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Abstract 

Spike trains in cortical neuronal populations vary in number and timing trial-to-trial, 

rendering a viable single trial coding scheme for sensory information elusive. 

Correlations between pairs of neocortical neurons can be segmented into either 

sensory or noise according to their stimulus specificity. Here we show that pairs of 

spikes, corresponding to reliable sensory correlations in imaged populations in layer 

2/3 of mouse visual cortex are particularly informative of visual stimuli. This set of 

spikes is sparse and exhibits comparable levels of trial-to-trial variance relative to the 

full spike train. Despite this, correspondence of pairs of spikes to a specific set of 

sensory correlations identifies spikes that carry more information per spike about the 

visual stimulus than the full set or any other matched set of spikes. Moreover, this 

sparse subset is more accurately decoded, regardless of the decoding algorithm 

employed. Our findings suggest that consistent pairwise correlations between 

neurons, rather than first-order statistical features of spike trains, may be an 

organizational principle of a single trial sensory coding scheme.  
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n order to meet the demands of survival, organisms must be able to process and act upon 

intrinsic (i.e. attention, hunger) and extrinsic (i.e. sensory stimuli) variables simultaneously. 

Indeed, both intrinsic1,2 and extrinsic3 variables contribute to action potential generation or spikes 
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in neocortical neurons. Spikes and the intervals between them can be considered the symbols of a 

coding scheme. At the single neuron level, the scheme has been postulated to depend on the 

number of spikes emitted, i.e. rate code4,5 and/or the specific sequence of spikes and silences, i.e. 

a temporal code6–8. In general, when evaluating a coding scheme, the focus has been on trial 

averaged spiking activity. However, spike counts and sequences of spikes are highly variable trail-

to-trial9–13, rendering an individual neuron-based coding scheme that is viable for single trials 

elusive. When considering a population of neurons there are numerous combinatorial possibilities 

involving both rate and timing, including but not exclusive to relative spike times14,15 and 

covariance of spike counts16. Despite these advances, a population level, single trial coding scheme 

remains unclear. The challenge of delineating a single trial coding scheme is further exacerbated 

by the difficulty in disambiguating the relative contribution of intrinsic and extrinsic variables to 

spiking. 

Spike trains within a population of neocortical neurons exhibit pairwise and higher order 

correlations (for reviews see17–19). Pairwise correlations, like spikes, arise from variables both 

external and internal to the population of neurons recorded. Unlike spikes, studies have 

successfully segmented correlations demonstrating that correlations can be stimulus dependent20–

22, can reflect local integration of synaptic inputs23,24, and can arise from global or broadcast signals 

within neocortex25,26. Pairwise correlations have been shown to contain sufficient information 

about neuronal dynamics to accurately predict single trial activity of a given neuron from its 

correlated counterparts27–29, termed peer-prediction30. Moreover, pairwise correlations have also 

been employed to construct accurate single trial decoders20,28. Both lines of evidence indicate that 

pairwise correlations carry information about sensory stimuli above and beyond that carried by 

spikes alone27,31. While any one spike is clearly the consequence of the combination numerous 

inputs, and by extension variables, the fact that correlations can be segmented according to variable 

presented the possibility that pairs of spikes corresponding to pairwise correlations can similarly 

be segmented, presumably revealing the main contributing variable. To do so, we sort spikes on 

individual trials, according to whether they correspond to stimulus or non-stimulus specific 

pairwise correlations, and then use information theoretics and decoders to test our hypothesis.  

We find that a sparse set of stimulus-specific spikes, embedded within the full and denser 

single trial spike train, carries more information per spike about the visual stimulus than the full 
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set or any other matched set of spikes. Moreover, this sparse subset is more accurately decoded, 

regardless of decoding algorithm employed. Our results suggest that consistent pairwise 

correlations between neurons across trials, rather than specific first-order features of spike trains, 

may be an organizational principle of a single trial sensory coding scheme. Such a scheme allows 

for spike trains within individual neurons to potentially represent both sensory, global and local 

variables simultaneously and that the associated pairwise correlations, and potential diversity of 

post-synaptic targets, allow for each variable to be distinguishable from each other downstream. 

 

Results 

We imaged hundreds of excitatory neurons in layer 2/3 of mouse primary visual cortex (V1) in 

response to 12 directions of drifting gratings32. We summarized the spiking dynamics of these 

populations of neurons as functional networks (FNs), with neurons and the correlations between 

them as nodes and edges, respectively. We distinguished globally driven, from stimulus-specific, 

correlations by computing a functional network for each of the 12 directions of drifting gratings 

using a mutual information measure (conMI33; Fig. 1a) between each pair of neurons in all trials 

of each grating direction separately. conMI is the mutual information between neuron i at time t 

and neuron j at time t and t+1, with time dictated by imaging frame.  

Next, we systematically compared edges in the twelve FNs. We observed that some edges 

in the FNs are overlapping across stimuli, whereas other edges are present only in a subset or a 

single FN corresponding to a single direction of drifting gratings (Fig. 1b)(11.53±1.62% unique 

edges, 12.96±2.66% edges shared between two directions, 75.51±3.98% edges that are present in 

more than 2 FNs). Furthermore, the similarity of FNs correlated with stimulus similarity20 (Fig. 

1c), with increased similarity for directions that are adjacent (e.g. 30 and 90 are adjacent to 60) 

and directions that have the same bar orientation (e.g. 60 and 240). This finding suggests that these 

three (fellow) directions are potentially more difficult for downstream circuits to disambiguate. 

We allocated edges in each FN (termed the overall FN throughout the manuscript) into four sub-

FNs depending on the extent to which an edge was shared or unique to one FN corresponding to 

one direction of drifting gratings. Specifically, edges were sorted into: hard u(nique) sub-FN which 

contains edges that only exist in an FN for a single direction, soft u(nique) edges may exist in FNs 

for fellow directions, but they are stronger, reflecting more reliable statistical dependency, in an 

FN for one direction. P(artial) shared which consists of edges that are common to a direction and 
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to some, but not all fellow directions, and f(ully) shared edges that are found in all the FN 

regardless of direction. This sorting procedure was done for each direction of drifting grating and 

resulted in 4 non-overlapping sub-FNs (Fig. 1d).  

Across datasets and directions, 17.41±5.06% edges were classified as hard u, 6.89±2.49% 

edges as soft u, and 53.46±4.31%, 22.22±9.02% edges as p shared and f shared, respectively, 

rendering soft u the sparsest sub-FN and p shared the densest sub-FN (Fig. 2a). In other words, we 

find that a minority of correlations are specific to the sensory stimulus. As expected, given our 

edge segmentation procedure, we found that soft u contains a significant subset of the strongest 

edge weights (AVONA, p<0.001, Fig. 2b), meaning more of the edges of this sub-FN reflected 

reliable statistical dependencies as compared to the other three sub-FNs. Notably, the sub-FNs 

included most of the recorded neurons (hard u: 99.39±0.99%, soft u: 95.15±6.06%, p shared: 

99.15±1.14% and f shared: 91.80±4.17%) demonstrating that the vast majority of all neurons had 

at minimum one edge in every sub-FN, ruling out a scheme in which a neuron codes for either 

sensory or global variables.  

Figure 1 - functional networks (FNs) can be 
divided to 4 sub-FNs based on edge statistics 
(a) Illustration of edge inference by confluent mutual 
information (conMI). The edge from neuron i to 
neuron j is a statistical dependency between i spiking 
at time t-1 or t, and j spiking at time t. Hence conMI 
is not necessarily symmetric. (b) FN similarity 
reflects stimulus similarity: alignment score varies in 
[0,1] with larger numbers indicating increased 
similarity between two networks, and is computed as 
in ref 20. Δ𝜃 stands for stimulus similarity in degrees, 
with 30 degrees being an adjacent direction and 180 
degrees being the direction with the same orientation. 
Line and shading represent mean and the standard 
error across datasets, respectively. (c) FNs for 4 
directions: the direction of interest (60 degrees) and 
its three fellow directions (30,90 and 240 degrees). 10 
neurons are illustrated here for visualization 
purposes. Colors represent edge weight. Note that 
some edges are similar across directions whereas 
others appear only in one FN. (d) Illustration of edges 
allocation into 4 sub-FNs: the FN for 60 degrees from 
B was split into 4 non-overlapping sub-FNs, 
according to which edges are unique and strong in the 
direction of interest (60 degrees) as compared to the 
FNs for fellow directions. Colors for sub-FNs are 
consistent throughout this manuscript. 
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            Since functionally similar neurons have been reported to be more likely synaptically 

connected as well as correlated32,34,35, we next evaluated the extent to which the edges within each 

sub-FN may simply be due to similar tuning of individual neurons within the FN. We counted how 

many edges in each sub-FN are between pairs of tuned (t-t), untuned (ut-ut), and mixed-

functionality (t-ut, ut-t) neurons. We found that the prevalence of each edge type was proportional 

to the density of the sub-FNs (Fig. 2c), indicating that correlations between tuned neurons are not 

over or under represented in sub-FNs.  

 

                

Spikes that correspond to sub-FNs are sparse and variable 

From the perspective of a theoretical downstream neuron, correlated synaptic inputs from multiple 

pre-synaptic neurons are far more likely to result in cooperative integration and result in post-

synaptic neuronal spiking and in turn effective information transfer23,36. Adopting the perspective 

of a downstream neuron, we segmented spikes according to correspondence to an edge in a sub-

FN. In other words, if neuron i spiked at time t and neuron j spiked at time t+1, we kept those 

spikes if there was a non-zero edge in the ij-th index in the FN, and discarded spikes that did not 

correspond to an edge (Methods; Fig. 3a). This procedure yielded 4 sets of spikes that 

corresponded to edges in each sub-FN for each trial. Note that no new spikes are inserted. Rather, 

Figure 2 - topological properties of sub-FNs 
Data in this figure are shown across datasets and stimuli unless stated otherwise. (a) Density of the four sub-FNs as the 
portions of edges from the overall allocated to each of them. Boxplots represent interquartile ranges and midlines mark 
the median. (b) Probability distributions for the edge weights included in each of the four sub-FNs. (c) Portion of edges 
between tuned-tuned (t-t), untuned-untuned (ut-ut) and mixed (t-ut) neurons for the four sub-FN out of the total number 
of edges in the overall FN. Boxplots and midlines stand for the interquartile range and the median, respectively. 
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we picked subsets of the original spike trains. We call these subsets of spikes sub-FN consistent 

spikes.  

 
Figure 3 - sub-FN consistent spikes are ultra-sparse and non-exclusive 
 (a) Illustration of a temporal graph (TG) approach: a static FN which is inferred from many trials is intersected 
with spikes on a single-trial time-point by time-point basis. An edge from neuron 1 to neuron 2 is expressed in the 
first two time-frames with neuron 1 spiking followed by a spike in neuron 2. Any static FN can be used in this 
procedure, and we have used both the overall FN and the sub-FNs. Spikes that are not an expression of any edges 
are marked with a red X and later discarded in the spike sparsification process. (b) Population spikes over time in 
the trial for the original spikes and the four sets of sub-FN consistent spikes. Lines represent means across datasets. 
(c) Raster plot of 6 randomly sampled neurons from one randomly sampled dataset. Spikes are colored according 
to the sub-FN they are consistent with. For example, a spike colored in red and yellow is consistent with both hard 
u and p shared. (d) Probability distributions of spikes that are consistent only with one sub-FN (i.e. exclusive) in 
one time point. Data across datasets and trials.  
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Sub-FN consistent spikes are sparser than the original population singe trial spikes, with 

soft u corresponding to the fewest action potentials (Fig. 3b). Notably, in this framework, a spike 

can correspond to an edge in more than one sub-FN; for example, an ij edge may exist in hard u, 

while an ik edge is nonzero in p shared. In this case, a spike at time t will be retained for both of 

these sub-FNs if neurons j and k spiked at time t+1, respectively. Therefore, while edges are 

exclusive to one of the four sub-FNs, the corresponding spikes are not. We found varying degrees 

of overlap between sub-FN consistent spikes for different sub-FNs (Fig. 3c-d). 

         Sub-FN consistent spikes within individual neurons were no less variable trial-to-trial, 

relative to the full spike trains, as measured by rate or temporal precision (Fig. 4a and 4c, 

respectively). Similarly, we found that network wide sub-FN consistent spikes were not more 

reliable than the original spikes as a population vector as measured with the L2 norm (Fig. 4b).  

 

 

Soft u consistent spikes are more informative of drifting grading direction 

Information theory has been used to great effect in neuroscience to examine coding in neural 

systems37,38 and offers a direct measure of the information present in neural responses about a 

stimulus. Moreover, previous work in cat LGN has shown that pairs of spikes between neurons,  

Figure 4 – trial-to-trial variability of sub-FN consistent spikes 
Data in this figure are shown across datasets and stimuli. (a) Coefficient of variation probability distributions for 
the firing rate of single neurons in the original spikes and in each of the sets of sub-FN consistent spikes. Dots on 
the top indicate the means. Colors as in (c). (b) L2 (Euclidean) norm (see Methods) probability distributions for 
population vectors in the original spikes and in each of the sets of sub-FN consistent spikes. Dots on the top 
indicate the means. Colors as in (c). (c) Temporal precision as measured by the VP distance. We normalized the 
metric by the number of spikes (Methods). <> denotes the mean over pairs of trials of the same grating direction. 
Boxes span the interquartile range and horizontal lines indicate the medians. 
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like those considered here, carry more information 

about a visual stimulus as compared with the same 

numbers of unpaired spikes39. To quantify 

information in the full spike trains and in sub-FN 

consistent spikes we calculated the mutual 

information between spikes and stimulus 

(Methods). 

We normalized the raw information 

measure by the average number of spikes to obtain 

a metric of bits per spike regardless of sparsity. We 

examined the information in a small group of 

Figure 5 - information quantity in sets of sub-FN 
consistent spikes 
All panels show data across datasets. (a) Bits per spike in 
sub-FN consistent spikes (different sub-FNs in their 
respective colors) and original spikes across time. Here 
we quantified the information in “binary words” of size 
5, using the 5 neurons with the largest firing rate and 
binning over 10 frames. Line and shading represent the 
mean and standard error, respectively. *p<0.05, ANOVA 
test for every timepoint. Soft u is significantly different 
from all other line except f shared.  (b) Bits per spike in 
sub-FN consistent spikes (different sub-FNs in their 
respective colors) and original spikes across time. Here 
we quantified the information in spatio-temporal patterns 
where every 3 consecutive frames were vectorized, 
which preserves the structure of spiking in the 5 neurons 
we analyzed. *p<0.05, ANOVA test for every timepoint. 
Soft u is significantly different from all lines as all times, 
except f shared (p<0.05 only for 32/100 time points). (c) 
Bits per spike in sub-FN consistent spikes (different sub-
FNs in their respective colors) and original spikes in a 
group of 5 neurons with the firing rates closest to the 
population mean. Boxplots and midlines denote 
interquartile range and medians across all time points. 
*p<0.01 (d) The same as (a) and (b) but for spikes that 
are not consistent with the sub-FN. For example, for hard 
u we used spike that are discarded when intersecting hard 
u sub-FN with the spikes. Boxplots and midlines 
represent interquartile range and medians across all time 
points, respectively. *p<0.05, except for soft u-f shared 
comparison. (e) Information per spike as a function of the 
number of neurons included in the analysis. Lines and 
shading are for the mean and standard error, respectively.  
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neurons: we picked 5 neurons that had the largest average firing rates in the full set of spikes across 

stimuli and trials, and held the identities and order of these 5 neurons fixed. We selected the high 

firing rate neurons to ensure enough spikes to compute information since each subset of spikes 

was very sparse.  

Examining the activity in bins of 10 frames, we found that soft u consistent spikes were 

significantly more informative about the direction of drifting gratings (1.07±0.56 bits/spike), as 

compared to the original spikes (0.13±0.15 bits/spike) and other subsets of spikes (0.48-0.67±0.26-

0.5 bits/spike) (Fig. 5a). To quantify the information on faster timescales, we concatenated every 

3 imaging frames preserving the spatio-temporal pattern of spikes. Overall, we observed more 

information per spike in these spatio-temporal patterns as compared to binned frames and again 

soft u consistent spikes contained more information per spike (1.75±0.5 bits/spike) as compared to 

all of the action potentials (0.99±0.13 bits/spike) and to the other sets of sub-FNs consistent spikes 

(1.27-1.38±0.18-0.49 bits/spike) (Fig. 5b). Notably, quantifying the information in omitted spikes, 

that is, spikes that were not consistent with sub-FN edges resulted in the opposite trend with p 

shared leading in information per spike (Fig. 5d) consistent with the little overlap between soft u 

and p shared consistent spikes. 

 We next asked whether neurons which exhibited firing rates comparable to the population 

mean firing rate, rather than neurons with the highest firing rates showed similar results. Soft u 

consistent spikes again carried more information about the direction of drifting grating in these 

groups of neurons (Fig. 5c). However, we found that as larger and larger groups of neurons are 

included in the calculation that soft u consistent spikes offer little extra information beyond that 

contained in small groups (Fig. 5e) indicating greater redundancy in the soft u consistent spikes. 

In contrast, other subsets of spikes followed uniform profiles, where larger pools sum up linearly, 

and the full, original spikes are more informative as more neurons are included (Fig. 5e). 

  

Soft u consistent spikes are decodable at high accuracy 

The elevated information quantity in soft u consistent spikes suggests that these spikes may be 

more decodable. To evaluate whether this is the case we used a feedforward network multiclass 

decoder trained with conjugate gradient on 90% of the data yielded significantly higher 

performance on the test set for soft u consistent spikes (52.13±14.60%) as compared to all action 

potentials and all of the other subsets of spikes (34.12±11.8% for the original spikes. 
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44.37±12.80%, 40.64±11.20% and 42.95±13.06% for hard u, p shared and f shared, respectively, 

Fig. 6a).  

To ensure that this decoding performance did not depend on decoder architecture we 

confirmed these findings with a support vector machine (SVM) with a linear kernel (soft u: 

41.69±18.68%, hard u: 34.83±14.51%, p shared: 32.03±12.54%, and f shared: 34.24±16.35% 

across all time points; Fig. 6b). Regardless of decoding framework, we found that soft u consistent 

spikes are more decodable and potentially more readable downstream.  

 

To ensure that decoding accuracy depended on correspondence between spikes and edges 

in each sub-FN we permuted the edges of each sub-FN before selecting the subset of action 

potentials. This allowed us to preserve the density of each sub-FN, as well as the associated spike 

Figure 6 - decoding the direction of drifting gratings from sub-FN consistent spikes 
(a) Performance as percent correct from the test set trials of the original spikes and the sparsified sub-FN consistent 
spikes in the Feedforward neural network decoder (Methods). Dashed line on the bottom denotes chance level 
decoding (1/12). The original spikes are in blue. Orange bars on top indicate the time points at which soft u is 
significantly better (ANOVA, p<0.05). Lines and shading are for the means and standard errors across 16 
datasets. (b) Performance of a second supervised decoder, namely a Support vector machine (SVM). Colors and 
markings are the same as in (a). (c) Real decoding performance (abscissa) of the four sets of sub-FN consistent 
spikes against the decoding performance of control spikes (ordinate) in the SVM framework. Control spikes were 
generated by permuting the sub-FN before intersection with the original spikes and thus preserve the sparsity and 
the same count of pairs of consecutive spikes but not their specificity (see Methods). Dashed line is the identity 
line. Each data point is one decoder, binned at 10 frames. Black dots represent cloud means. 
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sparsity (Methods). In all cases decoding performance decreased when selecting spikes associated 

with permuted edges: performance was 0.57±0.31 and 0.50±0.23 of the real decoding performance 

of hard u and soft u, respectively, while the shared sub-FN showed a lesser degradation (0.76±0.33 

and 0.66±0.37 for p shared and f shared, respectively. Fig. 6c).   

 

Discussion 

Numerous studies have demonstrated that pairwise correlations between neurons can be segmented 

according to the variable that best explains them, including stimulus 20–22, local integration 23,24 

and global or broadcast signals within neocortex25,26. This suggested the possibility that pairs of 

spikes, which correspond to these correlations, would similarly be separable. We segmented spikes 

according to whether they corresponded to one of four broad classes of pairwise correlations, or 

sub-FNs. We found that one class of stimulus specific correlation identified sets of spikes, far 

fewer than the whole, that are particularly informative of visual stimulus. This was the case when 

measuring information using information theoretic measures and when we evaluated the 

decodability of the spikes regardless of which class of decoding algorithm we applied. Both as the 

individual neuron and population levels these informative spikes were not composed of 

reproducible patterns. Rather, they exhibited comparable levels of trial-to-trial variability to any 

other set of spikes. Nonetheless, these spikes outperformed all other sets of spikes, including the 

full set of spikes in every measure tested. Together these finding suggest that reliable pairwise 

correlations, rather than simply rate modulation or temporal pattern, are the building blocks of the 

coding scheme employed in layer 2/3 of cortex. A similar coding scheme termed ‘ensemble 

cofiring’ has been recently proposed in area CA1 in hippocampus40. 

While we identified pairs of spikes according to their congruence with reliable trial-

averaged correlations, which are inaccessible to downstream targets, this coding scheme does not 

depend a priori on this trial averaged knowledge. Rather the suggested single trial coding scheme 

only requires that neuron pairs with stimulus-specific pairwise correlations between them project 

to the same downstream target whereas neuron pairs with non-stimulus-specific correlation project 

to another. Such a connectivity pattern allows dynamics to be disentangled despite overlapping 

neuron identities and spikes on short timescales. In line with this suggestion, cortical pyramidal 

neurons have been found to project to multiple targets41. Yet, such specific connectivity patterns 
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from layer 2/3 to downstream targets still need to be demonstrated and provide a clear prediction 

and test36 for a pairwise correlation coding scheme.  

Two features of the proposed code are especially appealing; first, the single trial coding 

scheme allows for multiplexing, that is, the population is capable of simultaneously representing 

multiple variables. The high complexity of the natural world and the fact that sensory and motor 

related brain activity is broadly distributed26,42 argue for multiplexity. Multiplexing has previously 

been considered for the format of the coding scheme43–45, the content of the code (i.e. the feature), 

such as reported here, or both46,47. Notably, format multiplexing, such as rate versus temporal 

schemes, potentially requires differing readout mechanisms. Our hypothesis calls for a simpler, 

uniform readout system, based on wiring and correlation rather than cellular properties. While in 

our work no variables other than the direction of drifting gratings were systematically examined, 

we postulate that stimulus-nonspecific (shared) correlations might code for other variables, such 

as internal state. Experiments in which several variables are controlled can thus be used to test our 

theory empirically.   

A second advantage aspect of the coincident-spikes scheme proposed here is that it does 

not rely on perfectly reproducible patterns of activity across trials and is viable during single trials. 

This is apparent in soft u consistent spikes containing large information quantity and being 

accurately decodable despite high trial-to-trial variability of spike counts, temporal patterns and 

population vectors. Indeed, our findings that trial-to-trial variability in single neurons and 

population, does not constitute an obstacle for the sensory code. This type of coding scheme, where 

activity pattern of different structure have similar meaning has been termed a ‘semantic code’48,49. 

In addition to their flexibility and learnability50, a semantic coding scheme allows extraction of 

meaning from sparse firing, as we found here. In turn, sparse coding has been hypothesized to 

increase the coding capacity of the network and to be metabolically efficient51,52. 

In summary, here we use functional networks to isolate pairs of spikes that occur during a 

single trial in a stimulus dependent manner. We find that only a small subset of these pairwise 

correlations and the corresponding pairs of spikes occur at any given single point in time, resulting 

in very sparse and variable dynamics during single trials. Nonetheless, these sparse sets of spikes 

carry more information about the stimulus than all the spikes recorded during the same single trial. 

Our work highlights the importance of considering the perspective of a downstream reader36 when 
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analyzing spike trains, and promotes a spike-centric rather than neuron-centric view of the sensory 

code. 

 
Methods 
Data collection and curation 
Animals and protocols are described in full in ref 32. We performed a craniotomy over the left primary 

visual cortex (V1) in 8 Tg(Thy1-GCaMP6s)GP4.12Dkim (Jackson Laboratory) mice (4 male, 4 female). 

These mice constitutively express GCaMP6s in excitatory pyramidal neurons of layer 2/3. Upon recovery 

and verification of V1 location, mice were head-fixed but free to run on a linear treadmill while passively 

viewing drifting gratings in 12 evenly-spaced directions (80% contrast, 0.04 cyc/deg spatial frequency and 

2Hz temporal frequency). Stimulus presentation (ON epochs) were 5s in duration and interleaved with 3s 

of gray screen (OFF epochs). Imaging of the neuronal population was performed with a line-scan53 at a 

wavelength of 910nm (Coherent Chameleon). We inferred spikes from df/f by employing a deconvolution 

algorithm54. All data presented are from 19 datasets unless stated otherwise.  
  
Functional networks 
We summarized the pairwise relationships between neurons in a static functional network (FN), computed 

using the confluent mutual information of the spikes between every pair of neurons i,j. Confluent mutual 

information (conMI33, Fig. 1a) is a non-symmetric value defined as: 

																														𝑐𝑜𝑛𝑀𝐼!" = ∑ ∑ 𝑝*𝑖(𝑡), 𝑗(𝑡̂)2"($%)∈{),+}!($)∈{),+} ⋅ log- 7
./!($),"($%)0

./!($)0⋅./"($%)0
8                                 (1) 

where: 

𝑗(𝑡̂) = 	 91									𝑗(𝑡 − 1) = 1		𝑂𝑅		𝑗(𝑡) = 1
0																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																					

 

This results in an NxN adjacency matrix, with neurons being nodes and conMI values as directed and 

weighted edges between them. Edges between neuronal pairs with negative correlation between their spike 

trains were then set to zero, and the adjacency matrix was further pruned to contain only the top 50% of 

edge weights, resulting in a final density of 0.38±0.04. Functional network construction was performed 

separately for trials of each direction of drifting grating, for a total of 12 FNs per dataset. 
  
Edge classification into four sub-FNs 
For each direction θ of drifting gratings, 3 fellow directions were defined: the two adjacent directions that 

are 30° apart from θ, and the opposite direction 180° apart from θ, which has the same orientation as θ.  For 
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example, for θ=60°, the fellow directions are 30°, 90° and 240°. We then compared each edge in the FN 

for θ to the values in the three fellow directions according to the following rules: 

  D
𝐹𝑁!"2 ≠ 0	

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 = 0

	⇒ hard unique (hard u)                                                             (2) 

 

  	

⎩
⎨

⎧ 𝐹𝑁!"2 ≠ 0	

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 ≠ 0

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 < +

-
𝐹𝑁!"2

	⇒ soft unique (soft u)                                                      (3) 

 

  

⎩
⎨

⎧ 𝐹𝑁!"2 ≠ 0

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 = 0

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 ≥ +

-
𝐹𝑁!"2

⇒ partially shared (p shared)                                            (4) 

 

  

⎩
⎨

⎧ 𝐹𝑁!"2 ≠ 0

∀𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 ≠ 0

∃𝑓 ∈ 𝑓𝑒𝑙𝑙𝑜𝑤, 𝐹𝑁!"
3 ≥ +

-
𝐹𝑁!"2

⇒ fully shared (f shared)                                                  (5) 

 
 This procedure was carried out for every direction of drifting gratings, resulting in 4 mutually exclusive 

sub-functional networks (sub-FNs) for each of the 12 directions in each dataset. 
  
Spike sparsification 
A temporal graph (TG) is a single-trial moment-to-moment representation of which pairwise relationships 

are instantiated. To construct a temporal graph, we first built a binary tensor of potential edges (POT) of 

size NxNx(T-1) with T being the time points in the rasters (R). Each time slice summarized the spiking 

activity at t-1 and t. For each neuron pair i,j at each time point sliding along the duration of the spiking 

activity: 
𝑃𝑂𝑇!,",$%  =1 if  𝑅!,$4+ = 1	𝑎𝑛𝑑	𝑅",$ = 1 

                                                                                  else                                                                             (6) 

𝑃𝑂𝑇!,",$%  =0 

POT is called a tensor of potential edges since it may be the case that i spiking at t-1 has contributed to the 

spiking activity of j at t. POT is thus a combinatorial representation of the rasters and its density depends 

on the firing rate in the population. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477564doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477564


 
 

Levy, Guo & MacLean, 2022 

 

15 

Each time slice was then intersected with an FN, or sub-FN, as indicated in the results, to give a temporal 

graph (TG): 

                                                                       𝑇𝐺$% = 𝑃𝑂𝑇$%⨀𝐹𝑁2                                                            (7) 

A TG is thus the same size as the corresponding potential edges tensor, but is sparser and contains weighted 

edges.  
Then, for every neuron pair i,j and every time slice , we defined the sparsified rasters (SR) to be: 
                                        𝑆𝑅!,$4+ = 1	𝑎𝑛𝑑	𝑆𝑅",$ = 1							 if       𝑇𝐺!,",$% = 1                                                (8) 

Spikes in SR are a subset of the spikes in the original raster R that can be explained as a manifestation of 

the FN or the sub-FN that was used in the calculation of the TG (Fig. 3a). 
  
Trial-to-trial variability measures 
Single cell rate variability (Fig. 4), was the coefficient of variation, CV as 𝜎/𝜇 with 𝜎 and 𝜇 being the 

standard deviation and mean, respectively, of the neuron spike-count across trials with the same drifting 

gratings direction. For temporal precision of single cells, for each neuron we calculated the Victor-Purpura 

(VP) distance6 between pairs of trials of the same direction. Since VP is sensitive to the number of spikes 

(i.e. sparsity), we divided by the mean spike count for the trials in the pair. We chose q=1 for the cost. 
Population-level variability was measured by the L2 (Euclidean) norm between each pair of population 

vectors for trials of the same drifting grating direction. We formed population vectors by counting the spikes 

for each neuron across the duration of the trial. The L2 metric was normalized by the mean of the total 

spikes in the trials in the pair to adjust for sparsity differences. 
  
Information quantification 
The mutual information (in bits) between the neural response r and the stimulus directions was calculated 

as55: 

                                                        𝐼(𝑟; 𝑠) = ∑ 𝑃(𝑠)5 ∑ 𝑃(𝑟|𝑠) log- _
6(7|5)
6!(7)

`		7                                    (9) 

The neural responses r were binarized vectors of spikes for 5 neurons binned across 10 imaging frames 

(Fig. 5a), and vectors of spikes for 5 neurons across 3 imaging frames vertically concatenated into 15-by-1 

vectors (Fig. 5b). For all sub-FN consistent spikes in each dataset, we selected the 5 neurons with the highest 

(average, in Fig. 5c) firing rate across the first 100 imaging frames of all trials in the original spikes. The 

above sum is then computed across all unique values of r for each stimulus direction s, using P(s)=1/12 for 

all s, and we scaled raw information value by the average number of spikes in a vector to obtain bits per 

spike. In Fig. 5d we have used the same 5 neurons but took r to be spikes that are not consistent with edges 

in the sub-FN examined.  
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Feedforward pattern recognition neural network decoder 
We employed a multiclass decoder with N input units for N neurons, and 12 output units, one for each 

direction of drifting gratings. The input and output layer are connected by all-to-all feedforward 

connectivity with random initial weights. As inputs, we binned spikes in 10 consecutive imaging frames to 

a population vector of size N. 90%-10% of the trials were used as training and test sets, respectively. The 

weights were trained by conjugate gradient with Matlab’s machine learning toolbox. We trained the weights 

for the original spikes and the sub-FN consistent spikes separately.  
  
Support vector machine (SVM) decoder 
To confirm the results of the feedforward neural network decoder, we used the same inputs, i.e. population 

vectors of spikes binned at 10 frames from 90% of the trials, to train a Support Vector Machine (SVM) 

decoder with a linear kernel. Training was performed with Matlab’s fitcecoc.m function. We tested on the 

remaining 10% of trials.   
   
Controls 
In order to test for the possibility that any spiking activity that is organized in pairs of consecutive spikes 

accounts for the decoding performance, we designed a stringent control that preserves the density of the 

sub-FNs as well as the resulting pairwise structure of spikes. We randomly permuted the edges in each sub-

FN before intersecting with each trial. We then binned the spikes in each 10 frames as with the real spikes, 

and passed them through the SVM decoder as described above. 
  
Statistical analysis and code 
Means and standard deviations across datasets or neurons are reported throughout the paper as M±SD unless 

stated otherwise. In the case of analysis with multiple time points (for example, Fig 6a,b and Fig 7a-c) 

analysis of variance (ANOVA) was performed for every time point separately. p values were bonferroni 

corrected in cases of multiple comparisons. All analysis was done in Matlab 2018 or later (Mathworks) and 

Python 3.7. 
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