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ABSTRACT

During perceptual decision-making, the firing rates of cortical neurons reflect upcoming choices.
Recent work showed that excitatory and inhibitory neurons are equally selective for choice. How-
ever, functional consequences of inhibitory choice selectivity in decision-making circuits are un-
known. We developed a circuit model of decision-making which accounts for the specificity of
inputs to and outputs from inhibitory neurons. We found that selective inhibition expands the
space of circuits supporting decision-making, allowing for weaker or stronger recurrent excita-
tion when connected in a competitive or feedback motif. The specificity of inhibitory outputs sets
the trade-off between speed and accuracy of decisions by altering the attractor dynamics in the
circuit. Recurrent neural networks trained to make decisions display the same dependence on
inhibitory specificity and the strength of recurrent excitation. Our results reveal two concurrent
roles for selective inhibition in decision-making circuits: stabilizing strongly connected excitatory
populations and maximizing competition between oppositely selective populations.

Perceptual decision-making requires neural circuits to integrate evidence and classify a stimulus
to trigger the correct behavioral response. Neurons in a range of cortical areas modulate their firing
rate to signal animal’s choice1. The functional properties of decision-making neural circuits have been
extensively studied and modeled2–9. Central to the function of these circuit models are attractors in the
activity space which characterize the population’s encoding of a given choice. The attractor mechanism
driving the decision-making activity in these models relies on highly structured recurrent connections
between populations of excitatory neurons that are each selective for a different choice8, 10, 11. Inhibitory
neurons, in this view, are merely supporting actors facilitating competition and providing balance to the
excitatory neurons.

Since the canonical models of decision-making circuits were built, the diversity and complexity of
inhibitory neurons within the cortex have been characterized in increasing detail12. In primary sensory
areas, inhibitory neurons are generally more broadly tuned13 and more densely connected to neighbor-
ing excitatory neurons14, 15. These inhibitory neurons reliably modulate spike output to reflect stimulus
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features and have highly specific connectivity to surrounding excitatory neurons16, 17. The stimulus se-
lectivity of inhibitory neurons is enhanced by learning and attention18 suggesting that task dependent
modulation of inhibitory activity is necessary for cognition. Beyond the primary sensory cortex, stimu-
lus information and animal choice can be decoded from the activity of inhibitory neurons in secondary
sensory and association areas indicating a role for selective inhibition in higher cognitive functions, such
as decision making19–21. While there is growing evidence that the activity and connectivity of inhibitory
neurons is as complex as excitatory neurons, how the selectivity of inhibitory activity and the diversity
of their connections affect the decision-making function of cortical circuits is still unknown.

To reveal the role of choice selective inhibitory neurons in decision-making computations we ex-
tended a well established mean-field model of decision-making circuits4 to account for the presence of
inhibitory choice selectivity. Our model allows us to parametrically alter the specificity of connections
between four choice selective populations: two excitatory and two inhibitory. Through analysis of this
model, we identified two concurrent roles for inhibition in decision-making circuits: inhibition drives
competition between choice-selective excitatory populations and at the same time stabilizes activity
driven by recurrent excitation. These two roles are mediated by inhibitory connections to the excita-
tory populations and either role can be enhanced by structured inhibitory connectivity. We found that
inhibitory selectivity expands the space of possible circuits which support decision-making by enhanc-
ing either a competitive or stabilizing role for inhibition. In addition, the connectivity motif between
choice selective populations alters the underlying attractor dynamics and modulates the decision-making
performance to prioritize speed or accuracy. We generalized these results by training recurrent neural
networks (RNNs) to perform the same decision-making task. After training, RNNs had both excitatory
and inhibitory units significantly selective for choice and displayed a similar dependence between the
specificity of excitatory and inhibitory connections found in the mean-field model. Finally, we perturbed
inhibitory neuron activity in these models to probe the dynamical regime in which the circuit operates.
We found two regimes in which circuits respond differently to perturbations of inhibitory neurons: one
in which the competitive role dominates and the other in which the stabilizing role dominates. Our work
demonstrates that choice selective inhibition impacts decision-making behavior by enhancing either the
competitive or the stabilizing role for inhibition in the circuit. These results generate testable predictions
for perturbation experiments.

Results

We consider circuits where two excitatory (E) populations integrate dedicated streams of sensory evi-
dence to produce a categorical choice (Fig. 1a). In contrast to previous circuit models of decision-making
with global inhibition, we include two inhibitory (I) populations which can inherit choice selectivity
from excitatory neurons (Methods). The circuit dynamics are modeled using two-dimensional mean-
field equations where the mean postsynaptic activation of the two excitatory (E1 and E2) populations are
the dynamic variables4. The average strength of connections between the four choice selective popu-
lations is controlled by a specificity parameter Σ. For each of three connection classes (E to E, E to I,
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and I to E; Fig. 1b), Σ sets the balance of connection strengths between populations with the same and
opposite choice selectivity (Fig. 1c), where (1 + Σij) is the strength of connections between populations
selective for the same choice and (1− Σij) is the strength of connections between populations selective
for the opposite choice (for the presynaptic population i, either E or I, and the postsynaptic population
j). We keep ΣEE positive due to the importance of recurrent excitation in the function of these circuits4.
Inhibitory choice selectivity is controlled by ΣEI and is also positive because inhibitory neurons inherit
choice and stimulus information from the excitatory neurons. Thus, inhibitory activity is not choice se-
lective when ΣEI = 0 because inhibitory neurons receive equal input from both excitatory populations.
Inhibitory choice selectivity emerges as ΣEI increases (Fig. 1d).

For inhibitory choice selectivity to have any effect on circuit function, the outputs of inhibitory
populations must be structured (i.e. ΣIE 6= 0; Fig. 1c). The specificity of inhibitory outputs ΣIE can range
between [-1, 1] with negative values favoring connections between E and I populations with opposite
choice preference and positive values favoring connections between E and I populations with the same
choice preference. Thus, the specificity of inhibitory output connectivity defines three circuit motifs:
contraspecific for ΣIE < 0, ipsispecific for ΣIE > 0, and nonspecific for ΣIE = 0.

In any decision-making circuit, inhibition concurrently fulfills two roles. The first is providing
the substrate for competition between the excitatory populations, and the second is stabilizing the self-
amplification driven by strongly recurrent excitatory populations. Both of these roles must be fulfilled
for a circuit to function, but specific connections to and from inhibitory populations could enhance
one of these roles (Fig. 1c). Specifically, ipsispecific inhibition can promote stabilizing feedback and
contraspecific inhibition can maximize competition.

In response to an input stimulus, the circuit can produce different choice outcomes by changing the
firing rates of the excitatory populations. Circuits report a choice by persistently raising the firing rate of
one excitatory population at least 15 Hz above the other; trials where this separation does not occur are
considered invalid (Fig. 1e). We also require that prior to the stimulus onset, the circuit maintains low,
symmetric activation of excitatory neurons. These dynamics are governed by eight fixed points which
are essential for the good decision-making behavior (Fig. 1e,f). Prior to stimulus onset, both excitatory
populations maintain low symmetric activation, which is set by an attractor located near the origin of
the unstimulated phase plane. Following stimulus onset, the firing rate for both populations increases as
the system approaches a saddle point along the stable manifold which acts as a separatrix between two
choice attractors. Following stimulus offset, the system returns to its unstimulated phase plane and the
choice of the circuit is preserved by one of two working memory attractors.

Inhibitory connection specificity expands the space of circuits that support decision making. Using
the mean-field model, we investigated how the circuit’s ability to perform decision-making depends on
the inhibitory connectivity structure. Specifically, we determined how choice-selective inhibition affects
the presence of the eight fixed points governing decision-making behavior. We sampled the specificity
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parameter space to identify circuits which support these eight fixed points (Fig. 2a). We found that a
broad range of circuit configurations can support decision making. There are two components of in-
hibitory choice selectivity which rely on specific connections to and from inhibitory populations. The
first is the degree of choice selective firing by inhibitory neurons that is controlled by ΣEI. The second is
the degree to which inhibitory populations have a specific effect on excitatory neurons that is controlled
by ΣIE. We combine these two components into a selectivity index ΣEIΣIE, which is negative for con-
traspecific and positive for ipsispecific circuits following the sign of ΣIE. The specificity of excitatory
and inhibitory connections is highly correlated in circuits supporting decision making (Fig. 2b). When
inhibition is nonselective (ΣEI = 0) or nonspecific (ΣIE = 0), the strength of recurrent excitation (ΣEE)
is highly constrained and deviations from a narrow range leads to the loss of one of the essential fixed
points (Fig. 2c). For circuits with selective inhibition, a wider range of ΣEE will support decision making
as long as a complementary inhibitory motif is present. For low ΣEE, the inhibitory motif must be con-
traspecific (ΣEIΣIE < 0, Fig. 2b and Fig. 2d left) and for high ΣEE it must be ipsispecific (ΣEIΣIE > 0,
Fig. 2b and Fig. 2d right). Contraspecific inhibitory motif can promote competition in circuits where ex-
citatory feedback connections are insufficiently strong to amplify firing rate differences between choice
selective populations. Ispispecific inhibitory motif can stabilize excitatory feedback to prevent inadver-
tent winner-take-all dynamics in the absence of stimulus in circuits with strong excitatory specificity. By
enhancing either the competitive or stabilizing role, circuits with choice selective inhibitory populations
can support decision making for a wider range of ΣEE (Fig. 2b).

The emphasis on competition or stability can also be seen in which fixed points are lost when
connection specificity between excitatory and inhibitory populations are not complementary. When ΣEE

is low, nonspecific and ipsispecific circuits lack the fixed points representing choice both in the presence
and absence of stimulation as well as the saddle point during the stimulus (Fig. 2d left, Fig. S1), because
recurrent excitation is too weak to drive competition alone. Contraspecific inhibition paired with low
ΣEE restores these fixed points by emphasizing competition between populations selective for opposite
choices. These fixed points emerge sequentially as the inhibitory motif becomes more contraspecific:
first the choice attractors appear, followed by the saddle point, and finally by the working memory
attractors (arrow in Fig. 2d left). For moderate ΣEE, nonspecific circuits have all eight necessary fixed
points, but deviations to a contraspecific motif cause the loss of the attractor for the low initial state,
whereas deviations to an ipsispecific motif cause the loss of the working memory attractors, then saddle
point, and then choice attactors (arrow in Fig. 2d center, Fig. S1). For circuits with high ΣEE to support
decision making, inhibitory motif must be ipsispecific, as nonspecific and contraspecific circuits lack the
initial low activation state attractor (Fig. 1d right, Fig. S1).

Inhibitory motif controls the speed versus accuracy trade-off. The roles enhanced by contra- and
ipsispecific inhibititory motifs lead to differences in performance of decision circuits. In circuits with
moderate strengths of recurrent excitation, all three motifs can support decision making for the same
ΣEE. We found that circuits with three inhibitory motifs differ in choice accuracy on difficult trials where
stimulus strength is weak (Fig. 3a). Relative to a circuit with nonspecific inhibitory outputs (ΣIE = 0),
ipsipecific circuits are more accurate at classifying difficult stimuli but more often fail to separate the out-
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puts sufficiently producing invalid trials (Fig. 3b). Contraspecific circuits, on the other hand, have lower
accuracy for difficult stimuli. In addition, contraspecific circuits have a stimulus independent rate of trial
failure attributable to trials where the firing rates of choice-selective populations separate prior to the
stimulus onset (Fig. 3b), highlighting how these circuits are primed for competitive dynamics. It is well
known that decision accuracy and reaction time are linked through the speed-accuracy trade-off, where
longer integration times lead to more accurate decisions22–24. Ipsispecific circuits could be more accurate
at the expense of speed, so we compared the average time it takes circuits to cross the decision threshold
for each stimulus strength as a proxy for reaction time. Ipsispecific circuits do indeed arrive at choices
more slowly than the less accurate contraspecific circuits (Fig. 3c). These differences in behavioral per-
formance indicate a speed versus accuracy trade-off which is mediated by the specificity of connections
between choice-selective populations in the circuit. These performance outcomes again highlight the
roles enhanced by ipsispecific and contraspecific inhibition: the contraspeicific motif primes a circuit for
competition, whereas the ipsispecific motif promotes stability lengthening integration times.

We can understand the speed-accuracy trade-off between ipsi- and contraspecific circuits by an-
alyzing the dynamics around the saddle point. Differences in these dynamics are seen by compar-
ing single-trial trajectories of ipsi-, non-, and contrapecific circuits in response to the neutral stimulus
(Fig. 3d). At the trial start, both choice-selective populations are symmetrically activated and the trajec-
tory moves along the stable manifold toward the saddle point. Eventually, the circuit activity deviates to a
choice attractor after approaching the saddle. Contra- and ipsispecific circuits differ in both how far along
the stable manifold the activity progresses and how quickly it moves toward the choice attractor once
it deviates. We can estimate how quickly the dynamics will leave the neighborhood of the saddle point
with the time-constant τslow, which is the time-constant of dynamics moving along the unstable manifold
of the saddle point4. Changing the circuit motif from contraspecific to ipsispecific by increasing ΣEIΣIE

leads to an increase in τslow (Fig. 3e) and slowing down the pace of decisions (Fig. 3f). The divergence
of τslow indicates that ipsispecific inhibition stabilizes the saddle point until at high ΣEIΣIE a bifurcation
occurs and the saddle point becomes an attractor with a symmetric high activity state (Fig. 3g). This bi-
furcation leads to the system stabilizing in a state where firing rates of two choice-selective populations
do not sufficiently separate on neutral and difficult stimuli trials, a state where the circuit fails to produce
a decision. Easy stimuli impose a stronger asymmetry on the phase plane4 allowing circuits with highly
ipsispecific inhibition to make choices on easy trials (Fig. S2).

Strong ipsispecific inhibition destabilizes working memory. Persistence of the decision after stimu-
lus offset allows for a choice readout to be made even after a significant delay and is a hallmark of good
decision-making in the circuit (Fig. 1d). Contraspecific and nonspecific circuits maintain a difference in
excitatory firing rates of at least 15 Hz for a very long time following stimulus offset, whereas ipsispecific
circuits exhibit a degradation of the choice readout (Fig. 4a). This behavior can be linked to the phase
plane of the unstimulated circuit. Working memory is supported by two choice attractors that are sepa-
rated by saddle points from the attractor with symmetric low activity state. The separation between the
working memory attractors and the saddle points is smaller for more ipsispecific circuits (Fig. 4b). For
highly ipsispecific circuits, working memory attractors are extinguished after merging with the saddle
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points (Fig. 4b).

Inhibitory choice selectivity in trained recurrent neural networks. So far, we used the mean-field
approach to establish that choice-selective inhibition supports the function of decision-making circuits by
enhancing a competitive or stabilizing role. Next, we wanted to test whether this result holds broadly by
using another class of decision-making network models. We therefore trained excitatory-inhibitory re-
current neural networks (RNNs) to perform a decision-making task25 and then tested whether inhibitory
choice-selectivity regularly emerges in these networks after training and whether the dependence be-
tween the excitatory and inhibitory specificity aligns with the two roles for inhibition. We used RNNs
with 100 excitatory and 25 inhibitory units (Fig. 5a). Two input streams projected to all excitatory units
through input weights. Two output variables were calculated as a weighted sum of excitatory unit activ-
ity. We trained RNNs to perform an identical decision-making task as the mean-field circuits by raising
an output variable which corresponds to the input stream with a higher mean value. Networks were
trained by back-propagation through time to minimize the mean squared error between the network out-
puts and predefined targets. For a given trial, a choice was recorded when the output variables became
separated by a fixed threshold set to 0.25. Trials were considered invalid if the outputs separated prior
to the stimulus, failed to maintain separation after stimulus offset, or separation was never achieved. We
trained networks until the correct choice was made on 85% of trials in a 200 trial epoch (counting invalid
trials as incorrect). One hundred and fifty networks reached this training threshold in 10, 4343 ± 9, 264

(mean± s.t.d.) trials (Fig. 5b). Networks performed the task well, making errors and failing to complete
trails only for difficult stimuli (Fig. 5c). Trained networks also took longer to make decisions when
presented with a difficult stimulus, similarly to mean-field circuits (Fig. S3).

We determined whether inhibitory neurons in these RNNs were choice selective. We classified
recurrent units as choice selective using receiver operator characteristic (ROC) analysis (Methods)21. We
constructed ROC curves by decoding network choice from a unit’s activity on the time-step following
stimulus offset. To identify which units significantly modulated their firing rate to reflect choice, we
compared the area under the ROC curve (AUCROC) to a shuffle distribution generated from randomized
trial labels (two-sided permutation test, p < 0.05). Units that were identified as choice selective increased
activation following the onset of a stimulus corresponding to their preferred choice (Fig. 5d). Inhibitory
units had overall higher choice selectivity than excitatory units, as measured by the selectivity index
|AUCROC − 0.5| that can range from 0 to 0.5 (Fig. 5e, inhibitory 0.23 ± 0.17, excitatory 0.12 ± 0.16;
mean ± s.t.d.; Wilcoxon rank-sum test p < 10−10). Also, the proportion of significantly selective units
was higher for inhibitory than excitatory units (Fig. 5f, inhibitory 0.87 ± 0.07, excitatory 0.72 ± 0.06;
mean ± s.t.d.; Wilcoxon Rank-Sum test p < 10−10). Thus, inhibitory unit activity contained overall
more choice information than excitatory unit activity despite the fact that only excitatory units received
stimulus input.

Excitatory specificity aligns with ispi- and contraspecific inhibitory motifs in RNNs. Based on our
mean-field model, we know that for choice-selective inhibition to impact circuit function, the connections
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from inhibitory to excitatory populations must be specific. Therefore, after identifying choice-selective
units in RNNs, we sought to determine whether the connection specificity of excitatory-excitatory and
excitatory-inhibitory pairs followed the relationship predicted by the mean-field model (Fig. 2b). To
analyze the specificity of connections between choice-selective populations in the RNNs, we estimated
the specificity parameter Σ from the weights of trained RNNs defined in the same way as for the mean-
field model (Methods). Trained networks consistently had strong excitatory-excitatory (ΣEE = 0.59 ±
0.07) and excitatory-inhibitory (ΣEI = 0.39±0.06) specificity (Fig. 5g). This result is consistent with the
constraint that inhibitory units inherit stimulus information from excitatory units to be choice or stimulus
selective. Inhibitory-excitatory connections were nonspecific on average (ΣIE = 3.6 × 10−3 ± 0.03)

but their distribution showed both ipsispecific and contraspecific motifs. Unlike our mean-field model,
specific connections could also emerge between inhibitory-inhibitory units during the training process
in RNNs. Inhibitory-inhibitory connections were nonspecific on average with higher variation than
inhibitory-excitatory connections (ΣII = −5.0 × 10 − 3 ± 0.06). Confirming the trend predicted by
the mean-field model, excitatory specificity ΣEE was correlated with the inhibitory specificity index
ΣEIΣIE , where networks with stronger recurrent excitation were ipsispecific and networks with weaker
recurrent excitation were contraspecific (Pearson’s r = 0.53, p < 10−10; Fig. 5h). When comparing the
connection classes individually, we found positive correlations between excitatory-excitatory, excitatory-
inhibitory, and inhibitory-excitatory specificity (Fig. 5i). Inhibitory-inhibitory connection specificity
was not significantly correlated with any other connection class. The higher variance and negligible
correlation with other connection classes suggest that the specificity of inhibitory-inhibitory connections
was unconstrained in these networks. These results show that RNNs utilize choice selective inhibition to
compensate for variation in excitatory-excitatory specificity.

To further test the relationship between the excitatory and inhibitory specificity, we trained addi-
tional sets of RNNs with higher or lower excitability of excitatory units. In the mean-field model, lower
(higher) excitatory gain can be compensated by either an increase (decrease) in excitatory connection
specificity or by strengthening of the contraspecific (ipsispecific) motif. Accordingly, we expect that
changing the activation function slope of the excitatory units in RNNs should either shift the excitatory-
excitatory specificity against the direction of the gain change or shift the inhibitory specificity towards
contraselective (for lower slope) or ipsielective motif (for higher slope). We trained two additional sets
of networks with hypoexcitable (slope 0.5) or hyperexcitable (slope 1.5) excitatory units. Changing the
excitability of excitatory units led to large shifts in ΣEE without changing the distribution of inhibitory
specificity (Fig. S4). In these networks, ΣEE and ΣEIΣIE were still correlated, with higher ΣEE leading to
higher ΣEIΣIE. These results indicate that excitatory-excitatory specificity is a higher leverage parame-
ter that RNNs use as the most effective path to compensate for changes in the excitability of excitatory
units. This observation is consistent with the effect of changes in ΣEE on the dynamics in the mean-field
model. For both reaction-time and τslow, changes in ΣEE are far more effective than changes in inhibitory
specificity (Fig. S6). In both the mean-field and RNN models, excitatory-excitatory specificity has a
larger effect than inhibitory specificity and is the main lever circuits use to compensate for changes in
neural parameters.
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Perturbing inhibitory neuron activity highlights two roles for inhibition in decision making. Using
the mean-filed and RNN models, we established how contra- and ipsispecific inhibitory motifs enhance
two different roles for inhibition in decision making circuits. To further probe these roles, we next
considered how circuits respond to perturbations of inhibitory neuron activity. We used perturbations
that equally targeted all inhibitory neurons irrespective of their choice selectivity by driving them with
a nonspecific input ∆ν0,I (Fig. 6a). Such perturbations could be realized in optogenetic experiments. In
circuits where the competitive role of inhibition dominates, we expect that enhancing inhibitory activity
should speed up dynamics whereas suppressing inhibition should slow them down (Fig. 6b). Vice versa,
in circuits where the stabilizing role of inhibition dominates, we expect that enhancing inhibitory activity
should slow dynamics down and suppressing inhibition should speed them up (Fig. 6b). Because τslow

provides a readily available estimate of the pace of dynamics in the mean-field model, we calculated τslow

for varying nonspecific input to inhibitory neurons ν0,I. We found that depending on the baseline level
of inhibitiory activity both regimes are possible in the mean-field circuit: one where competitive role
dominates and one where stabilizing role dominates (Fig. 6c). Around a low baseline value of inhibitory
activity (ν0,I = 11.5 in Fig. 6c), contra-, ipsi-, and nonspecific circuits respond to perturbations similarly,
such that enhancing inhibition (∆ν0,I > 0) leads to a decrease in τslow, i.e. faster dynamics. Around
a high baseline value of inhibitory activity (ν0,I = 14 in Fig. 6c), all circuits respond in the opposite
way, such that enhancing inhibition increases τslow. These two regimes–a low inhibition and a high
inhibition regime–differ in which role of inhibition dominates: competitive or stabilizing, respectively.
The inhibitory motif (contra-, non-, or ipsispecific) further shifts this emphasis within the constraints
of each regime. These regimes can be identified via perturbations by characterizing how the circuit
dynamics respond to changes in inhibitory tone.

To confirm the existence of competitive and stabilizing regimes, we perturbed the mean-field cir-
cuits around the low and high baseline values of the inhibitory activity. We enhanced or suppressed
inhibition during the stimulus period of a trial and measured changes in the circuit performance. We
constructed a set of metrics to quantify changes in the fraction of completed trials, reaction time, and
choice accuracy relative to the unperturbed circuit for all stimulus strength. The effects of these pertur-
bations followed the predictions from the calculation of τslow (Fig. 6d-k). Enhancing inhibition decreased
reaction time in the low inhibition regime, but increased reaction time in the high inhibition regime (cf.
Fig. 6d,f and h,j). Consistent with the slowing effects of the perturbation, circuits in the high inhibition
regime failed more often to complete trials (Fig. 6e) and became more accurate (Fig. 6g) when inhibition
was enhanced. Circuits in the low inhibition regime showed the opposite behavior (Fig. 6h-k). Thus, by
perturbing inhibitory neuron activity we can determine whether the competitive or stabilizing inhibition
dominates in a circuit.

We then delivered enhancing or suppressing perturbations to inhibitory units in trained RNNs
during the stimulus period to identify in which inhibitory regime these networks operate. Enhancing
inhibition increased reaction times, reduced the fraction of completed trials, and increased accuracy,
consistent with these RNNs operating in the stabilizing inhibition regime (cf. Fig. 6h-k and l-o).
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Discussion

We showed that choice selectivity of inhibitory neurons can affect the function of decision making cir-
cuits by enhancing one of two roles for inhibition: facilitating competition or stabilizing recurrent excita-
tion. In the mean-field model, choice selective inhibition and specific connections from inhibitory to ex-
citatory populations broaden the parameter space of circuits that support decision-making. For the range
of excitatory connection specificities supporting both ipsispecific and contraspecific inhibitory circuits,
the speed and accuracy of decisions tightly depend on whether the ipsi- or contraspecific inhibitory motif
is present. Inhibitory choice selectivity also emerges in RNNs trained to perform a decision-making task,
and the specificity of excitatory and inhibitory connections within trained RNNs is correlated, consistent
with the mean-field model predictions. Perturbations suppressing or enhancing all inhibitory neurons
reveal the existence of two regimes in the mean-field model: (i) a low-inhibition regime where the com-
petitive role dominates, and (ii) a high-inhibition regime where stabilizing role dominates. In trained
RNNs, perturbations of all inhibitory neurons indicate that these networks operate in the stabilizing
inhibition regime.

Selective inhibition broadens the range of circuits capable of decision-making. Decision-making
circuits with non-selective inhibition exist only within a narrow range of excitatory-excitatory connec-
tion specificity. When inhibitory neurons inherit choice-selectivity from excitatory neurons and also
project to excitatory neurons via specific connections, a broad range of circuit configurations can support
decision-making. In circuits capable of decision-making, the correlation between the specificity of exci-
tatory (ΣEE) and inhibitory connections (ΣEIΣIE) reveals how the contra- and ipsispecific motifs enhance
one of two roles for inhibition: facilitate competition between populations coding for opposite choices
or stabilize amplification driven by strongly recurrent excitation. When ΣEE is low and excitatory popu-
lations alone cannot drive selective activation, contraspecific inhibitory motifs support decision-making
by maximizing competition. Conversely, when ΣEE is high and excitatory self amplification becomes
unstable, ipsispecific inhibitory motifs stabilize firing rates.

The categorical output of decision-making circuits is thought to be driven by strongly selective
excitatory to excitatory selectivity with the evidence accumulation based on amplification through N-
Methyl-D-Aspartate receptors2, 4. In these models the specificity of excitatory connections is sufficient
to drive competition and selective activation. We found that deviations from a narrow range of ΣEE

require complementary inhibitory circuitry. When recurrent excitatory specificity is low, contraspecific
inhibition is required to form the attractors needed for decision-making computation. This mechanism
was described in circuits where excitatory populations have limited capacity for amplification, such
as the midbrain circuit in the owl26. On the other hand, when recurrent excitatory specificity is high,
the strong excitatory feedback amplification needs matching ipsispecific inhibition to stabilize the cir-
cuit. This mode of inhibitory selectivity is known to improve stability and robustness of a circuit to
perturbations17, 27.
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We found a similar relationship between excitatory and inhibitory connection specificity in RNNs
suggesting the balance between competitive and stabilizing inhibition is a general principle in E-I net-
works. While specific connections between excitatory and inhibitory units were clearly important for the
decision-making function in our networks, connections between inhibitory units appeared unconstrained.
RNNs are increasingly often used to develop theories of how neural circuits perform computations25, 28, 29.
Some studies trained RNNs under the constraint that units have either exclusively excitatory or exclu-
sively inhibitory outputs (Dale’s law)25, 30. Studies of E-I RNNs which focus on the impact of inhibitory
connections show that specificity of inhibitory-inhibitory connections can be critical to circuit function29.
The apparent difference in the importance of inhibitory-inhibitory selectivity between our networks and
previous work could result from differences in the training procedures31. We observed a large impact of
RNN training hyperparameters on the emerging circuit structure. Future work is needed to understand
how details of training influence the emerging circuit structure and computations performed by RNNs.

Selective inhibition may be a general feature of neural circuits. Our results show that selective inhi-
bition can have a marked effect on the function of neural circuits. Many models of categorical decision-
making rely on a nonspecific pool of inhibitory neurons to enforce winner-take-all competition between
excitatory neurons2, 3. While these models reproduce the dynamics of decision-making circuits they do
not fully account for the diversity of interneurons within the cortex. Cortical inhibitory neurons show
selective activation in many modalities including primary sensory13, 17, 32, 33 and association areas19–21.
Moreover, choice-selectivity of parietal inhibitory neurons is equal to that of excitatory neurons during
an audio-visual discrimination task21.

In the mean-field model, we assume that choice selectivity of inhibitory neurons arises from spe-
cific connections from choice-selective excitatory neurons (ΣEI in our model). While it is possible that
choice selectivity could arise from external inputs to interneurons34 or even from random connections
between excitatory and inhibitory neurons35, most circuit models assume stimulus information is ex-
clusively provided by inputs to excitatory neurons. Inhibitory choice-selectivity also emerged in our
RNNs trained to perform 2AFC task25. In our RNNs, inhibitory units can only inherit stimulus or choice
information through specific connections from excitatory populations, unlike in other trained RNNs29.

Impact of inhibitory circuitry on decision-making performance. The core computation of the model
is the selective activation of a single excitatory population when the stimulus is presented and a mech-
anism to integrate stimulus information before diverting to a choice attractor. By enhancing stability,
ipsispecific circuits lengthen the period when a circuit can maintain mutual activation of populations en-
coding competing choices, thus increasing the integration window which leads to more accurate stimulus
classifications. Contraspecific circuits, primed for competition, minimize the integration period which
increases error frequency.

In attractor networks, modulation of τslow for controlling the speed and accuracy of decisions can
arise from other mechanisms than inhibitory output specificity. In the model with nonspecific inhibition,
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τslow increases with stimulus difficulty4 and can be also modulated via top-down excitation36. A key
difference between controlling τslow via inhibitory motif versus top-down excitation is that the location
of the saddle point is unaffected by ΣIE whereas increasing top-down excitation shifts the saddle towards
the origin, effectively acting as a collapsing decision-bound36. Top-down excitation can be adjusted
rapidly from one trial to the next to match the decision’s speed and accuracy to the task demands. Could
the inhibitory motif also be dynamically changed to meet changing task requirements? Modulation of
the speed-accuracy trade-off through changes of the inhibitory motif may be mediated by activation
or inactivation of inhibitory subpopulations connected in either a contraspecific or ipsispecific pattern
(representing a shift in ΣIE for the circuit as a whole).

Selective neuromodulatory control of genetically identifiable inhibitory subtypes may provide for
control of inhibitory motifs. Inhibitory subtypes have distinct connectivity patterns to neighboring exci-
tatory neurons: fast-spiking cells have far more reciprocal connections to excitatory neurons than adapt-
ing interneurons16. A shift in output specificity could be mediated through top-down activation of in-
hibitory subnetworks or through neuromodulation of distinct inhibitory subtypes such as PV+, SOM+,
or VIP+. Acetylcholine has layer-dependent effects on the responsiveness of both regular spiking and
fast spiking neurons in the visual cortex, which could differentially activate distinct inhibitory motifs
on behaviorally relevant timescales37–39. Additionally, acetylcholine can reduce the release of inhibitory
neurotransmitters in cortical neurons40, thus directly affecting inhibitory connectivity.

Two roles for inhibition in decision-making. We show that choice selective inhibition can support
one of two known roles for inhibition in decision-making circuits: facilitating competition or stabilizing
excitatory feedback. Both these roles are simultaneously fulfilled by inhibition in any decision making
circuit. By enhancing one of these roles, different inhibitory motifs expand the range of excitatory speci-
ficity which can support decision-making. The impact of circuit motif on the speed-accuracy trade-off
reinforces this idea, as contraspecific inhibition promotes competition making decisions faster, whereas
ipsispecific inhibition promotes stability slowing down decisions. Enhancing activity of all inhibitory
neurons can shift the circuit from a regime where the competitive role dominates to a regime where the
stabilizing role dominates regardless of which inhibitory motif is present. This echos results which find
shifts in E/I balance can induce leaky or unstable integration41. The stabilizing and competitive regimes
can be differentiated by the behavioral response to perturbations of inhibitory activity. Perturbations dur-
ing reaction time tasks should reveal which inhibitory role is dominant in vivo. The balance of these two
roles is critical for circuits to perform decision tasks, and shifts in this balance could align dynamics with
changing task requirements. More experimental work is needed to uncover how inhibitory subnetworks
strike this balance in the cortex. Specifically, whether functional selectivity is constrained to certain
inhibitory subtypes and whether inhibitory neurons are recruited to perform a task in a state dependent
manner are important questions for future work.
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Methods

Mean-field model. We model the mean-field activity of the circuit through two variables representing
the activations of N-methyl-D-aspartate (NMDA) conductances (in terms of fraction of channels open)
onto two choice-selective excitatory populations4. The dynamics of the activation variable for population
i (i ∈ {1, 2}) are governed by:

dSi
dt

=
−Si
τNMDA

+ (1− Si)γΦ(xi), (1)

where τNMDA = 0.1 s and γ = 0.641. The non-linear function Φ transforms input current xi [nA] into
firing rate:

Φ(xi) =
axi − b

1− e−d(axi−b)
, (2)

where a = 270 nC−1, b = 108 Hz, and d = 0.154 s. The input to population i is:

xi = α1(Σ
EE,ΣEI ,ΣIE)Si + α2(Σ

EE,ΣEI ,ΣIE)Sj + I0,i(Σ
EE,ΣEI ,ΣIE) + Istim,i + Iη,i, (3)

where index j refers to the other excitatory population. The complexity of the circuit structure, including
interactions between all selective and nonselective excitatory and inhibitory neurons, is collapsed into
two-dimensional model through the variables α1, α2, I0,i as described in the section Circuit structure
below.

The stimulus Istim,i is defined as an increase in the rate of external excitatory inputs to choice-
selective excitatory neurons of magnitude µ. We define the strength of evidence for one versus the
other choice as stimulus coherence c, which can range between −100% and 100%. For population i the
stimulus is then defined as:

Istim,i(t, µ, c) =


JAMPA,extµ(1− c

100
) tstim,on < t < tstim,off, i = 1,

JAMPA,extµ(1 + c
100

) tstim,on < t < tstim,off, i = 2,

0 otherwise .

(4)

For all cases, we set µ to 40 Hz. Noise is introduced through the inputs Iη,i to the two excitatory popula-
tions filtered through fast synaptic activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors:

dIη,i
dt

= − Iη,i
τAMPA

+
η(t)
√
τAMPA

, (5)

where τAMPA is 0.002 s and η(t) is a white Gaussian noise with zero mean and standard deviation 0.02 nA.
We performed numerical simulations using the Euler method with a 2 ms time step.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477635
http://creativecommons.org/licenses/by/4.0/


Circuit structure. We derived two-dimensional mean-field equations, which model the dynamics of the
entire circuit through the effective interaction strengths α1, α2 between the two excitatory populations,
and the background currents I0,i. This reduced model is based on approximating the firing rates of all
three inhibitory populations (two choice-selective and one nonselective) and of the nonselective exci-
tatory population as linear functions of their inputs. Thus, the firing rates of these populations change
linearly in response to changes in the firing rates of the two explicitly modeled excitatory populations
E1 and E2

4. We define α1 as a term which describes how activity S1(2) from the excitatory population
E1(2) filters through the circuit (i.e. via E2(1),E0, I0, I1, I2, and feeding back onto itself) to impact its own
firing rate. Similarly, α2 describes how the activity S1(2) filters through the circuit to impact the firing
rate of the opposite excitatory population. I0,i describes the net input from the population activity that
does not depend on the activity of E1 or E2. Thus, this model accounts for interactions between all six
populations with only two dynamical system equations Eq. (1).

We parametrized connection specificity between choice-selective populations by ΣJK between
presynaptic population J and postsynaptic population K. The index J,K ∈ {E,I} defines neuron type
as excitatory or inhibitory. We translate ΣJK to a synaptic weight under a constraint that the total input
to each population remains constant for all values of ΣJK . To this end, we defined an intermediate
weight ŵJK = NswJ/(Ns + ΣJK(2−Ns)), where Ns = 2 is the number of competing choice-selective
populations and wE = wI = 1. We then set connection weights between populations with the same
choice selectivity to w+

JK = ŵJK + ΣJKŵJK and between populations with opposite selectivity to
w−
JK = ŵJK − ΣJKŵJK . We can rewrite Σ in terms of w+ and w− as:

Σ =
w+ − w−

w+ + w− . (6)

Connections to and from non-selective neurons were held at wJ = 1. This definition enforces that all
neurons receive the same total input weight for any value of ΣJK . We set the selectivity parameter
ΣEE = 0.32 as in Ref.2, 4, except in Figs. 1,2. We set ΣEI = 0.25 except in Figs. 1,2.

The effective interaction strengths α1 describes the recurrent feedback from an excitatory pop-
ulation’s activity onto itself fed through other populations in the circuit. This term consists of four
components α1 = λ1(α1a + α1b + α1c + α1d):

α1a = fNEw
+
EEJNMDA,eff,E, (7)

α1b =
1

κgI2
(cIfNEw

+
EIJNMDA,eff,I)(fw

+
IENIJGABA,EτGABA), (8)

α1c =
1

κgI2
(cIfNEw

−
EIJNMDA,eff,I)(fw

−
IENIJGABA,EτGABA), (9)

α1d =
1

κgI2
(cIfNEwEJNMDA,eff,I)(fwINIJGABA,EτGABA). (10)

These components of α1 account for the effect of an excitatory population’s activity on its own activity
filtered via (a) direct self-coupling, (b) the activity of the inhibitory population with the same choice
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selectivity, (c) the activity of the inhibitory population with the opposite choice selectivity, and (d) the
activity of nonselective inhibitory neurons. Similarly, α2 describes the influence of one excitatory pop-
ulation’s activity onto the other fed through all other populations in the circuit and also consists of four
components α2 = λ2(α2a + α2b + α2c + α2d):

α2a = fNEw
−
EEJNMDA,eff,E, (11)

α2b =
1

κgI2
(cIfNEw

−
EIJNMDA,eff,I)(fw

+
IENIJGABA,EτGABA), (12)

α2c =
1

κgI2
(cIfNEw

+
EIJNMDA,eff,I)(fw

−
IENIJGABA,EτGABA), (13)

α2d =
1

κgI2
(cIfNEwEJNMDA,eff,I)(fwINIJGABA,EτGABA). (14)

The components of α2 account for the effect on an excitatory population’s activity from the oppositely
selective excitatory population’s activity filtered via (a) direct coupling, (b) the activity of the inhibitory
population with the same selectivity, (c) the activity of the inhibitory population with the opposite se-
lectivity, and (d) the activity of nonselective inhibitory neurons. The effects of nonselective neurons and
external background inputs are described by I0,i = λI(I0,ia + I0,ib + I0,ic + I0,id):

I0,ia = (1−Nsf)NEwEJNMDA,eff,Eψ3,in, (15)

I0,ib = IAMPA,ext,i − (1−Nsf)wINIJGABA,EτGABA(ν0,I + (cII0,I − Im,I)/gI2)/κ, (16)

I0,ic = −fw+
IENIJGABA,EτGABA(ν0,I + (cII0,I − Im,I)/gI2)/κ, (17)

I0,id = −fw−
IENIJGABA,EτGABA(ν0,I + (cII0,I − Im,I)/gI2)/κ, (18)

where:

IAMPA,ext,i = JAMPA,ext,EτAMPANextνext, (19)

I0,I = IAMPA,ext,I + JNMDA,eff,IwE(1−Nsf)NEψ3,in, (20)

IAMPA,ext,I = JAMPA,ext,IτAMPAνext, (21)

ψ3,in =
γτNMDAν3,in

1 + γτNMDAν3,in
. (22)

These terms account for the input to the excitatory population Ei from the nonselective excitatory pop-
ulation filtered via (a) direct coupling, (b) the nonselective inhibitory population, (c) the inhibitory pop-
ulation with the same choice selectivity, (d) the inhibitory population with the opposite selectivity. The
term ψ accounts for the NMDA activation of nonselective excitatory neurons. We calculated the firing
rate of inhibitory populations as ΦI,1(2) = α1,IS1(2) + α2,IS2(1) + I0,II, where:

α1,I = (cIfNEw
+
EIJNMDAeff,I)/gI2, (23)

α2,I = (cIfNEw
−
EIJNMDAeff,I)/gI2, (24)

I0,II = ν0,I + (cII0,I − Im,I)/gI2. (25)

All parameter values are provided in Table 1.
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Phase plane and bifurcation analysis. We analyzed the mean-field model to find null-clines and fixed
points using MatLab’s fsolve function with the Levenberg-Marquant algorithm and a tolerance of 1 ×
10−6. To identify the stability of the fixed points, we computed the Jacobian matrix analytically and
found its eigenvalues numerically using the eig() function in MatLab. For the saddle points, τslow is the
positive eigenvalue of the Jacobian matrix.

Recurrent neural network models. Recurrent neural networks (RNNs) were composed of 100 excita-
tory and 25 inhibitory units. The dynamics of these networks were governed by the equations:

xE(t) = (1− αr)xE(t− 1) + αr(W
EErE(t− 1)−WIErI(t− 1) + Winxin(t) + σE

r (t)), (26)

xI(t) = (1− αr)xI(t− 1) + αr(W
EIrE(t− 1)−WIIrI(t− 1) + σI

r(t)), (27)

xin(t) = (1− αin)xin(t− 1) + αinu(t), (28)

rE(I)(t) = sE(I)[xE(I)]+, (29)

z(t) = WoutrE(t). (30)

Here xE and xI are the vectors of activation variables for excitatory and inhibitory units, respectively. rE

and rI are the corresponding activities after applying the rectified linear (RELU) nonlinearity sE(I)[ ]+,
where sE(I) sets the excitability of the excitatory or inhibitory units. xin is the input activation and u(t) is
the instantaneous input. The time constants of recurrent units and inputs are set by αr and αin. Weights
within and between units are housed in the matricies WEE, WEI, WIE, WII. Only the excitatory units
receive projections from the input and project to the output through Win and Wout, respectively.

RNNs received two input streams u(t) = [u1(t), u2(t)] representing sensory evidence:

ui(t, c) =


u0 + (1 + µ c

100
) + σin,i(t) tstim,on < t < tstim,off, i = 1

u0 + (1− µ c
100

) + σin,i(t) tstim,on < t < tstim,off, i = 2

u0 + σin,i(t) otherwise .

(31)

The stimulus period is 21 time steps and tstim,on and tstim,off are uniquely chosen for each trial. The
stimulus magnitude, µ = 3.2, is fixed and stimulus difficulty is set by c which can range between -20
and 20.

The recurrent and input noise are modeled by the elements of σE(I)
r (t) and σin(t) that are sampled

from a Gaussian distribution. We ensure that each element has a standard deviation σ0,r and σ0,in via
scaling:

σE(I)
r,i (t) =

√
2αrσ0,rN (0, 1), (32)

σin,i(t) =

√
2

αin
σ0,inN (0, 1). (33)

RNN training. The goal of RNN training is to minimize the difference between the output z (Ntrial ×
Ntime × Nout) and targets T (Ntrial × Ntime × Nout). We set the entries in T to the baseline value of 0.2
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and, following a stimulus onset, raise the entries to 1 for the output corresponding to the correct choice.
This target is designed to train the network to remain in a low activity state until stimulated and elevate
the correct output in response to a stimulus. Half of training trails (fcatch = 0.5) were catch trials, on
which no stimulus was presented and target values remained at 0.2 throughout the trial. The training
batch consisted of Ntrial = 200 trials which were randomly generated every training epoch. Within the
training batch, noncatch trials are equally divided between possible choices and the difficulty is randomly
sampled.

Recurrent network weights were randomly initialized from a Gamma distribution with a shape
wµ = 0.0375 and scale wσ = 0.5 for excitatory weights WEE,WEI, and γwµ and scale wσ for inhibitory
weights WIE,WII. γ = NEsE/NIsI scales the strength of inhibitory connections to offset for differ-
ences in the number and excitability between excitatory and inhibitory units. Input and output weights
Win,Wout were randomly initialized from a uniform distribution and then values were normalized so the
weights associated each input and output summed to 1 across units. All weights were trained via back
propagation through time to minimize the loss function:

L =
1

Ntrial

1

Ntime

Ntrial∑
i=1

Ntime∑
t=1

(
1

Nout

Nout∑
o=1

Mi,t(Ti,t,o − zi,t,o)2 +
λx

Ne +Ni

Ne+Ni∑
n=1

x2i,t,n

)

+
λw

(Ne +Ni)2

Ne+Ni∑
m,l=1

|Wml| . (34)

Here x is a concatenation of xE and xI (Ntrial × Ntime × (NE + NI)), and W is a concatenation of
WEE ,WEI ,WIE , and WII (NE×NI). To encourage the network to integrate the stimulus for extended
time, we used a mask M (Ntrial ×Ntime), where entries were zero during the stimulus period so that time
points during the stimulus were not considered when calculating the error term of the loss function. On
catch trials, all entries of M were set to 1. The hyperparameter λx = 0.1 controls the amount of L2
regularization intended to minimize the activation of each unit. The hyperparameter λw = 1.0 controls
the amount of L1 regularization applied to weights. We updated the weights by stochastic gradient
descent using the ADAM optimizer in PyTorch with a learning rate 0.01. During training, the norm of
the gradient was clipped at 1.

To maintain the identity of excitatory and inhibitory units and to keep the input and output weights
positive, all elements of WEE , WEI , WIE , WII , Win, and Wout which are negative were set to 0 after
every training step. We prevent self-connections by elementwise multiplying WEE and WII by (1− I),
where I is the identity matrix and 1 is a matrix of 1s, after every training step.

We terminated RNN training based on its task performance. We tested RNN performance on a
validation batch of trials after every training epoch. Each validation batch consisted of 100 trials with
stimuli ranging between -20 and 20 in steps of 2. The network registered a decision when the difference
between the output variables was above a threshold of 0.25. Trials were considered valid if at least 75%
of the prestimulus period was below the decision threshold and at least 50% of the post stimulus period
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was above the decision threshold. Overall performance was measured as the fraction of correct choices
out of all trials except for the ambiguous case where stimulus was equal to 0. We compute the accuracy
and the psychometric function only using valid trials. We terminated training when a network’s overall
performance reached 85%. RNN parameter values are shown in Table 2.

Measuring choice selectivity of RNN units. After training, we analyzed the activity of excitatory and
inhibitory RNN units to quantify their choice selectivity. Our metric is based on the ability to decode the
choice registered by the network based on the activity of the unit at the time point immediately following
stimulus offset21. For each unit, we computed the receiver operating characteristic (ROC) using the roc
function and the area under the ROC curve (AUCROC) using the trapz function in Matlab. A unit with
the same activity for either choice will have an AUCROC equal to 0.5, thus our choice selectivity measure
was defined by AUCROC − 0.5. To identify significantly selective units, we compared AUCROC to a
shuffled distribution generated from that unit’s activity by shuffling the choice outcomes 150 times. We
considered units to be choice selective if their AUCROC fell within the lowest or highest 2.5% percentiles
of the shuffled AUCROC distribution.

Measuring connection specificity Σ in RNNs. We measured the specificity of connections between
choice selective units in RNNs. For each connection class (EE, EI, IE, and II), we computed 〈w+〉 and
〈w−〉, the mean strength of the weights between significantly selective units with, respectively, the same
and opposite selectivity. Then we computed Σ as:

Σ =
〈w+〉 − 〈w−〉
〈w+〉+ 〈w−〉

(35)

This expression is identical to the Σ used in the mean-field model. To assess significance of correlations
between Σ for the 4 connection classes, we computed a shuffled distribution constructed by shuffling the
network labels 5,000 times.

Perturbing inhibitory populations. We perturbed activity of inhibitory neurons by delivering the same
constant input to all inhibitory neurons during the stimulus period. In the mean-field model, we modified
the parameter ν0,I by a small amount within the range [−0.5, 0.5] around a baseline. We used two
baseline values of ν0,I : 11.5 for low-inhibitory regime and 14 for high-inhibitory regime. In RNNs,
we delivered perturbations in a similar manner, where we delivered a constant input within the range
∈ [−1, 1] during the stimulus period.
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Table 1. Mean-field model parameters.

Parameter Value Description
Mean-field physiological constants

NE 1600 Number of excitatory neurons
NI 400 Number of inhibitory neurons
Next 800 Number of external inputs
Ns 2 Number of possible choices/ choice selective populations

τNMDA (s) 0.1 Slow excitatory synaptic time constant
τAMPA (s) 0.002 Fast excitatory synaptic time constant
τGABA (s) 0.005 Inhibitory synaptic time constant

γ 0.641 Firing-rate to NMDA activation scaling factor
ImI (Hz) 177 Inhibitory f-I curve intercept
cI (Hz/nA) 615 Inhibitory f-I curve slope

gI2 2 Inhibitory f-I curve scaling factor
ν0,I (Hz) ∈ [9, 16] Rate of background input to inhibitory neurons
νext (Hz) 3 Rate of background input to selective excitatory neurons
ν3,in (Hz) 2 Rate of background input to non-selective excitatory neurons
VE (mV) -53.4 Excitatory neuron resting potential
VI (mV) -52.1 Excitatory neuron resting potential
EE (mV) 0.0 Excitatory synapse reversal potential
EI (mV) -70.0 Inhibitory synapse reversal potential

gE,rec,NMDA (µS) 1.95× 10−4 Maximum recurrent NMDA conductance, excitatory neurons
gI,rec,NMDA (µS) 1.02× 10−4 Maximum recurrent NMDA conductance, inhibitory neurons
gE,rec,GABA (µS) 0.130 Maximum recurrent GABA conductance, excitatory neurons
gI,rec,GABA (µS) 0.0084 Maximum recurrent GABA conductance, inhibitory neurons
gE,ext,AMPA (µS) 2.1× 10−3 Maximum external AMPA conductance, excitatory neurons
gI,ext,AMPA (µS) 1.62× 10−3 Maximum external AMPA conductance, inhibitory neurons
JAMPA,ext (nA/Hz) 5.2× 10−4 External stimulus current due to a single input event

λ1 1.6719 Scaling factor for α1

λ2 1.8844 Scaling factor for α2

λI 0.9229 Scaling factor for I0,i
Mean-field derived constants

κ 1 + cI
gI2
NIJGABA,IτGABA Linearized factor for inhibitory neurons

JGABA,E (nA) −gE,rec,GABA(EI − VE) Effective GABA current, excitatory neurons
JGABA,I (nA) −gI,rec,GABA(EI − VI) Effective GABA current, inhibitory neurons
JAMPA,ext,E (nA) gE,ext,AMPA(EE − VE) Effective AMPA current, excitatory neurons
JAMPA,ext,I (nA) gI,ext,AMPA(EE − VI) Effective AMPA current, inhibitory neurons
JNMDAeff,E (nA) gE,rec,NMDA(EE−VE)

1+ 1
3.57

e−0.062VE
Effective NMDA current, excitatory neurons

JNMDAeff,I (nA) gI,rec,NMDA(EE−VI)

1+ 1
3.57

e−0.062VI
Effective NMDA current, inhibitory neurons
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Table 2. Recurrent neural network parameters.

Parameter Value Description
RNN parameters

NE 100 Number of excitatory units
NI 25 Number of inhibitory units
Nin 2 Number of inputs
Nout 2 Number of outputs
Ntime 60 Number of time steps in a trial
αr 0.2 Recurrent unit time constant
αin 0.2 Input time constant
sE ∈ [0.5, 1.5] RELU slope, excitatory units
sI 1 RELU slope, inhibitory units
u0 0.2 Input baseline
µ 3.2 Stimulus magnitude
c ∈ [−20, 20] Stimulus strength
σ0,r 0.35 Recurrent noise level
σ0,in 0.05 Input noise level

RNN training parameters
Ntrial 200 Number of trials in a training epoch
fcatch 0.5 Fraction of training catch trials
λx 0.1 Hyperparameter for activation regularization
λw 1.0 Hyperparameter for weight regularization
wµ 0.0375 Initial weight distribution shape parameter
wσ 0.5 Initial weight distribution scale parameter
γ NEsE

NIsI
Inhibitory weight scaling factor
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Figure 1. A mean-field circuit model of decision making with choice-selective inhibition. (a) The circuit
diagram of the model with choice-selective excitatory and inhibitory populations. (b) The circuit model
includes three connection classes: excitatory-excitatory (EE), excitatory-inhibitory (EI), and inhibitory-
excitatory (IE). (c) The parameter Σ controls the specificity of connections between choice-selective pop-
ulations. The output connections preferentially target neurons with the same choice preference when Σ is
positive, and with the opposite choice preference when Σ is negative. (d) ΣEI controls inhibitory choice se-
lectivity. Firing rate of inhibitory populations for ΣEI = 0 (left), ΣEI = 0.05 (center), ΣEI = 0.25 (right) are
shown for an example trial with stimulus strength equal to 20. (e) Circuits report choices by elevating the
firing rate of one excitatory population. Example trials showing E1 (blue) and E2 (red) population activity
for stimulus strength equal to 20 (upper panel), and for stimulus strength equal to 0 on a completed (middle
panel) and invalid trial (lower panel). Grey shading indicates stimulation period. Numbers indicate activity
corresponding to fixed points in f. (f) Eight fixed points are required for decision-making dynamics in the
circuit: five in the unstimulated phase-plane (left) and three in the stimulated phase-plane (right, stimulus
strength is equal to 0). Lines show nullclines of E1 and E2 populations, black squares indicate fixed-point
attractors, and gray squares indicate saddle-points for a circuit with nonselective inhibition.
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Figure 2. Choice-selective inhibition expands the space of circuits supporting decision making. (a) The
volume in the selectivity parameter space where circuits have all fixed points necessary to support decision-
making. Color indicates the inhibitory selectivity index ΣEIΣIE. (b) For nonselective or nonspecific inhibition,
circuits that support decision-making exist only for a narrow range of ΣEE. If inhibition is selective and
specific, a broader range of ΣEE becomes possible. Inhibitory specificity needs to be complementary to
excitatory specificity, as reflected in the correlation between the inhibitory selectivity index and ΣEE for
circuits with all necessary fixed points. (c) With increasing inhibitory selectivity, a broader range of ΣEE

can support decision making, evident as a steeper slope of the region with all required fixed points (green,
good decision circuit). Panels show slices through the parameter space in a at ΣEI = 0.0 (left), ΣEI = 0.5
(center), ΣEI = 1.0 (right). Colored frames correspond to dots on the ΣEI axis in a. (d) When ΣEE is low
inhibition must be contraspecific (left) and when ΣEE is high inhibition must be ipsispecific (right). Slices
through the parameter space in a at ΣEE = 0.225 (left), ΣEE = 0.35 (center), ΣEE = 0.475 (right). Colored
frames correspond to dots on the ΣEE axis in a. Arrows indicate a sequential loss of fixed points described in
the text.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477635
http://creativecommons.org/licenses/by/4.0/


-20 0 20
Stimulus strength (a.u.)

0.75

1

Fr
ac

tio
n 

co
m

pl
et

ed
tri

al
s

b

-20 0 20
Stimulus strength (a.u.)

0

1

Pr
ob

ab
ilit

y 
ch

oi
ce

 1

a

-20 0 20
Stimulus strength (a.u.)

0.25

0.8

R
ea

ct
io

n 
tim

e 
(s

)

c

0 0.75
0

0.75

 E
2 
ac

tiv
ity

d

-0.07 0 0.07
0.15

0.27
e

0.15 0.27
0.25

0.45

R
ea

ct
io

n 
tim

e 
(s

)f

-0.25 0 0.25
0

0.75g

 E1 activity

 E
1 
ac

tiv
ity

-0.0625
0

0.0625

(s
)

(s)

Figure 3. Inhibitory circuit motifs mediate the speed-accuracy trade-off in decision-making. (a-c)
Contraspecific circuits are faster and less accurate, whereas ipsispecific circuits are slower and more accurate
than nonspecific circuits. Psychometric functions (a), probability of trial completion (b), and chronometric
functions (c) for circuits with different inhibitory motifs. (d) Contraspecific circuits deviate to a choice
attractor earlier and faster than ipsispecific circuits. Single-trial trajectories are shown for three circuits with
different inhibitory motifs, in 50 ms time steps (dots) for 0 stimulus strength. Noise is reduced by 50% for
illustration clarity. The decision threshold for each circuit is shown by the dashed line. Squares indicate
choice attractors, triangle indicates the saddle point. The stable (black) and unstable (red) manifolds of the
saddle point are shown. (e) As the circuit motif changes from contra- to ipsispecific, the time constant of
the unstable eigenvector of the saddle point τslow increases, indicating stabilization of dynamics and longer
integration times. (f) The time constant τslow is tightly correlated with reaction time (shown for stimulus
strength equal to 0). (g) The saddle point becomes an attractor for ipsispecific circuits with high ΣEIΣIE. The
bifurcation diagram for circuits driven by a stimulus of 0 strength shows the location of attractors (black solid
line) and saddle points (black dashed line). Dashed vertical lines correspond to examples in a-d. In all panels
ΣEE = 0.32 and ΣEI = 0.25.
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Figure 4. Strong ipsispecific inhibition destabilizes working memory attractors. (a) The probability
of maintaining a choice after stimulus offset is diminished in ipsispecific circuits. (b) For ipsispecific cir-
cuits with high ΣEIΣIE, working memory attractors are extinguished after merging with saddle points. The
bifurcation diagram is for the same circuits as in Fig. 3g but in the absence of stimulus.
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Figure 5. Inhibitory choice selectivity in trained recurrent neural networks. (a) RNNs are trained
to compare two inputs and indicate which has higher mean by elevating the corresponding output. RNNs
are composed of 100 excitatory and 25 inhibitory units. (b) We trained 150 RNNs to a consistent level
of performance. RNN performance improved gradually during training. We stopped the training when the
network performance reached 85% correct responses (grey dashed line). Lines show individual RNNs, color
gradient indicates the network’s rank to reach 85% performance. (c) Psychometric functions (upper panel)
and probability of trial completion (lower panel) for all trained RNNs (grey) and their average (red). (d)
Excitatory and inhibitory units in trained RNNs display choice selectivity. Traces show the activity of the
RNN outputs (left), two excitatory units (center), and two inhibitory units (right) on two example trials with
choice 1 (upper row, stimulus strength −20) and choice 2 (lower row, stimulus strength 20). Grey shading
indicates the stimulus period. (e) In trained RNNs, the overall choice selectivity is greater for inhibitory than
excitatory units. Distributions show the choice-selectivity index across all units from all networks. (f) In
trained RNNs, the fraction of units with significant choice selectivity is greater for inhibitory than excitatory
units. Distributions show the fraction of selective units across networks. (g) Trained RNNs show a range
of specificity parameters Σ for each connection class (colored lines - individual RNNs, black - mean ±
s.t.d. across networks). Color indicates networks sorted by ΣEE. (h) In trained RNNs, the specificity index
ΣEIΣIE is positively correlated with ΣEE. (i) In trained RNNs, excitatory-excitatory, excitatory-inhibitory, and
inhibitory-excitatory specificity are correlated, whereas inhibitory-inhibitory specificity is uncorrelated with
other connection classes. * indicates significant correlation.
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Figure 6. Perturbations to inhibitory activity reveal regimes where stabilizing and competitive inhibi-
tion dominate. (a) We perturbed mean-field models by delivering a nonspecific input ∆ν0,I to all inhibitory
neurons during stimulus period. Perturbations were similarly delivered to RNNs by adding a constant input
∆II to all inhibitory units during the stimulus. (b) Circuits where competitive (brown) or stabilizing (yel-
low) inhibition dominates are predicted to have diverging responses to perturbations in inhibitory activity.
(c) Dependence of τslow on the baseline input to inhibition ν0,I reveals two inhibitory regimes: a low inhibi-
tion regime where competitive inhibition dominates and a high inhibition regime where stabilizing inhibition
dominates. Contra- or ipsispecific inhibitory motifs shift the emphasis within these regimes (e.g., τslow is
always longer for ipsi- than contraspecific circuits). (d-k) The effects of inhibitory perturbations in the mean-
field model differ depending on the baseline value ν0,I. (d-g) Around a low baseline (ν0,I = 11.5, brown line
in c), enhancing inhibition speeds up reaction times (magenta line in d; f), increases the rate of trial comple-
tion (e), and decreases accuracy (g), whereas suppressing inhibition produces the opposite effects, e.g., slows
down reaction times (green line in d; j). Results are shown for nonspecific circuits. Gray areas in d indicate
stimulus strengths used to calculated the values in e-g. (h-k) Same as d-g for the high inhibition regime
(ν0,I = 14, yellow line in c). Perturbations of inhibitory activity produce the reversed effects. (l-o) Same as
h-k for perturbations of inhibitory neurons in RNNs. RNN’s response to perturbations mirrors the effects in
the mean-field model in the stabilizing regime (c.f. h-k). Enhancing inhibition in RNNs slows down reaction
times, decreases the rate of trial completion, and increases accuracy.
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Supplementary Figure 1. Examples of circuits not capable of decision-making. Connection specificity
between choice selective populations determines which fixed points are present in the circuit. Example activ-
ity traces for choice selective excitatory populations (upper row, gray area indicates stimulation period with
0 stimulus strength) and the phase plane for unstimulated (middle row) and stimulated circuits (lower row,
0 stimulus strength) are shown. Black and grey squares indicate stable attractors and saddle points, respec-
tively. (a) A circuit which lacks choice and working memory attractors, as well as a symmetrical saddle point
when stimulated. ΣEE = 0.175, ΣEI = 0, ΣIE = 0. (b) A circuit which lacks working memory attractors
and the symmetrical saddle point. ΣEE = 0.175, ΣEI = −0.675, ΣIE = 0.675. (c) A circuit which lacks
the symmetrical low activity attractor. ΣEE = 0.475, ΣEI = 0, ΣIE = 0. (d) A circuit which lacks working
memory attractors. ΣEE = 0.35, ΣEI = 0.5, ΣIE = 0.45.
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Supplementary Figure 2. Circuits lacking the saddle point can discriminate easy stimuli. Phase planes
of a strongly ipsispecific circuit (ΣEE = 0.3196, ΣEI = 0.25, ΣIE = 0.75) show that as the stimulus
strengths toward one of the choices increases, the symmetrical attractor disappears enabling the circuit to
make decisions. (a) Stimulus strength is 0.0. (b) Stimulus strength is 2.5. (c) Stimulus strength is 5.0.
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Supplementary Figure 3. RNNs display a stimulus-strength dependent speed versus accuracy trade-
off. Chronometric functions for individual trained RNNs (grey) and their average (red). RNNs take longer to
report decisions for difficult stimuli (stimulus strength near 0) than for easier stimuli.
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Supplementary Figure 4. Changes in the excitatory unit excitability result in altered circuit structure
in RNNs. (a) Trained RNNs with hypoexcitable excitatory units (green) show higher ΣEE than RNNs with
baseline (gray) or hyperexcitabile units (purple). (b) The distribution of the selectivity index ΣEIΣIE is similar
across all RNNs. In all panels, distributions include 75 networks for each excitability level.
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Supplementary Figure 5. Excitatory and inhibitory selectivity is correlated in RNNs with different
excitability of excitatory units. ΣEE and ΣEIΣEI are correlated in RNNs trained with different excitability
of excitatory units. (a) Hypo- and hyperexcitable networks show a similar relationship between ΣEE and
ΣEIΣIE as the baseline networks. (b) For each excitability level, the correlation between ΣEE and ΣEIΣIE was
significant.
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Supplementary Figure 6. Excitatory selectivity has a larger effect on mean-field circuit dynamics than
inhibitory selectivity. Changes in ΣEE (colormap) have a larger effect on τslow (a) and reaction time (b) than
inhibitory selectivity (x-axis).
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