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Widefield microscope provides optical access to multi-millimeter fields of view and thousands 16 

of neurons in mammalian brains at video rate. However, calcium imaging at cellular 17 

resolution has been mostly contaminated by tissue scattering and background signals, making 18 

neuronal activities extraction challenging and time-consuming. Here we present a deep 19 

widefield neuron finder (DeepWonder), which is fueled by simulated calcium recordings but 20 

effectively works on experimental data with an order of magnitude faster speed and 21 

improved inference accuracy than traditional approaches. The efficient DeepWonder 22 

accomplished fifty-fold signal-to-background ratio enhancement in processing terabytes-scale 23 

cortex-wide recording, with over 14000 neurons extracted in 17 hours in workstation-grade 24 

computing resources compared to nearly week-long processing time with previous methods. 25 

DeepWonder circumvented the numerous computational resources and could serve as a 26 

guideline to massive data processing in widefield neuronal imaging. 27 

Development of optical microscopy1-3 and genetically encoded calcium indicators (GECIs)4 help 28 

researchers study the brain functionality in various behavior tasks, which further inspire the evolution of 29 

artificial intelligence (AI)5. For neuronal acquisitions within the scattering brain, a fundamental limitation 30 

is the trade-off between serial and parallel acquisition schemes6. Serial acquisition approaches such as 31 

two-photon laser-scanning microscopy (TPLSM) provide optical sectioning and robustness to scattering7, 32 

but are restricted in low temporal resolution and small field-of-view (FOV). Although recently developed 33 

multiplexing methods largely increase the TPLSM frame rate, the high power dosage in the animal brain8 34 

could induce heat problems and irreversible damages. In the dimension of spatial accessibility, 35 

sophisticated optical design has pushed the TPLSM FOV to ~5 mm in diameter9, but typically requires 36 

temporally sub-sampling of calcium dynamics for a cortex-wide region-of-interest (ROI).  On the other 37 

hand, parallel schemes such as widefield microscope use cameras to detect widely distributed signals6,10-38 
12, allowing video-rate acquisition over multi-millimeter scaled ROIs with single-cell resolution13. With 39 

optimized optical setup and computational tools, recently reported one-photon microscope has 40 

achieved 10 x 8 mm2 FOV in 0.8 µm resolution, which can cover tens of mammalian brain regions14 and 41 

hold great potential to record millions of neurons simultaneously10. The simplicity and high throughput 42 

of widefield microscope make it also popular in head-mounted microscope15,16, which is a compact and 43 
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low-cost tool for studying social and behavior related activities. However, as the widefield microscope 44 

illuminates and detects the whole volume of the sample, neurons away from the focal plane contribute 45 

ambiguous background signals massively17. Light scattering in the opaque tissue further mixes 46 

fluorescence signals originating from the focal plane and confuses information about neuron locations. 47 

The inevitable background contaminations and scattering pose a big challenge to neuronal activity 48 

inference in the parallel acquisition scheme. 49 

Computational approaches have been developed to separate neuronal signals from background 50 

contaminations in widefield microscope.  The mostly-used constrained nonnegative matrix factorization 51 

(CNMF-E) approach models the strong background signals with prior knowledge of the spatial-temporal 52 

signal properties18.  However, refining the background model for widefield imaging concomitantly 53 

requires sophisticated parameter tuning and huge computation consumption, preventing it from 54 

applications to cortex-scale neuron processing19. Online processing with a lightweight version of the 55 

algorithm partially alleviates the speed problem, but at the expense of performance downgrade20. Other 56 

methods19,21,22 without explicit modeling of the fluctuated background could achieve higher processing 57 

speed, but commonly face the risks of residual background contaminations20. Thus, it is still challenging 58 

to decipher widefield calcium recordings in scattering mammalian brains with both high speed and good 59 

performance using traditional computational methods. 60 

The rapidly developing neural networks have achieved breakthroughs in neuronal image processing such 61 

as image enhancement23, neuronal segmentation24,25, and spike inference26. Recent research has 62 

demonstrated that, with proper training, deep learning enhanced neuronal activity inference can 63 

achieve an order of magnitude faster speed with no compromise of performance degradation24. This 64 

forecasts an opportunity of using neural networks processing functional data with downscaled time 65 

consumption. Yet in practice, seldom works have been reported that leverage the powerful deep 66 

learning to remove the background in widefield neuronal recordings, given the lack of paired widefield 67 

data and background-free captures. Methods that convert traditional background models into trainable 68 

convolutional filters alleviate the requirement of paired data, but need per-sample retraining and 69 

compromise the performance compared to traditional neuron extraction methods20. 70 

Here we propose a fast and efficient neuronal extraction and demixing technique for the widefield 71 

microscope with nearly an order of magnitude faster speed and improved accuracy and precision 72 

through deep learning enhancement. Regarding the lack of training data, our method leverages a vivid 73 

simulation of the brain tissue27 to generate optical system-specific paired virtual recordings that with 74 

and without background. A neural network thus can be trained to separate neuronal signals from the 75 

scattered background (Methods, Fig. 1a, Supplementary Fig. 1, and Supplementary Video 1).  A 76 

lightweight convolutional neural network (CNN) is then applied to quickly segment contamination-77 

removed neurons to retrieve spatial footprints and temporal signals (Fig. 1b, Supplementary Fig. 2). We 78 

define the deep learning-inspired widefield neuron finder as DeepWonder. Demonstrated with both 79 

simulation and experiment data, we verified a nearly tenfold processing speed improvement with 80 

DeepWonder compared to the widely used CNMF-E algorithm. We further validated the accuracy of 81 

background removal and segmentation using DeepWonder by comparing with the TPLSM recordings of 82 

diverse animals in vivo on a hybrid system with simultaneous widefield and TPLSM recordings. We 83 

deploy DeepWonder on recently developed widefield calcium recording systems, including terabyte-84 

scale RUSH system covering over 14,000 neurons, large FOV macroscope13, and head-mounted 85 

miniscope on freely-moving animals16. Finally, we package DeepWonder into a python package and 86 
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distribute it in an online platform to make our method easy to access and convenient to use, for 87 

promoting interdisciplinary and reproducible researches. 88 

The achievable neuron detection sensitivity and signal extraction quality in widefield microscope are 89 

ultimately limited by background contaminations, which mixed with crosstalk among neurons, neuropils, 90 

and background fluorescence from out-of-focus depths. In DeepWonder, we wipe out those 91 

contaminations by establishing a neural network that maps background contaminated images into 92 

background-free data (Fig. 1a). We generate realistic synthetic widefield calcium imaging data by 93 

adapting full modeling of vessels, neurons, and background dendrites and axons with a specific widefield 94 

microscope model, yielding virtual recordings with highly realistic pixel distribution,      distribution, 95 

and spatial frequency distribution (Methods, Supplementary Fig. 3-5). In counterparts, background-free 96 

recordings are generated by only reserving fluorescent neuron and non-fluorescent vessels in the tissue. 97 

Paired virtual recordings are thus generated and fed to the proposed removing background network 98 

(RB-Net, Supplementary Fig. 1), to learn the mapping between domains of contaminated captures in real 99 

states and domains of background-free but never-existed captures. Trained RB-Net in DeepWonder 100 

learns interpretable features (Supplementary Fig. 6) and outputs high contrast images and vivid 101 

neuronal activities without contaminations (Fig. 1c). Compared to raw data, DeepWonder significantly 102 

enhances correlation scores to the ground truth signals (Fig. 1d, p<0.001, two-sided Wilcoxon signed-103 

rank test, n = 901 neurons) and signal-to-background ratios (SBR) in test datasets that never been seen 104 

by the network (Fig. 1e, p<0.001, two-sided Wilcoxon signed-rank test, n = 901 neurons). Compared to 105 

other state-of-the-art background removal methods19,20, our RB-Net achieves superior performances in 106 

terms of SBR (Supplementary Fig. 8f), correlation score (Supplementary Fig. 8g), and neuron finding 107 

scores on the same dataset (Supplementary Fig. 8h, Supplementary Note 1), while spending almost 7-108 

fold shorter time in removing background (Supplementary Fig. 8i). Guaranteed by the high similarity 109 

between virtual generations and real recordings (Fig. 1f), the RB-Net driven by virtual data in 110 

DeepWonder can be effectively applied to remove backgrounds of real recordings (Fig. 1b, 111 

Supplementary Fig. 7, Supplementary Video 1). We illustrate an SBR improvement in real recordings 112 

reaches over fifty times compared to raw data across 1543 neurons by RB-Net (Supplementary Fig. 7).  113 

After separating neuronal signals from background contaminations, we then propose a neuron 114 

segmentation network (NS-Net) which efficiently segments neurons from background removed data 115 

(Methods, Fig. 1b). The NS-Net starts with a lightweight CNN that segments neurons from RB-Net output 116 

at a high speed (Method, Supplementary Fig. 1b). Roughly isolated neurons are further semantically 117 

segmented based on their spatio-temporal connectivity and turn to mostly exclusive segmentations. The 118 

temporal activities of those individual neurons can be directly read out since there is no inter-neuron 119 

crosstalk (Supplementary Fig. 2a). Neurons that are tiled and overlapped will be further demixed by a 120 

local nonnative matrix factorization (NMF)28 algorithm to eliminate activities crosstalk (Methods, 121 

Supplementary Fig. 2b). NS-Net reliably demixes neurons that are as close as 0.3 of the neuron diameter, 122 

yielding a temporal similarity over 0.9 and a spatial similarity over 0.85 (Supplementary Fig. 9). Our 123 

proposed NS-Net beats state-of-the-art two-photon segmentation technique CNMF and SUNS with the 124 

highest sensitivity and F1 score (0.933 and 0.917, respectively) in the background removed dataset 125 

(Supplementary Fig. 10e). The processing speed of NS-Net is 5 times faster than CNMF, and is 126 

comparable with SUNS (Supplementary Fig. 10f). 127 

So far, by combining the optimized RB-Net and NS-Net into one framework, our DeepWonder eventually 128 

achieves a processing speed improvement of nearly ten folds (Fig. 1g, Supplementary Fig. 11b) 129 
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compared to widely-used CNMF-E technique in widefield calcium imaging analysis. DeepWonder 130 

additionally brings out segmentation and activity inference accuracy improvement, represented as 11.1% 131 

promotion in F1 scores (Fig. 1h) and 21.5% promotion in temporal correlation scores (Fig. 1i). The 132 

proposed RB-Net in DeepWonder circumvents the time-consuming background modeling process in 133 

CNMF-E and achieves background elimination through a single-shot workflow, where the processing 134 

speed is only affected by the scale of datasets. Even higher speed acceleration is observed when cell 135 

density and cell number are higher, typically reaching nearly 20 times improvement when the neuron 136 

density reaches 5000 cells/mm2 (Supplementary Fig. 11a). Illustrated by the processing of calcium 137 

recordings of over 10,000 frames at 10 Hz, CNMF-E takes over two hours on average, while 138 

DeepWonder takes only 11 minutes (Supplementary Fig. 11c). DeepWonder is also robust to noise and 139 

reaches 0.60 F1 scores and 0.77 temporal correlations in a condition with an ultralow post-objective 140 

excitation power of 0.3mW/mm2, which is 9 folds and 1.6 folds higher than CNMF-E, respectively 141 

(Supplementary Fig. 12). In moderately low excitation power situations (0.7 mW/mm2), DeepWonder 142 

still outperforms CNMF-E in accuracy with F1 scores of 0.82 relative to 0.66 with CNMF-E. 143 

To evaluate the inference accuracy of our proposed DeepWonder driven by simulated datasets, we next 144 

compare its performance with that of a standard two-photon microscopy. We build a hybrid microscopy 145 

device capable of both two-photon and widefield detection modalities. We sequentially switched the 146 

co-axis aligned two-photon and one-photon lightpath by timing control of a gated electrical optical 147 

modulator (EOM), LED excitation, and photon-sensitive photomultiplier (PMT) shutter in 30Hz (Fig. 2a). 148 

The shutter was used to protect the sensitive PMT when strong widefield fluorescence was excited 149 

(Supplementary Fig. 13).  We reduced the two-photon excitation NA to 0.27 (Supplementary Fig. 14) 150 

such that the same neuron population could be detected by both the widefield and two-photon 151 

modalities. With image registration, we achieved 15Hz widefield neuronal recordings and paired 15 Hz 152 

two-photon recordings served as functional ground truth (Supplementary Note 2). We found the RB-Net 153 

in DeepWonder effectively mapped background-overwhelmed widefield data into sharp ones similar to 154 

the two-photon recordings in both spatial profile (Fig. 2b) and temporal activities (Fig. 2b and 2c).  The 155 

correlation scores of DeepWonder output with two-photon signals reached 0.87±0.10, along with 156 

significantly reduced background contaminations (Fig. 2d; p<0.001, two-sided Wilcoxon signed-rank test, 157 

n=27; Supplementary Fig. 15, 16). With DeepWonder, we detected 47 neurons with 44 of them highly 158 

matched with active neurons from two-photon data, leading to F1 score of 0.91 compared to 0.73 by 159 

CNMF-E (Fig. 2e). By analyzing on 5 mice and 20 datasets, DeepWonder achieved over 0.8 median 160 

correlation scores in each of the datasets (Fig. 2f), and 0.88 ± 0.05 (mean ± std) precision scores (Fig. 2g) 161 

across all datasets, indicating that DeepWonder provides accurate neuronal segmentation and activity 162 

inference in mouse recordings. Further compared to widely used CNMF-E, DeepWonder stands out with 163 

both higher accuracy (F1 = 0.88 ± 0.04 of DeepWonder compared to F1 = 0.73 ± 0.13 of CNMF-E, n = 20; 164 

Fig. 2h) and higher signal correlations with two-photon ground truth (Fig. 2i), demonstrating advantages 165 

in both speed and performance. 166 

The enhanced computational efficiency of DeepWonder enables us to proceed cortex-wide neuronal 167 

recording within acceptable time-spent. Here, we demonstrate the data processing ability of 168 

DeepWonder on the terabytes-scale RUSH system14. The RUSH system is consisted of tens of sCMOS 169 

cameras, with totally 14800 x 15200 pixels across 10 x 8 mm2 FOV in 0.8 µm resolution at video rate, 170 

fertilizing population-scale neuron connection inference (Methods). We virtually generated lifelike 171 

neuron recordings based on optical parameters of the RUSH system (Supplementary Fig. 3), and trained 172 
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DeepWonder for the data modality by the RUSH system. With DeepWonder, neurons that are 173 

overwhelmed by highly fluctuated backgrounds are clearly unveiled (Fig. 3a; Supplementary Video 3), 174 

and high-contrast calcium transients are uncovered (Fig. 3b) thanks to effective background suppression 175 

(Supplementary Fig. 17a, b, Supplementary Fig. 7). The high data throughput by the RUSH system yields 176 

over 1 terabyte of data in a 13.5 minutes imaging session at 10 Hz (Methods).  Processing such a huge 177 

dataset with the popular CNMF-E technique takes over five days to fully demix neuron activities (132.4 178 

hours in total, without counting loading time; Fig. 3c).  In contrast, engined with highly accelerated 179 

DeepWonder, data of the same scale can be analyzed and inferred within 17 hours. Up to 14,226 180 

neurons across 9 cortical areas were found with clear activities (Fig. 3d), showing great potential for 181 

interrogating behavior-related neuron population response within multiple cortical regions. When the 182 

awake mouse was anesthetized in the fifth minute with 2% isoflurane29, we observed neurons gradually 183 

became inactive across different cortical regions with different dynamics (Fig. 3d, Supplementary Fig. 184 

20). We further manually annotated neurons in a small FOV (~450 µm x 450 µm), and found 185 

DeepWonder achieved superior neuron segmentations than CNMF-E (Fig. 3e). The segmented neurons 186 

by DeepWonder are more concentrated in a round shape compared to those segmented with CNMF-E 187 

(Fig. 3f, Supplementary Fig. 17i), and the extracted calcium activities are with a higher signal-to-noise 188 

ratio (Fig. 3g, Supplementary Fig. 17h). DeepWonder achieves 0.87 ± 0.10 F1 scores in finding valid 189 

neurons compared to 0.74 ± 0.06 (mean ± std, n = 5; Fig. 3h, Supplementary Fig. 17e) by CNMF-E, 190 

indicating improved neuron segmentation accuracy in addition to the largely accelerated speed. 191 

The DeepWonder is designed to be a general technique that can be compatible with widely used 192 

widefield calcium imaging platforms including whole-brain macroscopy and miniaturized microscopy for 193 

freely-moving animals. In a macroscope with a photographic lens as the objective13, neurons are largely 194 

under sampled by ~5x5 pixels laterally to redeem a multi-millimeter FOV. We virtually generated vivid 195 

neuron recordings based on magnification, numerical aperture, and other optical parameters of the 196 

macroscope system (Methods, Supplementary Fig. 4) to train DeepWonder. We found DeepWonder 197 

significantly reduced fluctuated backgrounds and highlighted neurons efficiently (Supplementary Fig. 198 

18a, b, Supplementary Video 4). DeepWonder achieved 0.88 F1 scores compared to 0.81 by CNMF-E 199 

with manual labeling as ground truth (Supplementary Fig. 18c, d). Neurons found by DeepWonder only 200 

showed high-contrast calcium dynamics and compact shapes (Supplementary Fig. 18f). Head-mounted 201 

microendoscope is another widely used one-photon functional imaging technique that suffers from 202 

highly fluctuated backgrounds. With DeepWonder trained by virtual data in the microendoscope 203 

modality (Methods, Supplementary Fig.5), background contaminations were largely reduced 204 

(Supplementary Fig. 19a, b, Supplementary Video 5). Compared to manual inspection, DeepWonder 205 

achieved 0.91 F1 scores compared to 0.84 by CNMF-E with improved SNRs (Supplementary Fig. 19c-e). 206 

The effectiveness of DeepWonder across multiple platforms states the great potential of accelerating 207 

analysis of various widefield neuronal recordings.  208 

In summary, DeepWonder accomplishes widefield functional inference with an order of magnitude 209 

faster speed, 11.1% improved F1 scores, and 21.5% improved temporal correlation scores. This 210 

performance is enabled by key advances in our unique solution for handling background contamination 211 

data: firstly, our proposed virtual widefield data generators can adapt to various optical microscopes 212 

and produce virtual recordings with high similarity in both pixel distributions and functional      213 

distributions. Secondly, paired virtual recordings with and without background contaminations are used 214 

to train a time-aware removing background network (RB-Net) that effectively peels background signals 215 
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in experimental recordings. Thirdly, our neuron segmentation network (NS-Net) effectively processes 216 

both non-overlapped and overlapped components in a background-removed movie with 5 times faster 217 

speed than state-of-the-art technique. We validate the accuracy of DeepWonder in a customized 218 

simultaneous one-photon and two-photon observation system across multiple animals, and infer 219 

terabytes neuronal recordings within 17 hours via workstation-grade computing resources compared to 220 

the week-long processing time with traditional methods. To maximize its accessibility, we have open-221 

sourced both DeepWonder and the widefield data generator to promote interdisciplinary researches. 222 

It is worth noting that paired widefield and two-photon functional data can be acquired by the proposed 223 

hybrid system, based on which an end-to-end neural network can be trained to directly map widefield 224 

frames to background-free frames. However, we declare that DeepWonder driven by virtual calcium 225 

recordings outperforms the end-to-end model for the following reasons. Firstly, inactive neurons with 226 

low intensity that are invisible in widefield captures are visible in two-photon captures, posing 227 

difficulties to the network. On the contrary, synthetic datasets based on vivid tissue simulation and real 228 

imaging model cleanse inactive parts from labels and let the network focus on active neuron generation. 229 

Secondly, pixel-level alignment of widefield and background-free captures is critical for network training, 230 

which is readily guaranteed using synthetic data but difficult to achieve using two-photon data as labels. 231 

Thirdly, the cross-modality network training approach requires a hybrid imaging system as described in 232 

the article that is complicated to build, cost unfriendly, and even inapplicable (e.g., head-mounted 233 

microscope), whereas the DeepWonder can be effectively applied to any widefield system without extra 234 

efforts.  235 

By entirely avoiding the hand-crafted model of complex neuronal background that in previous widefield 236 

functional inference algorithm18, the DeepWonder concept is also positioned to analyze the signals with 237 

higher temporal bandwidth (~500 Hz) offered by genetically encoded voltage30 or functional imaging 238 

with other indicators31, simply by changing formulation of virtual recordings. Utilizing generative 239 

adversarial networks (GANs) holds potentials to further improve performances of DeepWonder32 . With 240 

a further intaking model of widefield imaging in over hundreds of microns cortical depth33, DeepWonder 241 

scheme can also be expected to increase the performance of neuron extraction and activity inference in 242 

deeper cortical layers, potentially overcoming the current limitations of widefield imaging in superficial 243 

regions of the mammalian cortex. On the other hand, by reinforcing DeepWonder with volumetric 244 

imaging models such as light-field microscope34 and multifocus microscope35, DeepWonder can be 245 

further extended to infer volumetric neuronal activities at high speed. We anticipate the proposed 246 

method lowers the barrier of processing neuronal data by high-throughput and large-scale widefield 247 

captures, and promote whole brain and million level neuronal recordings. 248 

 249 

  250 
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 251 

Fig. 1. Principle of deep widefield calcium finder (DeepWonder). 252 

a. Training stage of removing background network (RB-Net) in DeepWonder. Based on specific widefield 253 

microscope parameters (numerical aperture, objective focal length, and magnifications) and imaging 254 

parameters (wavelength, imaging depths, and imaging power), we firstly use the proposed realistic 255 

widefield simulator to generate virtual captures with high similarity with experimental captures as 256 

inputs. Meanwhile, we can generate the capture with the same neuron distributions but without 257 

background contaminations as labels. We feed both inputs and labels to train the removing background 258 

network (RB-Net) such that it can restore background-free neuronal images from background-259 

contaminated images.  260 

b. DeepWonder works on new recordings. After the network is trained, it can be used to remove the 261 

background of experimental captures. We further apply a neuron segmentation network (NS-Net) to 262 
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segment neurons and extract neuronal signals from the background-removed movies (Supplementary 263 

Fig. 1, 2).  264 

c. Restoration of indiscernible calcium transients from backgrounds (green) by DeepWonder (red). 265 

Traces without background contamination (blue) serve as ground truth for comparison.  266 

d. Background removal of DeepWonder significantly increases the neuronal signal correlations with 267 

ground truth movie (p<0.001, two-sided Wilcoxon signed-rank test, n = 901; Methods).  268 

e. Background removal of DeepWonder significantly increases the signal-to-background (SBR) ratio 269 

(p<0.001, two-sided Wilcoxon signed-rank test, n = 901; Methods). 270 

f.      distributions of simulation datasets (red) and experimental datasets (green).  271 

g. Increasing the FOV size leads both runtimes of CNMF-E and our approach quadratically increasing, but 272 

our approach is ~10 times faster than CNMF-E in processing recordings in 2.0 x 1.7 mm2 FOV. Left panels 273 

show examples of MIP images of RUSH recordings in 0.22, 1.38, and 3.54 mm2. All movies are with 274 

constant 2000 frames. The plot show mean ± s.d. runtime, averaged over n = 5 different datasets 275 

(Supplementary Fig. 11).  276 

h. F1, precision, and sensitivity scores of segmentation by CNMF-E are 0.81± 0.03, 0.75 ± 0.05, and 0.89 277 

± 0.04, respectively. F1, precision, and sensitivity scores of segmentation by DeepWonder are 0.90 ± 278 

0.03, 0.92 ± 0.03, and 0.88 ± 0.04, respectively. Statistical scores are shown in mean ± std across n=10 279 

videos. DeepWonder is significantly better than CNMF-E in F1 score and precision (p=0.002, two-sided 280 

Wilcoxon signed-rank test). 281 

i. Correlation with ground truth of DeepWonder (red, 0.96 ±0.09, mean ± std across n=10 videos) and 282 

CNMFE (green, 0.79 ±0.14, mean ± std across n=10 videos). DeepWonder is significantly better than 283 

CNMF-E in correlations (p<0.002, two-sided Wilcoxon signed-rank test, n=1428). 284 

 285 
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 287 

Fig. 2. DeepWonder achieves accurate neuron segmentation and activity inference validated by two-288 

photon (2p) microscope. 289 

a. The hybrid 1p–2p microscope setup. LED, light-emitting diode light source; Ti:Sa, titanium:sapphire 290 

laser; EOM, electro-optical modulator; M, mirror; DM, dichroic mirror; BS, beam splitter; Fm, emission 291 

filter; Fx, excitation filter; CL, collection lens; TL, tube lens; S, triggerable shutter; CAM, sCMOS (scientific 292 

complementary metal-oxide semiconductor) camera; PMT, photomultiplier tube; Obj, objective. Right 293 
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box: control signals of the shutter, LED, EOM, and camera exposure, where high-level signals are 294 

activated and low-level signals are deactivated. 295 

b. Maximum intensity projection (MIP) of widefield (top), RB-Net processed widefield movie (middle), 296 

and two-photon movie (bottom). Triangles mark neurons and the corresponding temporal activities are 297 

plotted on the right side. 298 

c. Zoom-in plots of temporal activities of neuron No. 14, 16, and 17 in the widefield raw movie (green), 299 

RB-Net de-background movie (red), and 2p movie (blue.) 300 

d. Temporal correlations of 27 picked neurons with 2p by RB-Net are significantly increased compared to 301 

the raw movie (p<0.001, two-sided Wilcoxon signed-rank test).  302 

e. DeepWonder (left) and CNMF-E segmentation results (right). Blue masks represent corrected 303 

segmentations, green masks represented missed segmentations by current methods, and pink masks 304 

represent false segmentations by current methods. The precision, sensitivity, and F1 score of 305 

DeepWonder are 0.94, 0.88, and 0.91, while for CNMF-E are 0.56, 0.96, and 0.73. 306 

f. Correlations of DeepWonder neuron activities with 2p across 5 animals and 20 datasets. 307 

g. Precision score of DeepWonder segmented neurons with 2p dataset as the reference across 5 animals 308 

and 20 datasets reaches 0.88 ± 0.05 (mean ± std). 309 

h. F1 score of DeepWonder (red, 0.88 ± 0.04, mean ± std) and CNMF-E (blue, 0.73 ± 0.13, mean ± std) 310 

across all datasets. DeepWonder significantly outperforms CNMF-E in F1 score (p<0.001, two-sided 311 

Wilcoxon signed-rank test). 312 

i. Temporal correlation of DeepWonder (red, 0.83 ± 0.14, median ± median absolute deviation) and 313 

CNMF-E (0.79 ± 0.22, median ± median absolute deviation) with 2p across all datasets (n = 1570 314 

neurons). DeepWonder significantly outperforms CNMF-E in temporal correlations with 2p (p<0.001, 315 

two-sided Wilcoxon signed-rank test). 316 
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 319 

Fig. 3. DeepWonder realizes high-speed processing widefield neuronal recordings in terabytes scale. 320 

a. Maximum intensity projection (MIP) of raw RUSH video (top) and background removed movie by 321 

DeepWonder (bottom). Orange dashed boxes mark zoom-in four areas in the cortex, with DeepWonder 322 

segmentations overlaid.  323 

b. Inferred calcium activities from four different areas marked by the dashed box with neuron number 324 

labeled.  325 
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c. Runtime comparisons between CNMF-E and DeepWonder across 12 valid FOVs in RUSH over 8000 326 

frames recordings. Each dot shows the processing time for each FOV.  327 

d. Temporal activity rendering of 14226 neurons inferred by DeepWonder in a 13.5 minutes recording. 328 

Two zoom-in panels show example traces (each with 100 traces). The dashed yellow line indicates the 329 

dosage of 2% isoflurane for anesthesia at 5 minutes after the secession start. 330 

e. The contour plot of all neurons detected by DeepWonder (left) and CNMF-E (right) superimposed on 331 

the standard deviation (STD) of background removed images and correlation image, respectively 332 

(Methods), respectively. Compare to manual segmentations, deep blue circles mark correct segments in 333 

both methods, red circles mark incorrect segments in each of the methods, green circles marks missed 334 

segments, and shallow blue circles mark correct segments that are only in the current method.  335 

f. Spatial components of 10 example neurons detected by both DeepWonder (left) and CNMF-E (right).  336 

g. The signal-to-noise ratio (SNRs) of all neurons detected by DeepWonder (vertical axis) and CNMF-E 337 

(horizontal axis) in e.  338 

h. F1, precision, and sensitivity scores of segmentation in e by CNMF-E are 0.74 ± 0.06, 0.58 ± 0.07, and 339 

0.88 ± 0.04, respectively. F1, precision, and sensitivity scores of segmentation by DeepWonder are 0.87 340 

± 0.10, 0.91 ± 0.09, and 0.88 ± 0.07, respectively. Statistical scores are shown in mean ± std across n=5 341 

samples. 342 
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DATA AVAILABLITY 344 

We have mounted our data in Google Colab, which is a free Jupyter notebook environment that requires 345 
no setup and runs entirely in the cloud. A demo script with full processing of DeepWonder on several 346 
demo datasets (including NAOMi1p virtual datasets, cropped RUSH datasets, and two-photon validation 347 
datasets) is available through Colab via 348 
https://colab.research.google.com/drive/15TvsyEYgE1iGpaNWkq3flXOw52I51mVa. All other data of this 349 
study are available from the corresponding author on request. 350 

CODE AVAILABLITY 351 

Our DeepWonder with realistic widefield imaging simulators can be found at 352 
https://github.com/yuanlong-o/Deep_widefield_cal_inferece.  An archived version of DeepWonder 353 
packages is available through https://pypi.org/project/DWonder. 354 
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METHODS 454 

One-photon and two-photon joint validation. To valid our algorithms in achieving correct neuronal 455 

activities, we built a joint two-photon and widefield detection system. The system was based on a 456 

standard two-photon laser scanning microscope (TPLSM), while we further added a 470 nm-centered 457 

widefield illumination path and a camera detection path in the system. The schematic of the custom-458 

built two-photon microscope is shown in Supplementary Fig. 13. A titanium-sapphire laser system 459 

(MaiTai HP, Spectra-Physics) was served as the two-photon excitation source (920 nm central 460 

wavelength, pulse width <100 fs, 80 MHz repetition rate). A half-wave plate (AQWP10M-980, Thorlabs) 461 

and an electro-optic modulator (350-80LA-02, Conoptics) were used to modulate the excitation power. 462 

A 4f system (AC508-200-B and AC508-400-B, Thorlabs) with a 2x magnification was used to expand the 463 

laser beam to a resonant scanner (8315K/CRS8K, Cambridge Technology). The scanned beam went 464 

through a scan lens (SL50-2P2, Thorlabs) and a tube lens (TTL200MP, Thorlabs) and formed a tight focus 465 

through a high numerical aperture (NA) water immersion objective (25x/1.05 NA, XLPLN25XWMP2, 466 

Olympus). A high-precision piezo actuator (P-725, Physik Instrumente) drove the objective for fast axial 467 

scanning. To match the two-photon excitation range with the widefield detection range, we reduced the 468 

beam size at the back aperture of the objective with an iris. The effective excitation NA was about 0.27 469 

in our imaging experiments, yielding ~20 um axial range (Supplementary Fig. 14). A long-pass dichroic 470 

mirror (DMLP650L, Thorlabs) was used to separate fluorescence from femtosecond laser beam by 471 

reflecting the fluorescence signals and transmitting the infrared light. 472 

For the widefield excitation path, a long pass dichroic (DMLP505L, Thorlabs) in the original detection 473 

path of TPLSM was used to send blue LED light (M470L4-C1 and MF475-35, Thorlabs) to the objective. 474 

To jointly record widefield excitation and two-photon excitation, a 50:50 (reflectance: transmission) 475 

non-polarizing plate beam splitter (BSW27, Thorlabs) was placed after widefield dichroic to separate 476 

fluorescent signals for PMT (PMT1001, Thorlabs) and camera (Zyla 4.2, Andor). A pair of fluorescence 477 

filters (MF525-39, Thorlabs; ET510/80M, Chroma) was configured in front of both the PMT and the 478 

camera to fully block both femtosecond laser and widefield excitation beam. The back aperture of the 479 

objective was optically conjugated to the detection surface of the PMT with a 4f system (TTL200-A and 480 

AC254-050-A, Thorlabs).  481 

To avoid excitation crosstalk and protect PMT from high-flux widefield emission photons, we added a 482 

linear galvo that served as an optical shutter for the PMT detection path, which deflected fluorescent 483 

photons when LED was on (Supplementary Fig. 13a). We further configured the EOM to be blocked 484 

during widefield imaging. The LED (M470L4-C1) was in trigger mode with a typical rising and falling time 485 

less than 1 ms, with further reduced duration time to avoid PMT overexposure (Supplementary Fig. 13b).  486 

Realistic widefield capture generation. To synthesize a realistic cortical tissue and generate 487 

corresponding widefield capture, we referred to the Neural Anatomy and Optical Microscopy (NAOMi)16 488 

package. Using NAOMi, a brain tissue volume was populated with multiple blood vessels, as well as with 489 

neuron somata, axons, and dendrites. Neurons and dendrites were assigned synthesized fluorescence 490 

activity that reflected their calcium dynamics. A tissue-specific point spread function (PSF) was 491 

generated by layer-to-layer Fresnel propagations from deep tissue to sensor.  492 

While original NAOMi was used to simulate two-photon excitations, here we modified the original 493 

NAOMi pipeline such that it could faithfully simulate data acquisition of one-photon excitations, which 494 

was termed as NAOMi1p. We changed the excitation wavelength from the near infrared range into the 495 
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visible range. In two-photon microscope, scattering-induced aberrations in excitation beam instead of 496 

emission beam affect the imaging quality due to the point-scanning manner. On the other hand, in 497 

widefield microscope, scattering-induced aberrations cause troubles in emission beam instead of 498 

excitation beam due to the planar collection from different camera pixels. We thus modified the optical 499 

PSF generation based on the propagation of the emission beam instead of the excitation beam through 500 

the tissue. We further replaced the two-photon absorption process with one-photon absorption process 501 

in a model of power density, fluorescent concentration, extinction coefficient, quantum yield, and 502 

fluorescent protein expression level36. The final simulated recordings have three contributors: 503 

fluorescence from active neurons, fluorescence from dendrites and axons in the background, 504 

fluorescence from out-of-focus backgrounds. The assembly of all three parts faithfully generates a 505 

virtual capture of widefield recordings, while using fluorescence from active neurons only generates a 506 

background-free label. Especially, for soma target indicators37 it is recommended to only let the soma 507 

fire. The above tools are summarized as the NAOMi1p toolbox and are open to all the community. To 508 

accommodate different imaging systems, NAOMi1p opens multiple parameters including the acquisition 509 

NA, camera pixel size, magnifications, illumination power, FOV, and indicator types for users to adjust. 510 

With NAOMi1p, we can faithfully generate virtual widefield recordings as well as their background-free 511 

counterpart.  We then picked up neurons that were within the range of axial PSF diameter (Gaussian 512 

beam, 1/e2 size) and registered their positions and activities as ground truth for simulation comparisons 513 

among different analysis algorithms for widefield calcium recordings (Supplementary Note 1). 514 

Noise simulation. Imaging sensors (e.g. sCMOS, CMOS, and CCDs) have different quantum efficiency (QE) 515 

and noise response, which is also highly coupled with the expression level of calcium indicators in 516 

neurons. We thus simulated the NAOMi tissue with a range of noise to cover those situations. The 517 

number of fluorescence photons generated in a unit area of the samples is36 518 

        (   )      

where   is the quantum efficiency of fluorophores with an extinction coefficient  ,  (   ) is the local 519 

fluorophore concentration,   is power density, and   is the integration time of the camera.  The signal of 520 

a camera can be further interpreted as38 521 

         {  }   (    )     

where    is a multiplicative factor which is applied to the Poisson-distribution (Pois) as the camera gain.  522 

   is a bias during analog-to-digital (AD) conversion.   (    ) is the Gaussion-distribted readout noise 523 

with zero mean and    standard deviation. For a typical sCMOS,    is ~2.2,    is ~100, and    is ~ 20039. 524 

Widefield imaging setups and recordings. RUSH recordings. In the real-time, ultra-large-scale, high-525 

resolution (RUSH) system14, a 5×7 customized field lens array was mounted on a spherical surface for full 526 

correction of field curvature of 10 mm × 12 mm FOV. The customized objective provides 0.35 NA across 527 

the centimeter scale FOV, supporting submicron resolution observation. The pixel resolution of each 528 

camera in RUSH system is 2560 x 2160, yielding 6.3 gigabyte data per minute at 10 Hz. A mouse with a 7 529 

mm cranial window takes 12 sub FOVs of RUSH, and 13.5 minutes recordings take over 1 terabyte of 530 

data (Fig. 4, Supplementary Fig. 20). To generate virtual recordings for DeepWonder training, we fed the 531 

following typical parameters to the data generator: system magnification 10, NA 0.35, pixel size 0.8 µm, 532 

frame rate 10Hz, and illumination power density 0.8mW/mm2. We checked the similarity of generated 533 

data with raw recordings (Supplementary Fig. 3). 534 
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Macroscope recordings. Macroscope recordings. We used a 50mm camera lens (Canon EF 50mm f/1.4 535 

USM) as the objective lens and a 100mm camera lens (MINILTA AF 100mm f/2.8) as the tube lens to set 536 

up the widefield macroscope. The illumination was provided by a collimated blue LED (SOLIS-470C, 537 

Thorlabs) with an excitation filter (FESH0500, Thorlabs). The beam was focused by a lens (AC508-100-A, 538 

Thorlabs), reflected by a dichroic mirror (DMLP505L, Thorlabs), passed through the objective lens and 539 

excited the sample. The fluorescence was collected by the same objective lens and refocused on the 540 

sCMOS camera (Zyla 5.5, Andor) by the tube lens. An emission filter (MF525-39, Thorlabs) was placed 541 

before the camera to eliminate the excitation light. The FOV of the system was approximately 9.2 mm x 542 

7.7 mm, and each pixel in the sCMOS corresponded to 3.6 µm on the image plane. To generate virtual 543 

recordings for DeepWonder training, we fed the following typical parameters to the data generator: 544 

system magnification 1.8, NA 0.3, pixel size 3.6 µm, frame rate 10Hz, and illumination power density 545 

0.8mW/mm2. We checked the similarity of generated data with raw recordings (Supplementary Fig. 4). 546 

Head-mounted microscope recordings. The data of head-mounted microscope recordings was released 547 

by Wang Lab at McGovern Institute in MIT, and downloaded from 548 

https://github.com/JinghaoLu/MIN1PIPE. The data was recorded with open-source UCLA miniscope16. 549 

To generate virtual recordings for DeepWonder training, we fed the following typical parameters to the 550 

data generator: system magnification 6, NA 0.46, pixel size 1 µm, frame rate 20Hz, and illumination 551 

power density 2.5 mW/mm2. We checked the similarity of generated data with raw recordings 552 

(Supplementary Fig. 5). 553 

Network architecture and training. Removing background network. The main structure of removing 554 

background network (RB-Net) is 3D Unet. The encoding path and decoding path consist of three 555 

convolutional blocks (Supplementary Fig. 1a). For accelerating removing background process, we added 556 

a “spatial to channel” down-sampling operator at the beginning of RB-Net for reshaping the input image 557 

of size W×H×C into W/2×H/2×4C (W for filter width, H for filter height, and C for filter channels; 558 

Supplementary Fig. 1c). We also introduced a “channel to spatial” up-sampling operator at the end of 559 

RB-Net for realigning pixels (Supplementary Fig. 1c). With these two operators, the pixel number of an 560 

input image processed by RB-Net can be increased by four times at almost the same GPU memory cost. 561 

We utilize a linear transformation of raw input images   for data augmentation as: 562 

    (   )  

where   is input images for RB-Net,   and    are random number (       ,         ( )). Data 563 

augmentation is constructive to the generalization ability and transfer learning ability of RB-Net. 564 

We synthesized 23 sets of background removed data by the NAOMi1p algorithm and randomly split 565 

them into 4000 paired patches for training RB-Net. The input raw videos were mean subtracted. It took 566 

48 hours to train RB-Net for 30 epochs with a Geforce RTX 3080 GPU. The running speed for RB-Net is 567 

usually 40 ms per 750 x 750-pixel frame tested in an RTX 3080 GPU. 568 

Neuron segmentation network. The main structure of neuron segmentation network (NS-Net) is 3D Unet, 569 

which has the similar structure with the RB-Net but with different channels (Supplementary Fig. 1b). On 570 

the other hand, because neuron segmentation in background-free data is simpler than removing 571 

background, we utilize the combination of a 1×1×3 filter and a 3×3×1 filter in NS-Net to replace two 572 

3×3×3 filters for reducing network parameters and computational consumption.  573 
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The training data for NS-Net is directly generated from NAOMi1p generator, where neuron soma that 574 

are within the range of axial PSF diameter (Gaussian beam, 1/e2 size) is binarized as segmentation label. 575 

We simulated 45 sets of neuron segmentation data and randomly generated 4000 paired patches for 576 

training neuron segmentation network. We spent 8 hours training neuron segmentation network for 30 577 

epochs with a Geforce RTX 1080TI GPU. 578 

Processing of widefield calcium data. Widefield calcium recordings are firstly sent to trained RB-Net to 579 

get a de-background clean movie, then the background-free movie is further sent to trained NS-Net for 580 

acquiring neuron candidate masks (Supplementary Fig. 2a). We group and merge candidates from all 581 

frames into connected regions to form unique segmentations. We then do the connectivity analysis for 582 

every candidate of the mask sequence spatio-temporally and extract every separated neuron to 583 

compose a neuron candidate list. Those spatially overlapped but temporally separated (e.g. neuron 584 

segments appear in different frames) will be registered as different candidates. With the neuron 585 

candidate list, we classify these neurons by neuron morphology metrics related to area and roundness 586 

     
 

  
, where   is the area of neuron,   is the perimeter of neuron. We abandon the neuron 587 

candidates that are smaller than the 25 µm2 threshold. Since the roundness   is a good indicator to 588 

judge if the candidate consists of a single neuron or multiple neurons, we further classify neuron 589 

candidates whose roundness are higher than the standard roundness of a single neuron (typically 590 

     ) to form a “good” neuron list, and others into a “bad” neuron list (Supplementary Fig. 2b). The 591 

candidates in the “good” neuron list will be sent out for directly reading out temporal activities from the 592 

background-removed movie based on values of exclusive pixels (Supplementary Fig. 2a). For each 593 

candidate in the “bad” neuron group, the candidate will be initialized by greedy methods18 and then 594 

sent to local NMF for further demixing. If we mark the local area surrounding the candidate as 595 

           , and the candidate is estimated to be consisted by   neurons, the local NMF model is 596 

then 597 

   
   
‖    ‖ 

    ‖ ‖    ‖ ‖   

where            and        represents the spatial and temporal footprints, respectively18. We 598 

solve the above optimization problem through HALS algorithms28. Finally, we merge neurons by 599 

clustering components with high temporal correlations and spatial overlap ratios. 600 

Mouse preparation and calcium imaging. All animal experiments were performed following institutional 601 

and ethical guidelines for animal welfare and have been approved by the Institutional Animal Care and 602 

Use Committee (IACUC) of Tsinghua University. Mice were housed in cages (24 °C, 50% humidity) in 603 

groups of 1–5 under a reverse light cycle. Both male and female mice were used without randomization 604 

or blinding. Adult transgenic mice (cross between Rasgrf2-2A-dCre mice (JAX 022864) and Ai148 (TIT2L-605 

GC6f-ICL-tTA2)-D (JAX 030328)) at 8–12 postnatal weeks were anesthetized with 1.5% isoflurane, and 606 

craniotomy surgeries were conducted with a stereotaxic instrument (68018, RWD Life Science) under a 607 

bright-field binocular microscope (77001S, RWD Life Science). A custom-made coverslip fitting the shape 608 

of the cranial window was cemented to the skull. A biocompatible titanium headpost was then 609 

cemented to the skull for stabilization during imaging. The edge of the cranial window was enclosed 610 

with dental cement to hold the immersion water of the objective. After the surgery, trimethoprim (TMP) 611 

was injected into the mice intraperitoneally for inducing the expression of GCaMP6f in layer2/3 neurons 612 

(0.25mg per gram). To reduce potential inflammation, 5 mg per kg (body weight) of ketoprofen was 613 
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injected subcutaneously. Each mouse was housed in a separate cage for 1–2 weeks of postoperative 614 

recovery. 615 

Imaging experiments were carried out when the cranial window became clear and no inflammation 616 

occurred. Mice were first rapidly anesthetized with 3.0% isoflurane and then fixed onto a custom-made 617 

holder by the headpost. A precision 3-axis translation stage (M-VP-25XA-XYZL, Newport) carried the 618 

mice for a proper region of interest. For two-photon validation experiments, the correction ring of the 619 

25x water immersion objective was adjusted to compensate for the coverslip thickness and eliminate 620 

spherical aberrations. The highest excitation power of two-photon microscope after the objective was 621 

under ~100 mW to avoid head damage. During the imaging session, gaseous anesthesia was turned off 622 

and the mouse was kept awake. We performed single-plane imaging at approximately 80 μm below the 623 

pia mater. For widefield acquisitions, the excitation power density in the cranial window area was no 624 

more than 1.5 mW/mm2. Before running further analysis, we ran calcium movie registrations with open-625 

source NormCorre algorithm40 to cancel motion artifacts. In cortex-wide brain imaging, we aligned the 626 

recorded brain area into Allen CCF atlas based on the recorded position of the cranial window by the 627 

stereotaxic instrument when applying brain surgery. 628 

Performance metrics. Correlation score. We used Pearson’s correlation coefficient as the temporal 629 

metric to monitor the similarity between inferred neuronal activities and ground truths. The ground 630 

truth activities were available for simulation data, while for joint one-photon and two-photon validation 631 

data, the ground truth activities were established by running CaImAn41 on two-photon dataset 632 

(Supplementary Note 2). 633 

Neuron finding scores. It is necessary to establish ground truth segmentations for comparing the neuron 634 

finding scores. In simulation data, the ground truth segmentations were available. In joint one-photon 635 

and two-photon validation data, the ground truth segmentations were marked based on CaImAn 636 

processed two-photon data (Supplementary Note 2). In widefield experimental data, we manually 637 

labeled the neurons based on their positions and activities. We firstly calculated the correlation images 638 

of the raw recordings41, and worked over every structure that was different from the background which 639 

matched neuron size (typically 10~15 µm in diameter). We rejected those candidates that with weak 640 

and noisy activities in the original movie. We outlined each cell of interest with the ROI manager in 641 

ImageJ, and imported the zipped ROIs into MATLAB as ground truths for comparisons with other 642 

methods.  643 

After achieving segmentation ground truth, a customized script in MATLAB automatically judges 644 

segmentations by the following rules: a candidate is a correct segment (true positive, TP) if the minimal 645 

distance between this candidate with any ground truth segments is less than 8 µm, and the Intersect 646 

over Union (IoU) score between this candidate and any ground truth segments is larger than 0.2. 647 

Otherwise, the segmentation candidate will be rejected as a false positive (FP). Segments that are 648 

recognized by ground truth labeling but not recognized by the algorithm will be marked as false 649 

negatives (FN). The segmentation accuracy (F score,   ) is defined as 650 

   
   

         
  

The segmentation precision score is defined as 651 
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Signal-to-background ratio. We calculated the signal-to-background ratio (SBR) of a neuron by 652 

computing the maximum activity of the neuron area over the maximum activity of its neighboring area 653 

(Supplementary Fig. 7). The neuron area is defined by a circle with a radius of 10 µm with the center at 654 

the centroid of a segmentation. A neighboring area is defined by a ring with an inner radius of 10 µm 655 

and an outer radius of 20 µm at the same center of the corresponding neuron area, with masking out all 656 

other neuron areas.  657 

Signal-to-noise ratio. We computed the signal-to-noise ratio (SNR) of inferred cellular traces to 658 

quantitatively compare the temporal inference quality18. We calculated the denoised trace   of each 659 

inferred activity   using OASIS42, and the SNR was computed through 660 

    
‖ ‖ 

 

‖   ‖ 
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