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ABSTRACT  

 Gramicidin is a monomeric protein that is thought to non-selectively conduct cationic 

currents and water. Linear gramicidin is considered an antibiotic. This function is considered to be 

mediated by the formation of pores within the lipid membrane, thereby killing bacterial cells. The 

main non-psychoactive active constituent of the cannabis plant, cannabidiol (CBD), has recently 

gained  interest, and is proposed to possess various potential therapeutic properties, including being 

an antibiotic. We previously determined that CBD’s activity on ion channels could be, in part, 

mediated by altering membrane biophysical properties, including elasticity. In this study, our goal 

was to determine the empirical effects of CBD on gramicidin currents in human embryonic kidney 

(HEK) cells, seeking to infer potential direct compound-protein interactions. Our results indicate 

that gramicidin, when applied to the extracellular HEK cell membrane, followed by CBD 

perfusion, increases the gramicidin current.  

Keywords: cannabidiol, gramicidin, voltage-clamp, membrane  
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INTRODUCTION  

 Linear gramicidins are a family of antibiotics whose function is determined by increasing 

the cationic permeability of the membrane (Harold & Baarda, 1967; Hladky & Haydon, 1970). 

Increased permeability is achieved by the formation of bilayer-spanning channels via dimerization 

of two hemi-channels. Relative to the channels formed by other antibiotics, gramicidin (gA) is 

well-behaved, and forms channels that are cation selective. Gramicidin channels are also among 

the best-understood of these types of channels. Atomic-resolution structures have been provided, 

and a wealth of functional experiments have yielded important insights into gA function (Anon, 

n.d.; Andersen & Koeppe, 2007). Gramicidin channel monomers that reside in each membrane 

leaflet must dimerize with monomers in the other leaflet to form a continuous pore. This 

conformational change is necessary and sufficient for cationic currents to be conducted through 

gA. The pore diameter is ~4 Å, sufficient to allow the pore to also conduct alkali metals, protons, 

and water (Hladky & Haydon, 1970, 1972; Finkelstein, 1974; Andersen et al., 2005).  

 The rate of gramicidin channel dimerization is directly related to membrane stiffness or 

elasticity (Andersen & Koeppe, 2007; Kapoor et al., 2019). This property has been the foundation 

of functional assays designed to determine the effects of various compounds on membrane 

dynamics. For example, compounds that reduce the membrane stiffness or thickness (e.g. 

detergents) enhance the probability of gramicidin dimerization, which in turn increases the cationic 

gramicidin signal (Lundbæk et al., 2004; Lundbæk, 2005; Ingólfsson et al., 2010; Kapoor et al., 

2019).   

Amphiphiles are among the compounds characterized using the gramicidin-based assays 

(Lundbæk, 2005). Amphiphilic compounds are a set of molecules possessing both lipophilic and 

hydrophilic properties. These molecules often display non-selective modulatory effects on 

seemingly unrelated targets, a by-product of amphiphiles modulating membrane elasticity 

(Lundbæk et al., 2004; Lundbæk, 2005; Kapoor et al., 2019). Modulation is achieved when 

amphiphiles localize at the solution–bilayer interface, which is made possible by the compounds’ 

polar group residing at the interface with the hydrophobic region, which then inserts into the 

bilayer core. Partitioning into the lipid bilayer alters membrane elasticity, and changes phase 

preference and membrane curvature (Lundbæk et al., 2004; Lundbæk, 2005; Kapoor et al., 2019).   
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One compound with amphiphilic properties is cannabidiol (CBD),  the primary non-

psychotropic constituent of Cannabis sativa (Elsohly, 2007). CBD is a clinically and 

experimentally substantiated therapeutic compound with efficacy against a variety of conditions, 

including seizure disorders (for which CBD is FDA-approved), pain, and muscle spasms (Ross et 

al., 2008; De Petrocellis et al., 2011; Devinsky et al., 2017; Kaplan et al., 2017; Ghovanloo et al., 

2018; Iannotti et al., 2019; Fouda et al., 2020). Furthermore, CBD has been suggested to have 

antibiotic properties (van Klingeren & ten Ham, 1976; Kosgodage et al., 2019). Unlike the 

psychotropic ∆9-tetrahydracannabinol (THC), CBD has little to no affinity for endocannabinoid 

receptors (Devane et al., 1988; Lupica et al., 2004). However, many studies have shown that CBD 

interacts with a wide range of other targets, including a diverse array of ion channels (Ross et al., 

2008; De Petrocellis et al., 2011; Kaplan et al., 2017; Ghovanloo et al., 2018, 2021; Fouda et al., 

2020; Ghovanloo & Ruben, 2021; Zhang & Bean, 2021). We previously characterized the full 

inhibitory effects of CBD on voltage-gated sodium channels (Nav) and deciphered the mechanism 

through which CBD inhibits Nav currents (Ghovanloo et al., 2018, 2021; Sait et al., 2020; 

Ghovanloo & Ruben, 2021). We further found that an important component of this mechanism 

involves CBD altering membrane elasticity, which was measured using a gramicidin-based 

fluorescence assay (GFA) (Ingólfsson et al., 2010; Ghovanloo et al., 2021).   

 GFA is based on the gramicidin permeability to Tl+, a quencher of the water-soluble 

fluorophore 8-aminonaphthalene-1,3,6-trisulfonate (ANTS), encapsulated in large unilamellar 

vesicles (LUVs) doped with gramicidin. The rate of Tl+ influx, measured as the rate of fluorescence 

quench, indicates the time-averaged number of gramicidin channels in the LUV membrane 

(Ingólfsson et al., 2010). Molecules that alter the thickness and elasticity of the LUV membrane 

also alter the lipid bilayer contribution to the free energy of dimerization and, thus, the free energy 

of dimerization (Rusinova et al., 2015). Our previous findings in LUVs suggested that CBD 

decreases gramicidin signals in that assay (Ghovanloo et al., 2021).   

We sought to futher characterize CBD effects on gramaciding gramicidin currents using 

an electrophysiological HEK cell based assay.In the present study, we investigated the interactions 

between gramicidin and CBD over short exposures, using voltage-clamped human embryonic 

kidney (HEK-293) cells in the absence and presence of gramicidin. In this purely observational 

study, we report that in contrast to the GFA assay, CBD increases the gramicidin current in HEK 

cells.  
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RESULTS  

CBD increases gramicidin signal in HEK cells in high extracellular sodium concentrations  

 Gramicidin channels preferentially conduct cationic (e.g., Na+ and K+) currents upon 

dimerization and pore formation (Harold & Baarda, 1967; Hladky & Haydon, 1970). We measured 

cationic currents through dimerized gramicidin channels using whole-cell voltage-clamp of 

untransfected HEK cells in the absence and presence of 26 µM gramicidin applied to the 

extracellular side of the membrane. First, we measured gramicidin currents in standard high 

sodium [Na+=140 mM] extracellular solution using a ramp protocol. We clamped the cell 

membranes at -80 mV, close to the K+ equilibrium potential (EK+). Then, we hyperpolarized the 

cells to -120 mV and ramped the voltage to +50 mV, which is close to ENa+. We show average 

gramicidin current density from the ratio of current amplitude to the cell membrane capacitance 

(pA/pF) at -120, -80, 0, and +50 mV (Figure 1A-D). Our results indicate that, at negative 

potentials, gramicidin conducts inward currents and, as the membrane potential becomes more 

positive, the current becomes outward with the reversal potential (Erev) being close to 0 mV, as 

would be predicted for a non-specific monovalent cationic channel. We also measured the effects 

of 1 µM and 10 µM CBD  (Ghovanloo et al., 2018), and 10 µM Triton X100 (TX100; as positive 

control (Lundbæk et al., 2004)) on gramicidin-HEK cells (Figure 1A-C). TX100 is a detergent, 

and has been shown to change membrane elasticity and hence to increase gramicidin current 

amplitude in equilibrium (Lundbæk et al., 2004). Interestingly, our findings indicate that TX100 

reduced the cationic gramicidin currents across all potentials (p<0.05) (Figure 1C). CBD had the 

opposite effect to that of TX100, and slightly increased gramicidin currents at both 1 µM (p<0.05) 

and 10 µM (p>0.05). Interestingly, although the tendency for CBD to alter gramicidin currents 

was the same at both concentrations, CBD’s effects were more variable at 10 µM than at 1 µM; 

this variability resulted in lack of statistical significance at 10 µM (Figure 1C). We speculate the 

variability at 10 µM may be due to damage to the HEK cell membrane from both gramicidin and 

CBD over the timescales of voltage-clamp experiments.  

  

CBD increases gramicidin signal in HEK cells in low extracellular sodium concentrations  

The presence of a gramicidin dependent current indicates ion flux across the cell 

membrane. Gramacidin pores are analogous to puncturing cation-selective holes through the cell 
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membrane. Gramicidin induced currents in the previous high [Na+] experiment resulted in a Erev 

close to 0 mV. This raises the possibility of a potential nonselective leak current component 

induced by gramicidin, but not carried by gramicidin, as a confounding variable. To ensure that 

we were recording gramicidin pore currents, we performed the same experiment with lower 

extracellular sodium [Na+=1 mM]. This experiment resulted in the same overall trends of altered 

gramicidin currents densities as the high [Na+] experiment, for both CBD and TX100 (Figure 2A-

D). As expected, reducing [Na+] lowered the gramicidin Erev to ~-80 mV (close to EK+). These 

results confirm our results from the high Na+ experiment and further suggest that, when both Na+ 

and K+ are present at high concentrations, gramicidin permeability is not highly selective for K+ 

over Na+ bringing the gramicidin Erev to ~0 mV. Overall, these results show that CBD increases 

gramicidin currents during short exposures and suggests, therefore, that CBD alters membrane 

elasticity or gramicidin channel conductance directly. 

  

DISCUSSION  

 In our previous study, using a gramicidin-fluorescence assay (GFA), it was determined that 

CBD has the opposite effect to TX100 and that it decreases the rate of dimerized gramicidin 

channel formation, and hence a smaller gramicidin current. These findings indicate that CBD is 

bilateral modifying at the tested concentrations of 1-30 µM (Ghovanloo et al., 2021).  In this study, 

by electrophysiologically measuring K+ and Na+ currents flowing through the gramicidin channel, 

the opposite result was observed. CBD increased gramicidin currents and decreased TX100 

currents suggesting an alternate mechanism of gramacidin interaction with amphiphiles like CBD 

or TX100 than in the GFA assay. 

Although the gramicidin structure does not indicate an obvious direct binding-site for CBD 

(Anon, n.d.), there is a chance of a direct CBD-gramicidin interaction taking place. Indeed, in 

almost every report of CBD activity on a given target, a response has been determined, including 

various ion channels and receptor proteins (Almeida & Devi, 2020; Ghovanloo & Ruben, 2021). 

Therefore, the opposite result that was observed that might suggest direct CBD and gramicidin 

interactions that in some way increase the probability of conducting pores in these conditions.   

The molecular structure of CBD is composed of two oxygen atoms on both sides of a 

benzene ring, with the other two ends of the ring having a hydrocarbon tail on one end, and a 

hydrocarbon ring on the other. These features give the CBD molecule an overall shape that is 
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loosely reminiscent of a phospholipid molecule. Phospholipids, in turn, are molecules that 

specialize in separating various cellular and sub-cellular environments, a function that is dependent 

on their amphiphilicity. In our previous paper, molecular dynamics (MD) simulations suggested 

that CBD molecules tend to localize below phospholipid headgroups, but above the tail-end region 

(Ghovanloo et al., 2021Thus, CBD molecules hovered around carbons ~3-7 of aliphatic chains, as 

per MD and verified by NMR (Ghovanloo et al., 2021). It is conceivable that interactions between 

CBD positioned in the leaflet of the HEK membrane may interact with gramicidin hemi channels 

to impact pore dimerization formation in a way that offset any membrane stiffness affects that 

inhibit gramicidin currents as we saw in previous GFA studies. In the GFA assay, gramicidin 

monomers are incubated for 24 hours with liposomes at 13 ˚C to reach equilibration, and then the 

effect of compound is investigated by measuring fluorescence quenching rates (Ingólfsson et al., 

2010). In this study, we measure conventional macroscopic cationic currents in HEK cells using 

standard voltage-clamp, after the cells were extracellularly perfused with gramicidin monomers 

over the course of minutes at 27 ˚C. Therefore, the experimental setups between the two studies 

are fundamentally different, and likely investigate different phenomenon pertaining to gramicidin 

and CBD interactions.  

Our goal in this study was to describe the effects of CBD on HEK cells externally treated 

with gramicidin. Our results suggest that there may be a direct interaction between CBD and 

gramicidin but the mechanism by which this potentiates gA currents in HEK cells remains unclear. 

Further studies will be required for instance, using MD simulations to examine potential for direct 

interactions.  

  

METHODS  

Cell culture  

 Suspension Human Embryonic Kidney (HEK-293) cells were used for automated patch-

clamp experiments. All cells were incubated at 37 ˚C/5% CO2. All cell culture reagents were 

purchased from ThermoFisher Scientific, Waltham, MA, unless otherwise noted.  

  

Patch-clamp  

 Automated patch-clamp recording was performed on untransfected HEK cells. Currents 

were measured in the whole-cell configuration using a Qube-384 (Sophion A/S, Copenhagen, 
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Denmark) automated voltage-clamp system. Intracellular solution contained (in mM): 120 KF, 10 

NaCl, 2 MgCl2, 10 HEPES, adjusted to pH7.2 with CsOH. The extracellular recording solution for 

the high sodium experiment contained (in mM): 140 NaCl, 3 KCl, 1 MgCl2, 1.5 CaCl2, 10 HEPES, 

adjusted to pH7.4 with NaOH. For the low sodium experiment the external solution sodium 

concentration was lowered to 1 mM with N-methyl-D-glucamine (NMDG) as NaCl replacement. 

Liquid junction potentials calculated to be ~7 mV were not adjusted for. Currents were low-pass-

filtered at 5 kHz and recorded at 25 kHz sampling frequency. Series resistance compensation was 

applied at 100%. The measurements were obtained at room temperature which corresponds to 27 

± 2 ˚C at the recording chamber. Appropriate filters for cell membrane resistance (typically >500 

MΩ) and series resistance (<10 MΩ) were used. Gramicidin was dissolved in 100% DMSO, and 

the final concentration of 26 µM.   

  

Electrophysiological data analysis  

 The analysis of raw patch-clamp recordings was performed using the Sophion Analyzer. 

Graphing and additional analysis was done using the Prism GraphPad (Version 9) software.   

  

Statistics  

A one-factor analysis of variance (ANOVA) or t-test were, when appropriate, were used to 

compare the mean responses. Post-hoc tests using the Tukey Kramer adjustment compared the 

mean responses between channel variants across conditions. A level of significance α=0.05 was 

used in all overall post-hoc tests, and effects with p-values less than 0.05 were considered to be 

statistically significant. All values are reported as means ± standard error of means (SEM) for n 

recordings/samples.   
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Figure 1 – High sodium voltage-clamp, gramicidin (gA). 

(A) Shows the averaged cationic current densities of gramicidin in the presence/absence of 
CBD at 1 and 10 µM, and TX100 at 10 µM, on the left (in pA/pF, ECS: -120 mV = -13.6 
± 6.3, -80 mV = -10.1 ± 5.0, 0 mV= 5.2 ± 0.5, +50 mV = 30.0 ± 11.0, n = 36; gA: -120 mV 
= -547.8 ± 66.2, -80 mV = -357 ± 44, 0 mV = 56.5 ± 8.1, +50 mV = 441.1 ± 60.5, n = 47; 
1 µM CBD: -120 mV = -820.1 ± 83.2, -80 mV = -543 ± 55.8, 0 mV = 57.7 ± 5.2, +50 mV 
= 607.4 ± 72.2, n = 56; 10 µM CBD: -120 mV = -687.0 ± 70.3, -80 mV= -452.8 ± 47.4, 0 
mV= 57.1 ± 7.1, +50 mV = 649.2 ± 118.8, n = 49; 10 µM TX100: -120 mV = -330.8 ± 
43.8 ± , -80 mV = -216.5 ± 30.4, 0 mV= 37.3 ± 4.0, +50 mV = 259.4 ± 32.8, n = 48). The 
ramp voltage protocol is shown on the right. (B) Shows a cartoon diagram of how 
gramicidin monomers are thought to dimerize and form channels. (C) Shows quantification 
of the data shown in (A), stars indicate statistical significance. (D) Shows the associated 
current traces.  
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Figure 2 – Low sodium voltage-clamp. 

(A) Shows the averaged cationic current densities of gramicidin in the presence/absence of 
CBD at 1 and 10 µM, and TX100 at 10 µM (in pA/pF, ECS: -120 mV = -4.1 ± 0.9, -80 mV 
= -3.5 ± 0.7, 0 mV= 4.1 ± 0.4, +50 mV = 18.8 ± 1.7, n = 33; gA: -120 mV = -67.6 ± 7.7, -
80 mV = -23.0 ± 2.9, 0 mV = 189.8 ± 20.6, +50 mV = 437.4 ± 45.6, n = 45; 1 µM CBD: -
120 mV = -90.9 ± 9.0, -80 mV = -30.6 ± 2.9, 0 mV = 261.7 ± 28.7, +50 mV = 604.0 ± 64.8, 
n = 55; 10 µM CBD: -120 mV = -83.6 ± 14.1, -80 mV = -27.8 ± 5.2, 0 mV = 280.8 ± 74.4, 
+50 mV = 624.9 ± 149.6, n = 60; 10 µM TX100: -120 mV = -26.3 ± 3.5, -80 mV = -9.7 ± 
1.3, 0 mV = 74.2 ± 11.3, +50 mV = 182.4 ± 29.0, n = 50). (B) Shows the ramp voltage 
protocol. (C) Shows quantification of the data shown in (A), stars indicate statistical 
significance. (D) Shows the associated current traces.  
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