermal fluid samples. Total mapped read coverage was normalized to genome size and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. For clarity, not all MAGs are shown; a full coverage table is provided in **Supplemental Table S4**.

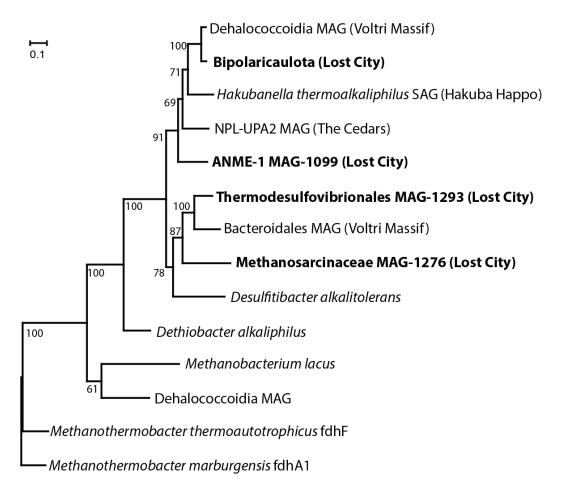


Figure 4. Presence and absence of key genes in refined MAGs. Genes defined by KEGG Orthology (see **Supplemental Table S5**) were selected to highlight potential metabolic capabilities to metabolize hydrogen gas, to reduce sulfate to sulfide (SRB), to fix nitrogen (N₂) gas, to fix carbon dioxide via the Wood-Ljungdahl pathway (CODH/ACS), and to utilize formate or glycine as carbon sources. Patescibacteria MAGs (including Paceibacteria and Gracilibacteria) are not shown here because they lack all of the gene shown here.

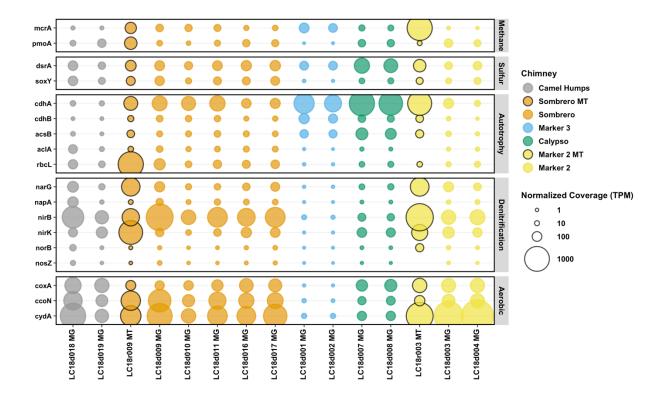
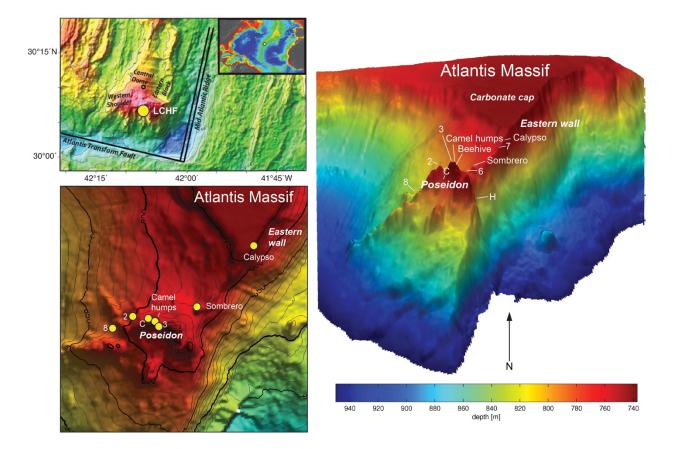
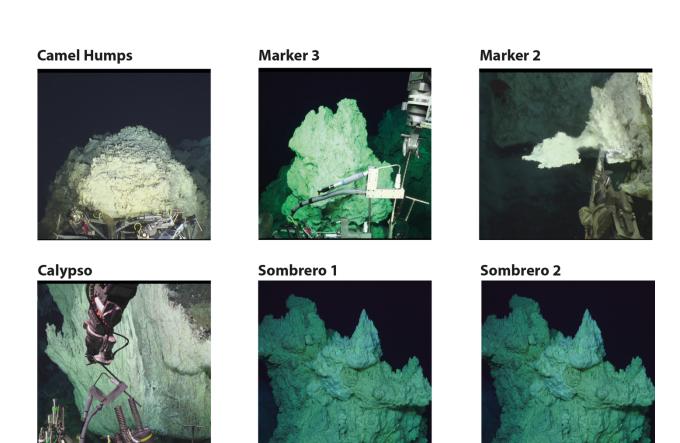
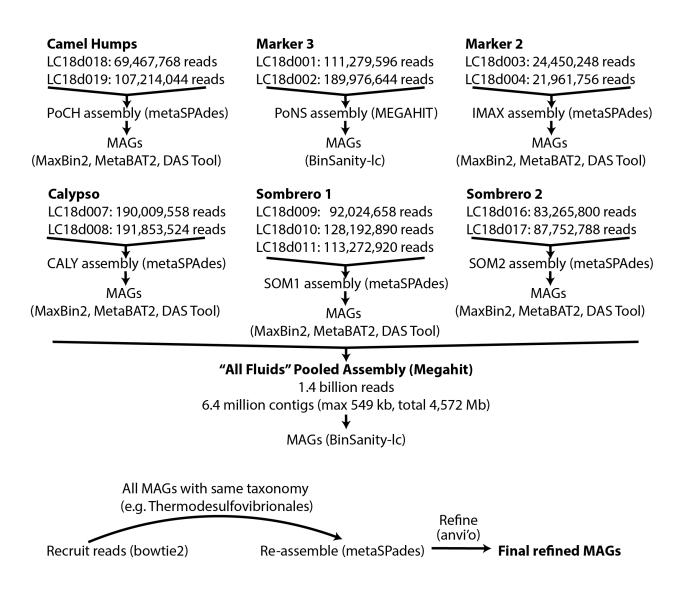
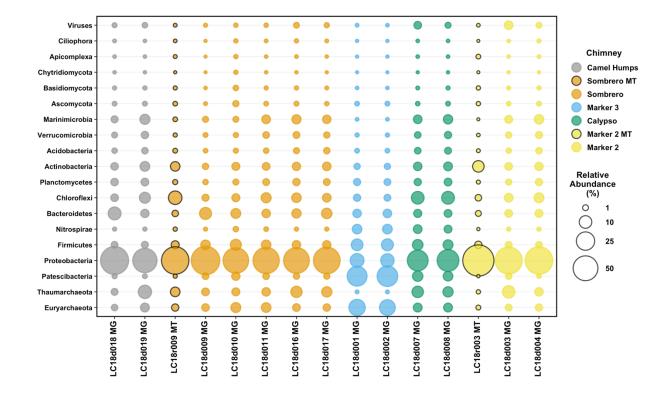


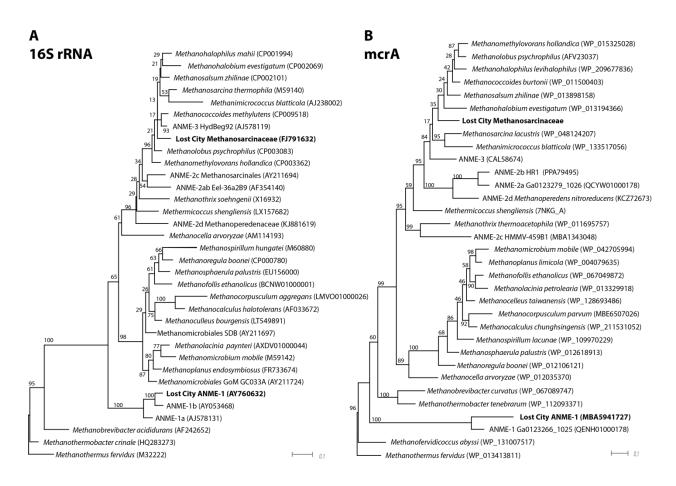
Figure 5. Phylogeny of the large catalytic subunit of membrane-bound hydrogenase


(mbhL). Sequences identified in refined MAGs from this study are highlighted in bold font. The two archaeal sequences from Lost City (*Methanosarcinaceae* and ANME-1) form their own clade apart from all known mbhL sequences. The mbhL sequence from a Lost City Bipolaricaulota MAG clusters together with Bipolaricaulota MAGs from other hydrothermal environments. Bootstrap support values are shown for each node. An expanded version of this figure including the gene order for the mbh gene cluster is provided as **Supplemental Figure S4**.

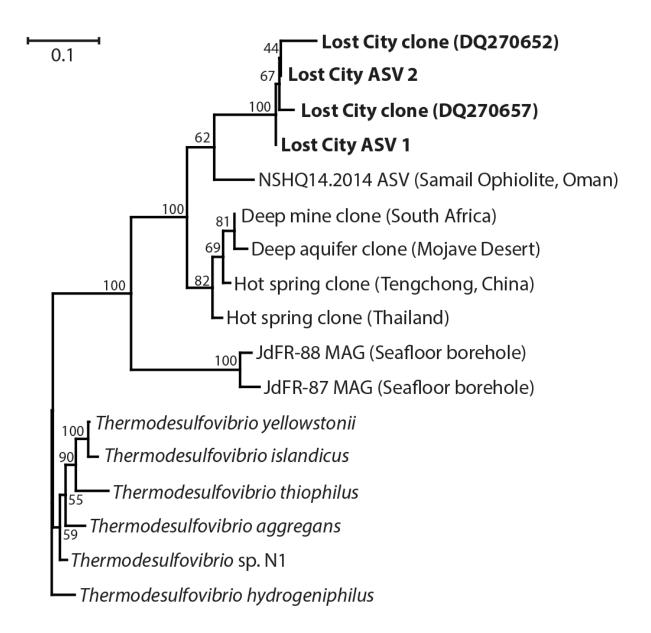

Figure 6. Phylogeny of divergent FDH-like sequences. Sequences identified in refined MAGs from this study are highlighted in bold font. Their closest matches in the NCBI nr database are from other serpentinite-hosted springs (Voltri Massif, Hakuba Happo, and The Cedars). The FDH-like sequences shown here include an iron-sulfur binding domain and a molybdopterin oxidoreductase domain, which are encoded as two separate coding regions in some species and as a fused coding region in others (see **Supplemental Figure S4 for** an expanded version of this figure including genomic context). The phylogeny was constructed from the conserved oxidoreductase domain. Bootstrap support values are shown for each node. The Lost City Bipolaricaulota sequence was identified in multiple BinSanity bins classified as Bipolaricaulota, but it was not included in the final, manually refined MAGs.

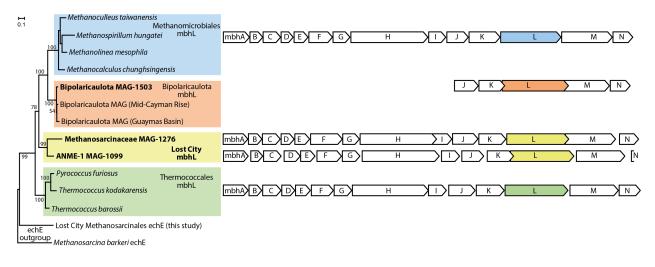

Figure 7. Abundance of key genes in Lost City hydrothermal fluid samples. Metagenomic coverage was normalized to predicted protein length and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. Genes are defined with KEGG Orthology; see **Supplemental Table S5**.


Supplemental Figure S1. Extended version of **Figure 1** showing the location of the Lost City hydrothermal field near the summit of the Atlantis Massif, which is located northwest of the intersection of the Mid-Atlantic Ridge and the Atlantis Transform Fault.

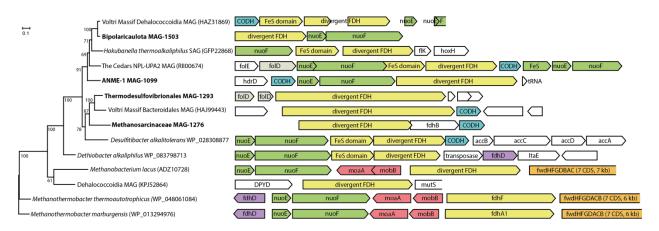

Supplemental Figure S2. Photographs of sampling locations for this study, captured on the seafloor by ROV *Jason*. Camel Humps and Marker 3 are visually distinct structures despite their nearby locations. Sombrero was sampled at the same location on two separate dives.


Supplemental Figure S3. Overall workflow for assembly of metagenomes and binning into metagenome-assembled genomes (MAGs). Assemblies were performed with reads pooled from each chimney location (chimney-specific assemblies), and one "all fluids" pooled assembly was performed with all metagenomic reads from all chimney locations. Initial bins constructed with automated tools were used as a template for recruiting metagenomic reads for a re-assembly and manual curation and refinement of the final MAGs.

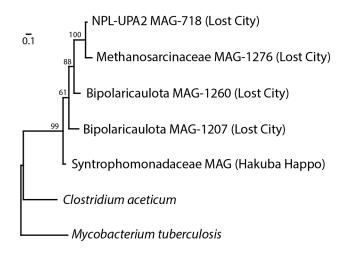

Supplemental Figure S4. Percent of reads classified to the top 18 phyla (plus viruses) in Lost City hydrothermal fluid samples. Unassembled reads were classified using Kaiju with its default NCBI nr+euk database. Percentages were calculated as the number of reads classified to each phyla divided by the total number of reads in that library that could be classified to the phylum level by Kaiju. Bubbles representing reads in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders.


Supplemental Figure S5. Phylogenies of 16S rRNA and mcrA (alpha subunit of methyl coenzyme M reductase) highlighting Lost City MAGs classified as Methanosarcinaceae and ANME-1. Bootstrap support values are shown for each node. Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

Supplemental Figure S6. Phylogeny of 16S rRNA highlighting Lost City sequences classified as Bipolaricaulota. The most abundant Lost City Bipolaricaulota 16S rRNA sequences cluster into two distinct monophyletic groups, classified by GTDB as UBA3574 and UBA7950, which corresponds to the classifications of the three refined Bipolaricaulota MAGs (Figure 3). The UBA7950 sequences are further divided into two clades, one of which includes a MAG assembled by Parks et al. (2018) from our previous study of Lost City chimney biofilms (DOHL01000117). Bootstrap support values greater than 50 are shown for each node. Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

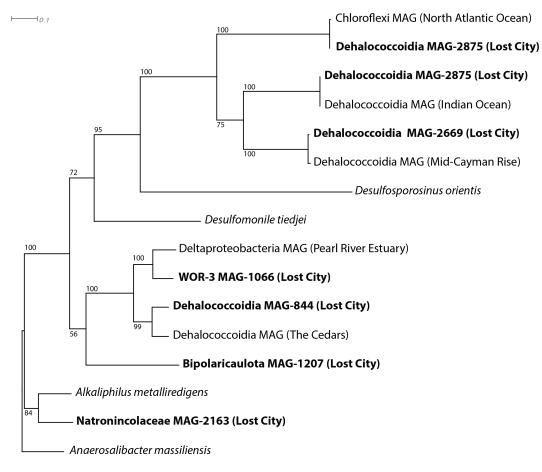


Supplemental Figure S7. Phylogeny of 16S rRNA highlighting Lost City sequences classified as Thermodesulfovibrionia. The two Lost City ASVs differ from each other by a single base and match sequences from a previously published clone library of Lost City chimney biofilms (Brazelton et al., 2006). They share 90% nucleotide identities with their closest neighbor, an ASV from alkaline borehole fluids in the Samail Ophiolite, Oman (Rempfert et al., 2017). Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

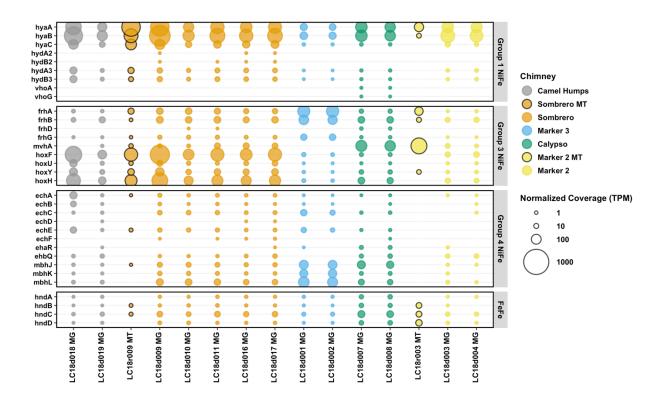


Supplemental Figure S8. Phylogeny of the large catalytic subunit of membrane-bound hydrogenase (mbhL) and the mbh gene cluster (expanded version of Figure 5).

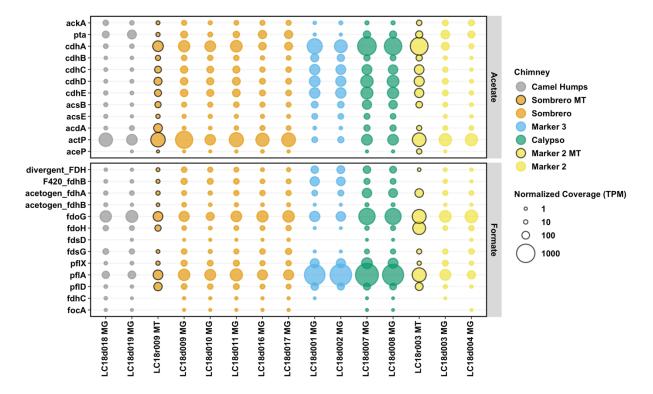
Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

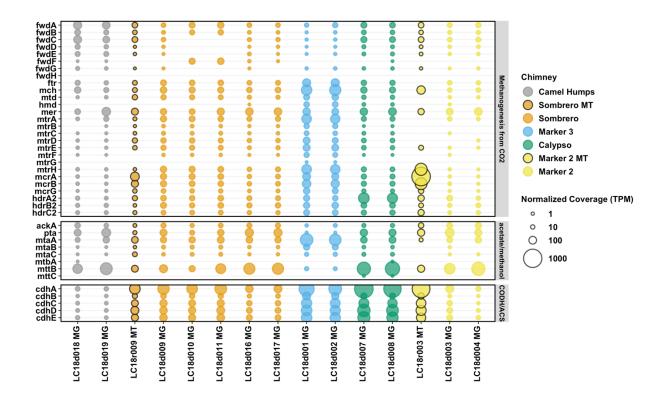


Supplemental Figure S9. Phylogeny of divergent FDH-like sequences (expanded version of Figure 6). In most cases, the divergent FDH-like gene was flanked by nuoEF (encoding NADH-quinone oxidoreductase) and a hypothetical sequence with a conserved domain associated with monomeric carbon monoxide dehydrogenase (CODH). Furthermore, most of these gene clusters contained signs of genome instability just upstream or downstream such as pseudogenes, transposases, or a toxin/antitoxin system (not shown here). Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

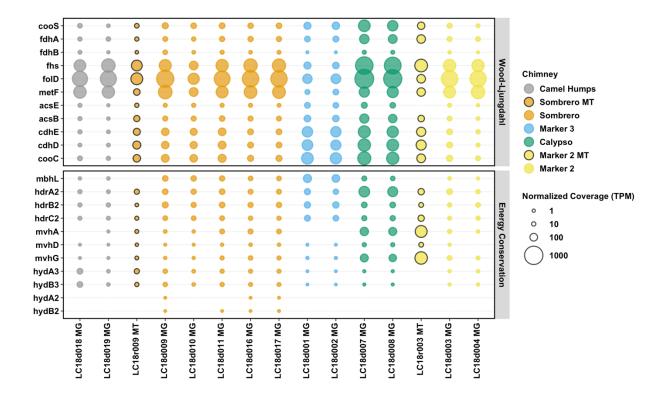


Supplemental Figure S10. Phylogeny of divergent sequences predicted to encode carbonic anhydrase. Lost City sequences form a novel clade including a predicted sequence from a MAG recovered from another serpentinite-hosted spring (Hakuba Happo). Bootstrap


support values are shown for each node. Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.


Supplemental Figure S11. Phylogeny of GrdB (beta subunit of glycine reductase). Lost City Bipolaricaulota, Dehalococcoidia, WOR-3, and Natronincolaceae MAGs share moderate sequence similarity (58-88% amino acid identities) with sequences from other MAGs (including one from another site of serpentinization, The Cedars), but limited similarity with sequences from characterized species. Lost City Dehalococcoidia MAGs that belong to the SAR202 marine cluster, including two copies from MAG-2875, form a separate clade from other Lost City MAGs that are more likely to represent subseafloor organisms. A second Natronincolaceae MAG not shown here lacks GrdB but includes all other genes associated with glycine reductase (**Supplemental Table S5**). Bootstrap support values are shown for each node. Sequences and accession IDs are provided in the Zenodo-archived GitHub repository accessible via DOI: 10.5281/zenodo.5798015.

Supplemental Figure S12. Abundance of predicted hydrogenase sequences in Lost City hydrothermal fluid samples. Metagenomic coverage was normalized to predicted protein length and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. Genes are defined with KEGG Orthology; see **Supplemental Table S5**.



Supplemental Figure S13. Abundances of predicted sequences associated with acetate and formate metabolism in Lost City hydrothermal fluid samples. Metagenomic coverage was normalized to predicted protein length and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. Genes are defined with KEGG Orthology; see **Supplemental Table S5**.

Supplemental Figure S14. Abundance of predicted sequences associated with

methanogenesis in Lost City hydrothermal fluid samples. Metagenomic coverage was normalized to predicted protein length and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. Genes are defined with KEGG Orthology; see **Supplemental Table S5**.

Supplemental Figure S15. Abundance of predicted sequences associated with

acetogenesis in Lost City hydrothermal fluid samples. Metagenomic coverage was normalized to predicted protein length and to the size of the metagenome or metatranscriptome library. The final normalized coverage is reported as a proportional unit (transcripts/fragments per million; TPM) suitable for cross-sample comparisons. Bubbles representing coverage in metatranscriptomes (MT), rather than metagenomes (MG), are highlighted with black borders. Genes are defined with KEGG Orthology; see **Supplemental Table S5**.