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Abstract

The relationship between the number of cells colonizing a new environment and time for
resumption of growth is a subject of long-standing interest. In microbiology this is
known as the “inoculum effect”. Its mechanistic basis is unclear with possible
explanations ranging from the independent actions of individual cells, to collective
actions of populations of cells. Progress requires precise measurement of lag-time
distributions while at the same time, experimentally controlling inoculum size. Here we
use a millifluidic droplet device in which the growth dynamics of hundreds of
populations founded by different numbers of Pseudomonas fluorescens cells, ranging
from a single cell, to one thousand cells, were followed in real time. Our data show that
lag phase decreases with inoculum size. The average decrease, variance across droplets,
and distribution shapes, follow predictions of extreme value theory, where the inoculum
lag-time is determined by the minimum value sampled from the single-cell distribution.
Our experimental results show that exit from lag phase depends on strong interactions
among cells, consistent with a ”leader-cell” triggering end of lag phase for the entire
population.

Introduction 1

When bacteria encounter new environmental conditions, growth typically follows four 2

phases: a lag phase, during which bacteria acclimate, but do not divide; an exponential 3

phase, during which cells multiply; a stationary phase, where nutrient exhaustion causes 4

cessation of growth; and finally a death phase, during which cells may lyse. 5

In a fluctuating environment, each phase can play an important role in population 6

persistence. The lag phase has particular significance because of both benefits 7

(enhanced growth) and costs (sensitivity to external stressors) associated with the 8

resumption of growth [14,25]. The time to resumption of growth — and controlling 9

factors — has significant implications for the entire field of microbiology [13], but 10

especially for infection caused by pathogens and for food safety [3, 17,22]. 11

Despite its discovery more than 100 years ago [15], cellular and molecular details 12

defining the lag phase, factors triggering resumption of growth, and contributions to 13
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fitness, are not well understood. This is largely a consequence of the difficulties 14

associated with experimental quantification of the dynamics of populations founded by 15

small numbers of cells. Nonetheless, advances over the last decade have shown that 16

bacteria in lag phase are transcriptionally and metabolically active [19], that lag phase 17

is a dynamic state, that single cells are heterogeneous in time to resume 18

division [2, 9, 14,25], and that numerous factors affect its duration [3]. 19

Arguably the most intriguing aspect of lag phase biology is the apparent inverse 20

relationship between the number of cells in the founding population and duration of lag 21

phase — often referred to as the “inoculum effect”. First reported in 1906 [18], the 22

relationship has been shown to hold for a number of different bacteria [10–12,16], 23

although there exist few recent quantitative investigations. In certain instances, the 24

inoculum effect is observed only under specific culture conditions [1, 10]. 25

Factors controlling the inoculum effect are of special interest [1, 3, 5, 8, 11, 22]. Given 26

that bacterial cells are typically variable in many of their properties, the simplest 27

explanation posits that population lag time is determined by the set of cells with the 28

shortest time to first division. Accordingly, the larger the founding population, the more 29

likely it is that the inoculum contains cells on the verge of division, with these cells 30

contributing disproportionately to the resumption of population growth. 31

An alternate explanation is that resumption of growth depends on interaction among 32

founding cells, for example, via production of an endogenous growth factor: once a 33

critical threshold concentration is achieved growth resumes and thus the larger the 34

inoculum, the sooner the threshold is achieved. Evidence in support of such control 35

derives from analysis of Bacillus [11], Francisella (formerly Pasturella) tularensis [8], 36

Micrococcus luteus [23] and Aerobacter aerogenes [5]. 37

In instances where exit from lag-phase is determined by interactions among founding 38

cells, models have assumed that all cells are equal contributors to the production of 39

growth activating factors [10,11]. However, an alternative possibility exists, namely, 40

that population lag time is set by the activity of a single ”leader cell” that triggers 41

resumption of growth for the entire population of cells. Distinguishing among 42

competing hypotheses requires precision measurements of population growth, high levels 43

of replication, ability to control inoculum size, and crucially, knowledge of the 44

distribution of lag times for single cells. 45

Here we use a millifluidic droplet device in which the growth dynamics of hundreds 46

of populations founded by different numbers of Pseudomonas fluorescens cells were 47

followed in real time. Data confirm that length of lag phase decreases with inoculum 48

size. We demonstrate that statistical properties of droplets with varying inoculum sizes 49

follow extreme value theory, where population lag time is determined by the minimum 50

value sampled from the single cell distribution. Our experimental results show that exit 51

from lag phase depends on strong interactions among cells consistent with a leader-cell 52

triggering end of lag phase for the entire population. 53

Materials and Methods 54

The strain. The ancestral strain of Pseudomonas fluorescens SBW25 was isolated 55

from the leaf of a sugar beet plant at the University of Oxford farm (Wytham, Oxford, 56

United Kingdom [20]). The strain was modified to incorporate, via chromosomally 57

integrated Tn7, the gene GFP-mut3B controlled by an inducible Ptac promoter. 58

Preparation of the cells P. fluorescens SWB25 was grown in casamino acid 59

medium (CAA). CAA for 1l: 5g of Bacto Casamino Acids Technical (BD ref 223120), 60

0.25g MgSO4 · 7 ·H2O (Sigma CAS 10034-99-8), 0.9g KH2PO4 (Melford CAS 61

7758-11-4). Prior to generation of droplets SBW25 was grown from a glycerol stock for 62

19h in 5ml of CAA incubated at 28°C and shaken at 180 rpm. At 19h this culture was 63
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centrifuged at 3743 RCF for 4min and the supernatant removed from the pellet. The 64

pellet was then resupended in 5ml of sterile CAA. It was then centrifugate and 65

resuspended one more time. This prevents any interference of a growth-activator that 66

may come from the supernatant of the overnight culture. The washed culture was then 67

adjusted to OD 0.8 with CAA and mixed 1:1 in volume with autoclaved 30%v/v 68

glycerol. 100µl aliquots were pipetted in 1ml eppendorf and frozen at -80°C. After 69

freezing, one aliquot was taken to measure viable cells by plating on agar. We found 70

1.62 · 108 cell·ml-1. 71

Generation of droplets with a range of inoculum sizes. Each experiment 72

with a range of inoculum sizes was prepared as follows. One frozen aliquot was thawed 73

and diluted in 4ml of sterile CAA (with appropriate intermediate dilutions) by 74

7.04 · 104×, 1.76 · 104×, 1.76 · 104×, 4.4 · 103×, 1.1 · 103×, 2.75 · 102×, 6.875 · 101×. We 75

completed the dilutions from frozen stock by adding 29.1µl, 29µl, 28.6µl, 27.3µl, 21.8µl 76

and 0µl, respectively, of sterile 60% v/v glycerol. This step is very import to balance 77

the glycerol coming from the frozen stock and ensure that all the tubes have the same 78

composition of medium (see Supplementary Fig. 5). We then added 50µl of sterile 79

IPTG (100mM) to each sample. Each dilution was then pipetted in wells (250µl/well) 80

of a 96 well microtitre plate to proceed to the generation of the droplets in the Millidrop 81

Azur©. Droplets have a volume of 0.4µl which yields, with our dilutions, a range of 82

inoculum sizes as follows: 1, 4, 16, 64, 256, 1024 cells/drop. We generated 40 replicate 83

droplets for each population of a given founding inoculum size, except for populations 84

founded by 1024 cells, which for technical reasons were restricted to 30 replicates. 85

The inoculum of droplets follows a Poisson distribution. Importantly, the 86

inoculum size in each droplet is controlled by the Poisson process occurring during the 87

formation of a drop from the 96 well-plates. Therefore the inoculum that we report here 88

is the average inoculum. For a given inoculum the actual number of cells inserted in the 89

droplets follows a Poisson distribution. Hence for a given inoculum the variance of the 90

number of cells between the droplets is equal to the average inoculum. 91

Generation of droplets with inoculum 1. To generate droplets with an 92

inoculum of 1 cell/drop we diluted in sterile CAA a frozen alicot by 7.04 · 104×, added 93

29.1µl of sterile 60% v/v glycerol and 50µl of sterile IPTG (100mM). We generated 230 94

droplets in the Millidrop Azur that yielded 156 droplets that grew due to the Poisson 95

process inherent to the sampling process. 96

Calculation of the uncertainty of measurement for the inoculum 1 4Nth 97

is the uncertainty on the threshold Nth = 1.6 · 108 cell·ml-1. The uncertainty of the 98

calibration Fig. 10 gives 4Nth = 0.7 · 108 cell·ml-1 for this value as depicted by the grey 99

area. 4tth is the uncertainty of the time when the population reaches beyond the 100

threshold Nth. We take its value as equal to the sampling frequency of the machine 101

4tth = 18min. λ is the average growth rate of populations in droplets and 4λ is the 102

uncertainty. These quantities are estimated with the distribution of the growth rate 103

shown Fig. 8: λ = 0.84 h-1 and 4λ = 0.02 h-1. 4N0 is the uncertainty on the inoculum 104

size. In the experiment with inoculum 1 shown Fig. 2B, 230− 156 = 74 droplets were 105

empty despite being generated from the same mother culture. This is due to the 106

randomness of the pipetting process that fills droplets of bacteria according to a Poisson 107

process. The randomness of the process gives intrinsically an uncertainty on N0. In the 108

following we explain how this was estimated. Knowing the number of empty droplets in 109

the experiments allows calculation of the precise average inoculum of the experiment: 110

n = 1.134 cells/drop. This average takes into account the empty droplets with zero 111

bacteria but we only measure the non-empty droplets. To estimate the average 112

inoculum of the non-empty droplets we simply draw numerically a large series of 113

random numbers with a Poisson probability of parameter n = 1.134 and calculate the 114

average and the SD of the non zero values. This yielded an average of 1.7 and an SD of 115
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0.9. Therefore we consider that for our experiment in an ideal case with an infinite 116

number of droplets the uncertainty on the inoculum of the droplets will be intrinsically 117

4N0 = 0.9 cell/drop and that the averaged inoculum (of the filled droplets) is N0 = 1.7 118

cell/drop. All together these values allow calculation of the uncertainty of the lag time 119

estimated by equation 1. The expression of uncertainty is given by equation 2 and 120

numerical application gives 4θ = 0.88 h. 121

Results 122

High-throughput quantification of bacterial population 123

dynamics with millifluidic technology. 124

To investigate the relationship between inoculum size and duration of lag phase, we 125

used a millifluidic device to quantify the dynamics of bacterial population growth across 126

time. The device allows the monitoring of 230 bacterial populations compartmentalized 127

in droplets contained within a tube. Fig. 1A shows a portion of the tube with two 128

droplets filled with cells. Statistical power of the experiment comes from precise control 129

of large numbers of droplets, in terms of both inoculum size and homogeneity of culture 130

conditions: Fig. 1B shows the growth dynamics of 40 replicate populations. 131

Exponential growth and stationary phase are clearly seen, while lag time is concealed 132

behind the detection threshold (grey area). Fig. 1C shows the growth dynamics from a 133

population contained within a single droplet, and the inference of lag time from the 134

best-fit exponential growth curve. 135

The four phases of P. fluorescens growth are described by parameters estimated 136

from time series that report the population density. Density is estimated by the 137

fluorescence intensity of the population composed of GFP-labelled bacteria. The 138

exponential growth rate, λ, is the maximum slope of the time series on a y-semi-logscale 139

(we use a Gaussian processes method that makes no a priori assumption about the 140

shape of the growth curve [21]). The final population size is estimated directly from 141

measurements; death phase is not significant in our experiment and is ignored. The lag 142

phase τ , is the time cells spend in a non-dividing phase prior to onset of exponential 143

growth. Hardware limitations mean that fluorescence data are unobtainable for cell 144

densities below 1,600 cells per droplet (4 · 106 cell/ml) and thus τ must be estimated 145

indirectly. This is done by firstly taking an arbitrary point (tth, Nth) in exponential 146

phase where cell density is Nth = 1.6 · 108 cell·ml-1. By rearranging the equation for 147

exponential growth: Nth = N0e
λ(tth−τ), and making τ the subject 148

τ = tth − log(Nth/N0)/λ (1)

A geometrical counterpart of equation 1 gives the population lag time as the time 149

point at which the exponential growth (line in semi-log scale) intersects the horizontal 150

line that depicts the inoculum density (see Fig. 1C). 151
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Figure 1. Bacterial population growth in droplets. (A) Two droplets of 0.4 µl are
separated by an air spacer (to prevent droplet coalescence) inside the tube of a millifluidic
machine. Droplets are prepared by ”sipping” samples from a 96 well plate. Typically
230 droplets are produced from six mother cultures that differ solely in the number
of founding cells (the inoculum). Each mother culture delivers 40 replicate droplets,
but for technical reasons that last delivers 30 replicates. Droplets move back-and-forth,
via changes in pressure, passing in front of a fluorescence detector every ∼18 minutes.
P. fluorescens SBW25 cells express GFP from a chromosomally integrated reporter,
allowing changes in biomass to be determined based on intensity of the fluorescent signal
(excitation at 497 nm emission at 527 nm). Signal intensity is calibrated to cell density
by plate counting (Supplementary Fig. 10). The range of detection extends from 4 · 106

to 5 · 109 cell·ml-1 (1.6 · 103 to 2 · 106 cells per droplet). The grey area on subfigures
(B) & (C) denote the bacterial density that are below the threshold of detection. (B)
Fluorescent signal across time from 40 replicate populations (in semi-logscale) in droplets
prepared from the same mother culture. The average inoculum in each droplet is 1.6 ·105

cell·ml-1, thus 64 cells per droplet. In this example the signal met the detection threshold
at ∼7 h, by which populations are in exponential growth phase. At ∼20 h, stationary
phase is reached, marked by cessation of growth. (C) A single time series showing
population growth within a single droplet coming from the set of replicates shown in
(B). The left y-axis is shared between these two plots. The blue line depicts cell density
derived using DropSignal [6] and the shaded area represents the standard deviation (SD).
Population lag time is inferred by extrapolating the exponential growth (purple dotted
line) to its intersection with the inoculum density (purple horizontal dotted line) . The
specific point (tth, Nth) of the growth curve is fixed to a cell density of Nth = 1.6 · 108

cell·ml-1 (64, 000 cells per droplet). The right y-axis in red gives the derivative of the
time series (continuous bell-shaped line in red) with its shaded area denoting SD (which
is small).
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Duration of lag phase depends on the number of founding cells. 152
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Figure 2. Simulations are consistent with exit from lag phase being depen-
dent upon a single leader cell. (A) Shows the relationship between inoculum size
and population lag time (τ). Diamond symbols are the mean lag times of populations
for given inoculum sizes with error bars denoting the standard deviation (SD). The
three colours correspond to independent experiments. (B) shows the distribution of
cell lag times (θ) in an experiment that monitored population growth in 156 droplets
inoculated with on average a single bacterium (blue points). CDF is the cumulative
distribution function, where the y-value give the probability that the cell-lag times
assume a value less than or equal to the x-values. The measured distribution is fitted to
a log-normal distribution (green dotted line) with a mean of 6.8h and a SD of 1.3h. A
Gaussian ”de-blurring” applied to these data generates the corrected distribution of cell
lag times (red dotted line). The dashed blue line in (A) is the result of simulations in
which populations are founded by bacteria with lag times drawn at random from the
corrected distribution of cell lag times (see (B)) (the shaded area corresponds to plus
and minus SD). The continuous blue line in (A) are results from simulations performed
as previously, however, after virtual populations are founded, the lag time of all cells
is set to the minimum cell lag time, ie synchronization to leader cell (the shaded area
corresponds to plus and minus SD).

In Fig. 2A the average lag time from three independent experiments is shown as a 153

function of inoculum size. Lag time decreases monotonically from 6.4± 1.1h for 154

droplets inoculated with a single cell, to 4.4± 0.3h for an inoculum size of 1,024 cells. 155

Note that the standard deviation (SD), represented by the error-bars in the figure, 156

decreases monotonically and rather slowly with increasing inoculum size. 157

We also examined the dependence of other growth parameters on inoculum size. 158

Initial experiments showed an effect on final cell density, however this was found to be a 159

consequence of subtle differences in glycerol concentrations arising from dilutions of 160

frozen glycerol-saline stock cultures used to prepare founding inocula. When corrected, 161

no effect of inoculum size on final cell density was observed. This technical, but 162

important experimental observation is explained in Supplementary Fig. 5. Additionally, 163

no effect of inoculum size on mean growth rate was detected, although the variance 164

across droplets decreased. Details are provided in Supplementary Fig. 6. 165

What might be the basis of the decrease in mean lag-time with inoculum size? There 166

are three mutually exclusive explanations with all three recognising that populations of 167

cells are heterogeneous with regard to individual cell lag times as a consequence of 168
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innate phenotypic variability. Explanation I posits no interaction among cells, with 169

population lag time being set by an event equivalent to a selective sweep that is 170

initiated by the cell (or cells) with the shortest cell lag time. 171

Explanations II and III involve interactions among cells and can be thought of in 172

terms of two extremes of a continuum. Explanation II posits that all cells contribute 173

equally (mean field) to the production of some growth-stimulatory factor. Explanation 174

III recognises that population lag time might be set by the cell with the shortest lag 175

time and whose activity triggers division of other cells. We demonstrate below that 176

distinguishing between these alternate explanations is possible via quantitative data 177

obtained from the millifluidic droplet device that includes knowledge of the distribution 178

of lag times from populations founded by single cells. 179

Precise estimation of the distribution of cell-lag times from 180

inocula containing a single bacterium. 181

To quantify the lag time of individual bacteria, 230 droplets were inoculated by – on 182

average – a single bacterium, resulting in growth in 156 droplets (the inoculation of 183

droplets follows a Poisson process). For each droplet, the lag time was estimated as in 184

Fig. 1A. The resulting distribution of lag times is shown in Fig. 2B (blue dots). In this 185

case, the lag time of each population is equal to the lag time of the founding cell and is 186

denoted θ. The heterogeneity of cell lag times is broad, ranging from ∼4 h to ∼12 h. 187

The mean value of the data is mexp = 6.8 h with SD σexp = 1.3 h. A Shapiro-Wilk test 188

applied on the logarithm of the data reveals the underlying distribution to be 189

log-normal (see also the quantile-to-quantile plot shown in Supplementary Fig 9). 190

Fitting a log-normal function (green dashed line in Fig. 2) yields log-normal parameters 191

µ = 1.9 and s = 0.2. 192

Although the fit is good, there is necessarily uncertainty in the estimation of lag 193

times due to the fact that they are calculated by extrapolation (Eq. 1). This 194

uncertainty stands to blur the ”true” distribution of lag time. Eq. 1 expresses the 195

dependence of individual lag times, labeled θ, on parameters used in the estimation of 196

this quantity: tth, N0, Nth and λ. The error propagation is estimated by expansion of θ 197

according to a Taylor series, assuming independent variables. This allows the 198

uncertainty 4θ to be calculated as: 199

4 θ =

√
(4tth)2 +

(
4Nth
λNth

)2

+

(
4N0

λN0

)2

+

(
4λ
λ2

)2

(2)

where 4tth , 4Nth, 4N0 and 4λ correspond to the uncertainty of tth, Nth, N0 and λ, 200

respectively. Given the values of these uncertainties, we estimate 4θ = 0.88h (see 201

Materials and Methods for details of calculations). 202

The uncertainty associated with direct measurements thus blurs the ”true” 203

distribution of single cell lag times, which is less dispersed, i.e., it has a smaller SD (σ). 204

To estimate the value of σ we consider a Gaussian noise of zero mean and a SD equal to 205

the uncertainty of measurement σnoise = 4θ. Deconvolution of the Gaussian noise from 206

the measured distribution [4] amounts to subtracting the noise and variance of the noise 207

from that of the measurements to get the mean and variance of the ”true” underlying 208

distribution: 209

< θ >= mexp −mnoise ≈ 6.8h, (3)
210

σ2 = σ2
exp − σ2

noise ≈ 1.0h2. (4)

The true distribution remains lognormal. With the mean and variance of the true 211

log-normal it is possible to obtain its parameters µ and s via: 212

7/36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477561
http://creativecommons.org/licenses/by-nc-nd/4.0/


µ = log
(
〈θ〉2/

√
σ2 + 〈θ〉2

)
and s2 = log

(
σ2/〈θ〉2 + 1

)
. Expression of the true 213

distribution of lag time is thus: 214

f(θ) =
1

θs
√

2π
e−

(ln(θ)−µ)2

2s2 (5)

The red dotted line in Fig. 2B denotes the cumulative distribution function (CDF), 215

corrected for measurement noise and is narrower than that obtained by direct 216

measurement. This distribution can now be used to examine the previously proposed 217

explanations for the dependence of population lag time on inoculum size. 218

A selective sweep initiated by cells with the shortest lag time is 219

inconsistent with the data. 220

Having obtained the corrected distribution of single cell lag times, it is now possible to 221

investigate whether the relationship between lag time and inoculum size is explained by 222

sweeps initiated by cell(s) with the shortest lag time (Explanation I). In this case cells 223

are independent and do not interact. To test this hypothesis, growth of populations 224

within droplets established from different numbers of founding cells were simulated and 225

the match with experimental data determined. Thousands of virtual droplets were 226

founded by cells drawn from the true distribution (shown in Fig. 2B) with an 227

exponential growth rate drawn from the distribution of experimental growth rates (see 228

Supplementary Fig. 8). Cells were then allowed to replicate within droplets. To 229

precisely mimic the experimental protocol, the time tth at which populations reach 230

Nth = 64, 000 cells (equal to a density of 1.6 · 108 cell·ml-1) was determined. Eq. 1 was 231

then used to calculate the lag time of each population with known N0 and with known 232

mean growth rate λ. The blue dotted line in Fig. 2A shows the results of these 233

simulations. 234

In marked contrast to the experimental results, these simulations of independent 235

(non-interacting) cells show almost no dependence of the mean population lag time on 236

inoculum size. In addition, the decrease in variation across droplets, represented by the 237

SD of lag time (error bars), decreases rapidly, which is contrary to the experimental 238

data, where SD decreases very slowly. 239

The vanishing SD arising from simulations is understandable as a statistical effect. 240

It is well know that several series of N0 random numbers normally distributed have a 241

mean value that is also normally distributed, and that the SD of these means decreases 242

as 1/
√
N0. This is precisely what is observed. The lag times of founder cells of a 243

population is a series of independent random lag times drawn from the true distribution 244

of single cell lag times. Populations that are founded with more cells provide a more 245

faithful sample of the single cell lag time distribution (Fig. 2B), and therefore the 246

variation in lag times among populations decreases rapidly with increasing inoculum 247

size. The discrepancy between experiment and model shows that the experimentally 248

determined inoculum effect cannot be explained by independent growth of cells despite 249

the variability of cell lag time. 250

A simple calculation is further instructive. The true CDF of single cell lag times 251

shown in Fig. 2B has a value of 0.025 for a lag time of 5 h. This means that in a droplet 252

founded by 1024 cells there will be 0.025× 1024, or approximately 25 cells with a lag 253

time equal to, or shorter than, 5 h. In the same manner one can estimate from the CDF 254

shown in Fig. 2B that for 1024 founding cells, 737 have a lag time between 5.8 h and 255

7.8 h ((0.86− 0.14)× 1024 ≈ 737 cells), close to the mean cell lag time (6.8 h). Given 256

the single cell growth rate λ = 0.84 h-1 (Supplementary Fig. 8), the generation time is 257

g = 0.83 h. Thus, the 25 cells that start dividing before 5 h pass through 258

(6.8− 5.0)/g ∼ 2 generations before the 737 cells with a lag time of ∼ 6.8 h start 259
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multiplying. Two generations of 25 cells yield 25× 22 = 100 offspring. Clearly, cells 260

with a short cell lag time do not exert a dominant sweep effect on the population: the 261

growth rate is too slow for these cells to significantly affect population growth. Besides, 262

there exists only the most marginal correlation between growth rate and cell lag time 263

(Supplementary Fig. 8). This conclusively excludes Explanation I, namely, that a sweep 264

initiated by cells with a short lag time underpins the observed inoculum effect. 265

A leader cell triggering end of lag time of the population is 266

consistent with the data. 267

We now turn to Explanations II and III that involve interactions among cells within the 268

founding inoculum. At one extreme case (Explanation III), collective growth is governed 269

by a single event that synchronises population growth to the cell with the shortest lag 270

time. This will happen if the cell that divides first signals this effect to other cells 271

within the founding population, such that the entire population exits lag phase almost 272

simultaneously. We first examine the consequences of this assumption and compare it to 273

the data, and then consider the alternative scenario, namely, Explanation II, in which 274

interactions among cells involve all cells contributing equally (mean field) to the 275

production of a growth-stimulating factor. 276

In statistical terms, we assume that an inoculum of N0 cells is a random sample 277

from the single cell lag time distribution f(θ) (Fig 2B). In the case of a leader cell that 278

triggers growth for all other cells, the measured population lag time will be equal to the 279

shortest cell lag time in the sample, θmin. Several populations starting with N0 cells 280

gives a collection of θmin (one value coming from each population). Extreme Value 281

Theory (EVT) provides a framework for statistical analysis of the extreme value of a 282

sample, such as the shortest lag time θmin among N0 cells [7]. In the limit of large 283

samples, EVT predicts the dependence of the mean and variance of a collection of θmin 284

coming from sample of size N0. It also predicts that the distribution of θmin from 285

populations founded by cells of a given inoculum size will approach a limiting fixed 286

shape after appropriate normalization as the sample size increases; the precise shape is 287

determined by the global properties of the single cell distribution f(θ). 288

The unique features of our experiment create an ensemble of droplets with controlled 289

inoculum size, and a measurement of the population lag time for each, labelled τ . These 290

data provide the statistical properties required to test the hypothesis that 291

τ = θmin(N0), namely that the population lag time is equal to the minimum cell lag 292

time among the N0 single cells of the inoculum. For this we use predictions given by 293

EVT on the distribution of θmin and ask whether they hold for the measures of τ . 294

The first prediction is that both the average and the SD of θmin from populations 295

founded by cells of a given inoculum size decreases slowly with inoculum size N0. The 296

precise scaling is derived from the single cell distribution f(θ) (see Appendix in the 297

Supplementary Information), we find the scaling to be: 298

〈θmin〉∼ A−B
√

lnN0 (6)

σ(θmin) ∼ 1/
√

lnN0 (7)

where A and B are constants. Strikingly, both predictions agree well with the 299

population lag time τ . Fitting the curve of Eq. 6 to the experimental data on the 300

relationship between mean population lag time (〈τ〉) and inoculum size, reveals a close 301

match Fig. 3A&B. The same holds for the SD fitted to Eq. 7. We note that although 302

testing this prediction involves fitting constants, the dependence on sample size N0 303

through
√

ln (N0) is nontrivial and unique to the predictions of EVT. 304
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Figure 3. Statistical properties of lag times. For three independent experiments
(colors), mean lag times (A) over populations and their SD (B) are depicted as a
function of inoculum size. The scaling relations predicted by EVT are shown in dashed
lines: y = 6.84−0.86

√
lnN0 for the mean and y = 1/

√
lnN0 for the SD. The inset

in (B) shows the variance (σ2) as a function of the mean. Each point is calculated
over 40 replicate populations (droplets). The dashed line depicts the scaling relation
predicted by EVT between the mean and the variance. See Supplementary Appendix for
details of the scaling. (C) Cumulative Distributions of population lag times for different
inoculum sizes (N0, colors). The curves derive from the pooled data of three independent
experiments yielding at least 120 population lag times for each. (D) Same data as in
(C), scaled by subtraction of empirical mean and division by SD. The black line with
circle markers depicts the fit by the universal distribution predicted by the EVT. The
y-axis is shared between (C) and (D).

A further prediction is that the distribution of minimal values (θmin), drawn from 305

different sample sizes, tends to a universal shape in the limit of large samples. Although 306

strictly speaking this holds in the limit N0 →∞, in practice it may be expected to hold 307

also for finite samples - even relatively small ones. For each sample size N0, our 308

experiment provides a distribution of population lag times (τ), estimated over all 309
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droplets with the same inoculum size. These CDFs are depicted in Fig. 3 for all 310

inoculum sizes that are above 4 cells. To test whether the prediction on θmin holds for 311

the population lag time τ , we normalize each CDF of τ by subtracting its mean and 312

dividing its SD. Fig. 3B shows the result of this scaling and demonstrates that the 313

distributions of τ collapse on one another is if τ = θmin. The light blue curve, 314

corresponding to inoculum N0 = 4, deviates from the rest - possibly indicating that this 315

sample size is still too small to acquire the limiting shape. 316

Moreover, the universal distribution itself is also predicted by EVT. Its CDF has the 317

form: 318

F (θmin) = e−(1+kz)
−1/k

, z=(θmin− θ0)/γ, (8)

with location and scale parameters θ0, γ and a shape parameter k that reflects 319

properties of the parent distribution f(θ), specifically the decay at its tails. Fitting the 320

normalized data with this formula reveals an excellent match between the universal 321

distribution and the normalized distributions of τ obtained from populations founded by 322

a given inoculum size (N0) (black line in Fig. 3B), at least for inoculum sizes above 4 323

cells per droplet. The analytical formula for the distribution justifies the empirical 324

procedure of normalizing by sample mean and standard deviation used above as a test 325

for the universal shape (see Appendix in Supplementary Information). 326

As a corollary of the predictions in Eqs. 6,7, the variance and mean of the 327

distributions of extreme values drawn from different sample sizes follow a well-defined 328

relationship (see Appendix). The agreement of this relationship with the population lag 329

time data is shown in the inset of Fig. 3B. 330

Taken together, the scaling of the mean and SD of τ according to the inoculum size 331

(Eq. 6 & 7), the resulting relationship between variance and mean of τ , the collapse of 332

normalized distributions of τ at different sample (inoculum) sizes, and the fit of the 333

normalized distribution to the theoretical formula Eq. 8, are consistent with population 334

lag time being equal to the shortest cell lag time θmin in the inoculum. We conclude 335

that, at the time of the shortest lag time in the inoculum, many cells must start 336

growing in parallel, ie τ = θmin. 337

A single leader cell determines population lag time. 338

The agreement of statistical properties with predictions from EVT suggest that exit 339

from lag phase is triggered by a single event – possibly a single leader cell – that signals 340

the exit from lag to all other cells. To test this hypothesis we performed a set of 341

simulations where an additional condition was introduced. As for previous simulations 342

at each inoculum size, thousands of virtual populations were generated (see simulation 343

code in the Appendix of Supplementary Information). For each population the cell lag 344

time of each founder cell was drawn at random from the experimental single cell lag 345

time distribution Fig. 2B. However, here, a new condition was added, namely, that all 346

founder cells have a single cell lag time that is equal to the minimal cell lag time of the 347

leader cell. Hence for each virtual population, we first draw the cell lag time values of 348

founding cells, and then set these values to the minimal value of the shortest cell lag 349

time in that population. Note that the minimal cell lag times differ across populations 350

because each population is founded by cells drawn at random from the distribution Fig. 351

2B. This mimics the situation in which a leader cell with the shortest cell lag time in 352

the population triggers growth of all the other cells when it exits lag phase (τ = θmin). 353

As in the previous simulation, the numerical population was allowed to grow 354

exponentially with population lag time being estimated as per the experiments. 355

The results are depicted by the plain line in Fig. 2A and are a close match to the 356

experimental data over three orders of magnitude. Note that this is not a fit: the only 357

input is the true single cell lag distribution measured for populations founded by one 358
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cells (Fig. 2B). Additionally, results from the simulations match the slow decrease of lag 359

time variability among droplets observed in the experiments (shaded area Fig. 2A). Our 360

results thus provide an explanation for the relationship between size of the founding 361

inoculum and population lag time and are fully consistent with resumption of growth of 362

all the cells of the inoculum triggered by an event effected by a leader cell. This rules 363

out Explanation II that posits that all cells contribute equally to the exit of lag phase. 364

Thus far it is not possible to be certain as to whether population growth is triggered 365

by a single cell, or a small pool of cells, each having a short lag time. To investigate if 366

the experimental population lag time can be explained by the presence of a single leader 367

cell, rather than the presence of a small pool of leader cells, we performed a further 368

simulation. In this simulation we consider that cells produce a growth activator. When 369

concentration of the activator reaches a threshold, it triggers growth of all cells in the 370

inoculum that are still in lag phase. The concentration threshold of the growth 371

activator determines the size of the small pool of cells that contribute to its production. 372

If the threshold is low, it is sufficient that a single cell produces the growth activator. If 373

the threshold is set high, then multiple cells can end their inner lag phase before the 374

threshold is reached and contribute to the production of the activator. The duration of 375

lag phase for every cell, is as before, set by drawing a random value from the 376

experimental cell-lag distribution Fig. 2B (see code in Supplementary appendix). 377

Running simulations for a range of activator thresholds at different inoculum sizes 378

allows investigation of the number of cells that are able to end lag phase before the 379

occurrence of the triggering event. The results are depicted in the Supplementary 380

Information Figs 14&15. Evident is a strong dependence of population lag time on 381

inoculum size only when the threshold concentration of the growth activator is low. 382

Strikingly, we see that for a large range of activator concentrations, only a single cell as 383

the time to exit its inner lag phase before the triggering of the growth of all cells in the 384

population. This leads us to conclude that our experimental observation are fully 385

consistent with Explanation III, where a single leader cell to end lag phase for the entire 386

population. 387

Discussion 388

An inverse relationship between the number of bacterial cells founding a new 389

environment and the time to exit lag phase was first noted more than 100 years ago. 390

Despite its significance, rigorous validation has been lacking, and understanding of the 391

causes and controlling factors remain incomplete. Lack of progress has stemmed largely 392

from difficulties associated with experimental analysis of populations founded by few 393

cells. Progress requires ability to follow the growth dynamics of replicate populations 394

established from precisely determined numbers of founding cells. Additionally required 395

is knowledge of the distribution of lag times for hundreds of single cells. Once known, 396

statistical approaches can be used to link the distribution of population lag times, to 397

the behaviour of single cells. The nature of the relationship stands to shed insight on 398

cell-level causes of the inoculum effect. 399

Here, taking advantage of new opportunities presented by millifluidic technologies we 400

have obtained quantitative evidence from highly replicated populations founded by 401

controlled numbers of cells, that in populations of P. fluorescens SBW25, the time to 402

resume growth after transfer to a new environment is strongly influenced by size of the 403

founding inoculum. Moreover, the same technology has allowed determination of the 404

duration of lag phase for a sample of individual cells. The average decrease in time to 405

growth resumption, variance across droplets, and distribution shapes, follow predictions 406

of extreme value theory, consistent with the inoculum lag-time being determined by the 407

minimum value sampled from the single-cell distribution. Our experimental results thus 408
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show that exit from lag phase depends on strong interactions among cells, consistent 409

with a ”leader cell” triggering end of lag phase for the entire population. 410

This finding builds on recent work in which the time to first division of single 411

bacteria maintained in isolated cavities of microfluidic devices has been 412

measured [2, 9, 14, 25]. From such studies it is clear that there is substantial variation in 413

cell-level lag time with evidence that this variance can have profound fitness 414

consequences for population growth. For example, in fluctuating environments, 415

heterogeneity in the time for individual cells to resume growth, can facilitate survival in 416

the face of environmental change [9], especially that wrought by periodic antibiotic 417

stress [2, 14,25]. 418

Although microfluidic chambers used for analysis of isolated cells allow precision 419

measures of the distribution of lag times for single cells, such experimental devices do 420

not allow for interactions among cells, thus making problematic any attempt to connect 421

the distribution of single cell lag times to population lag times. In fact, extrapolation of 422

population lag times from knowledge of the distribution of single cell lag times would be 423

legitimate exclusively in the case of there being no interaction among cells. 424

Leaving aside previous evidence that interactions mediated by growth factors are 425

integral to the inoculum effect [10,11], linking cell and population level behaviours 426

necessarily requires the consideration of interactions among cells and thus it is essential 427

to obtain measures of both the lag time of individual cells and the lag time of 428

populations established from known inoculum sizes in precisely the same environment. 429

Moreover, the environment should be well mixed (spatially homogeneous and devoid of 430

surface effects) so that should emergent population-level behaviours be relevant, 431

mediated via, for example, production of diffusible growth factors, then the 432

experimental protocol allows for their effects to be captured. In this regard the 433

millifluidic device has proven fit for purpose. 434

In seeking an explanation for the observed inoculum effect we considered three 435

mutually exclusive explanations. Central to Explanation I was absence of interactions 436

among cells with the inoculum effect being explained by disproportionate growth of the 437

set of cells with the shortest time to first cell division. Both simulations and simple 438

calculations led to unequivocal rejection of this hypothesis. 439

Explanations II and III recognised the possibility of interactions among cells. 440

Because of the power of extreme value theory combined with well understood statistical 441

properties we chose to focus on whether population lag times were determined by the 442

minimum value sampled from the single-cell distribution (Explanation III). EVT makes 443

predictions as to the distribution of minimal cell lag times across droplets, which 444

surprisingly, also held for the distribution of population lag times measured in the 445

experiments, leading to the conclusion that the population lag time is equal to the 446

minimal cell lag time present in the inoculum. Simulations of population growth in 447

droplets based on this evidence delivered an almost perfect match to experimental data. 448

While conformity to Explanation III means that Explanation II in a strict sense (in 449

which all cells contribute equally (mean-field) to exit from lag phase) cannot hold, the 450

fact that there is a continuum of possibilities led us to perform additional simulations to 451

address whether our data are consistent with resumption of growth being triggered by 452

just a single leader cell. The findings fit surprisingly well and are fully consistent with a 453

single leader cell being sufficient to trigger resumption of growth for the entire 454

population. 455

An obvious next question concerns identity of the growth activator. While detailed 456

investigation are beyond the scope of this study, we nonetheless, considered the 457

possibility that iron chelation might trigger the effect. Such a possibility has been 458

previously suggested [10]. To this end we repeated the initial experiment in which the 459

time to resumption of growth was determined in replicate populations founded by 460
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different numbers of cells as in Fig 2A. Instead of SBW25 a mutant deficient in 461

production of the iron chelating compound pyoverdin was used P. fluorescens SBW25 462

pvdSG229A [24]. No change in the inoculum effect was observed (see Supplementary 463

Fig 13), thus ruling out pyoverdin as the activating molecule. 464

The relationship between the number of cells founding growth in a new environment 465

and duration of lag phase has profound implications for microbiology. While much 466

remains to be understood, including generality and molecular bases, the rigorous 467

quantification achieved here via a millifluidic device provides unequivocal proof of an 468

inoculum effect in P. fluorescens SBW25. Moreover our statistical analysis of the 469

distribution of population lag times is consistent with the activity of a single leader cell 470

triggering simultaneous growth for all cells in the founding population. 471

Acknowledgments 472

We thank Millidrop for development of the prototype Azur3 and their willingness to 473

engage in active collaboration. Discussion and input from Arjan De Visser, Jerome 474

Bibette, Andrew Farr, Lukas Geyrhofer, Isabelle Rivals, Clara Moreno-Fenoll, Jean 475

Baudry, Nicolas Bremon, Jean-Baptiste Dupin, Wilfried Sire, Ankur Chaurasia is 476

gratefully acknowledged. The work was supported by an HFSP grant ”Interrogating 477

bacterial social interactions in droplets” RGP0010/2015 478

Author contributions 479

M.A. & P.B.R. designed the experiment and determined the strains and relevant 480

experimental conditions, M.A. performed the experiments, M. A. & G.D. developed the 481

software to analyse the data, M.A & N. B. made the modeling and simulation, M.A., 482

N.B., P.B.R. wrote the paper. 483

Supplementary Appendix 484

Codes of simulation 485

First we give the code of the simulation to generate the Figs. 2A and 14&15: 486

487

close all 488

%clear all 489

Vdrop = 4.4e-4; %ml 490

491

Ndrop=1000; 492

inocula = logspace(0,3,10); %range of inocula to simulate 493

dt = 1/60; 494

timeSpan = 0:dt:30; 495

496

Nthresh = 1.6e8; %cell/ml. Threshold to calculate the lag time like in the 497

experiments. 498

499

SDNoise = 0.88; %SD of the noise 500

501

MM = 6.8246; %mean value of the Exp distribution of lag for logn 502

VV = 1.3322^2 - SDNoise^2; %SD of the Exp distribution of lag for logn 503

%calculate the new param of the logn to remove the noise 504

mu = log(MM^2 / sqrt(MM^2 + VV)); 505

s = sqrt(log(VV/MM^2 + 1)); 506
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507

508

mg = 0.8430; %average grate %1/h from inoculum 1 509

vg = 0.02; %SD grate from inoculum 1 510

511

%% simulation of the simple growth of bacteria in the droplets. Measure of the 512

lag for each droplet. 513

514

tmes = zeros(Ndrop,length(inocula)); 515

516

clear timeSeries tmes 517

for inoc = 1:length(inocula) %loop over the inoculum 518

for i = 1: Ndrop %loop over the drop 519

520

r = round(poissrnd(inocula(inoc))); %draw a random inoculum according to 521

the poisson distribution. 522

523

timeSeries = ones(r,length(timeSpan))*nan; %timeSerie of the growth for 524

each bacteria in this drop 525

clear tlag 526

tlag = lognrnd(mu,s,r,1); %draw randomly the cell-lag according to the 527

corrected cell-lag distribution measured. 528

529

grate = normrnd(mg,vg,r,1); %draw randomly the cell growth rate 530

according to the growth rate distribution measured. 531

532

timeSeries(:,:)= exp(grate.*(timeSpan-tlag)); % proceed to the 533

exponential growth of every bacteria of this drop. 534

timeSeries(timeSeries<1)=1; % the timeseries must start at 1 before the 535

division of the bacteria 536

537

%calculation of the cell concentration in this drop along the 538

%time by suming the timeSerie of its bacteria 539

l = size(timeSeries); 540

if l(1)==1 541

totDrop = timeSeries/Vdrop; 542

else 543

totDrop = nansum(timeSeries)/Vdrop; 544

end 545

546

%measure the lag of the droplet by finding the time at which the 547

%cell concentration gets above Nth like in the experiments 548

if r~=0 549

tau = timeSpan(find(totDrop>Nthresh,1,’first’)); 550

if isempty(tau) 551

tmes(i,inoc) = nan; 552

else 553

tmes(i,inoc) = ... 554

timeSpan(find(totDrop>Nthresh,1,’first’))... 555

-log(Nthresh*Vdrop/r)/nanmean(grate); 556

end 557

else 558

tmes(i,inoc) = nan; 559

end 560

end 561

end 562

563
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for i = 1:length(inocula) 564

tstat(i) = nanmean(tmes(:,i)); 565

tstsdstat(i) = nanSD(tmes(:,i)); 566

end 567

568

%% synchronistation demonstration of the synchronisation effect 569

clear tmes tsync tstsdsync 570

tmes = zeros(Ndrop,length(inocula)); 571

for inoc = 1:length(inocula) 572

573

for i = 1: Ndrop 574

575

r = round(poissrnd(inocula(inoc))); %draw a random inoculum according to 576

the poisson distribution. 577

578

if r~=0 579

timeSeries = ones(r,length(timeSpan))*nan; %timeSerie of the growth 580

for each bacteria in this drop 581

582

clear tlag 583

%log-normal 584

tlag = lognrnd(mu,s,r,1); %draw randomly the cell-lag according to 585

the corrected cell-lag distribution measured. 586

587

tlag = ones(r,1) .* (min(tlag)); %set all the cell-lags to the 588

minimal cell-lag of the leader 589

590

grate = normrnd(mg,vg,r,1); %draw randomly the cell growth rate 591

according to the growth rate distribution measured. 592

593

594

timeSeries(:,:)= exp(grate.*(timeSpan-tlag)); % proceed to the 595

exponential growth of every bacteria of this drop. 596

timeSeries(timeSeries<1)=1; % the timeseries must start at 1 before 597

the division of the bacteria 598

599

%calculation of the cell concentration in this drop along the 600

%time by suming the timeSerie of its bacteria 601

l = size(timeSeries); 602

if l(1)==1 603

totDrop = timeSeries/Vdrop; 604

else 605

totDrop = nansum(timeSeries)/Vdrop; 606

end 607

608

%measure the lag of the droplet by finding the time at which the 609

%cell concentration gets above Nth like in the experiments 610

tau = timeSpan(find(totDrop>Nthresh,1,’first’)); 611

if isempty(tau) 612

tmes(i,inoc) = nan; 613

else 614

tmes(i,inoc) = ... 615

timeSpan(find(totDrop>Nthresh,1,’first’))... 616

-log(Nthresh*Vdrop/r)/nanmean(grate); 617

end 618

else 619

tmes(i,inoc) = nan; 620
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end 621

end 622

end 623

624

for i = 1:length(inocula) 625

tsync(i) = nanmean(tmes(:,i)); 626

tSDsync(i) = nanSD(tmes(:,i)); 627

end 628

629

%% plot the curves of stat effect vs sync effect need to run the cell above 630

first. 631

632

%experimental points 633

lag = [ 6.564471 6.018853 5.392048 4.729353 4.375776 4.259628; ... 634

6.349308 5.901676 5.470768 4.871843 4.669578 4.680528; ... 635

6.377465 5.937269 5.553422 5.204688 4.640315 4.353197]’; 636

637

slag = [... 638

0.843766 0.700523 0.491303 0.519735 0.203902 0.199777;... 639

1.445141 0.974685 0.682811 0.469918 0.363288 0.316424; ... 640

1.120196 0.956412 0.731424 0.720511 0.455629 0.434152 ]’; 641

642

N0 = repmat([1 4 16 64 256 1024], size(lag,2), 1)’; 643

644

645

%plot the figure 646

647

figure(’Renderer’, ’painters’, ’Position’, [10 10 900 900]), 648

hold on 649

650

alpha = 0.1; 651

y = tsync; % your mean vector; 652

x = log(inocula); 653

SD_dev = tSDsync; 654

curve1 = y + SD_dev; 655

curve2 = y - SD_dev; 656

x2 = [x, fliplr(x)]; 657

inBetween = [curve1, fliplr(curve2)]; 658

fill(x2, inBetween, ’b’,’FaceAlpha’,alpha); 659

plot(x, y, ’.-b’, ’LineWidth’, 5,’MarkerSize’,20,’DisplayName’, ’Leader’); 660

661

y = tstat; % your mean vector; 662

x = log(inocula); 663

SD_dev = tstsdstat; 664

curve1 = y + SD_dev; 665

curve2 = y - SD_dev; 666

x2 = [x, fliplr(x)]; 667

inBetween = [curve1, fliplr(curve2)]; 668

fill(x2, inBetween, ’b’,’FaceAlpha’,alpha); 669

plot(x, y, ’.-.b’, ’LineWidth’, 5,’MarkerSize’,20,’DisplayName’, ’Stat’); 670

671

clr = {’b’ ’r’ ’g’ ’k’}; 672

for i = 1:size(lag,2) 673

h = errorbar(log(N0(:,i)), lag(:,i), slag(:,i),’d’, ’MarkerSize’,20, 674

’color’, clr{i+1}, ’LineWidth’,3, ’CapSize’, 40); 675

end 676

677
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set(gca,’FontName’,’Helvetica’) 678

xlim([-0.2 log(1500)]) 679

xticks( log(N0(:,1))); 680

xticklabels(N0(:,1)); 681

xlabel(’inoculum (cell/drop)’); 682

ylabel(’mean lag time (h)’); 683

title([’N0=1 noise SD=’ num2str(SDNoise) ]) 684

box(’on’) 685

grid(’on’) 686

set(gca,’LineWidth’,4) 687

set(gca,’GridAlpha’, 0.5) 688

set(gca,’FontSize’,60) 689

hold off 690
691

692

693

%%%The following code corresponds to the simulation producing the figures 694

13&14%%% 695

696

close all 697

%clear all 698

Vdrop = 4.4e-4; %ml 699

700

Ndrop=1000; 701

inocula = logspace(0,3,10); %range of inocula to simulate 702

dt = 1/60; %heures 703

timeSpan = 0:dt:30; %heures 704

705

Nthresh = 1.6e8; %cell/ml. Threshold to calculate the lag time like in the 706

experiments. 707

708

stdNoise = 0.88; %SD of the noise 0.87 with lambda and 2 sigma for the calib 709

stdNoiseTitle = stdNoise; 710

MM = 6.8246; %mean value of the Exp distribution of lag for logn 711

VV = 1.3322^2 - stdNoise^2; %std of the corrected distribution of the 712

experimental lag that gollows a logn 713

%calculate the new param of the logn to remove the noise 714

mu = log(MM^2 / sqrt(MM^2 + VV)); 715

s = sqrt(log(VV/MM^2 + 1)); 716

717

mg = 0.8430; %average grate %1/h from inoculum 1 718

vg = 0.02; %SD grate from inoculum 1 719

720

spanThActv = logspace(-5,2,11); 721

722

rActv = mg/log(2); %the rate of production of growth activator is the inverse 723

of the doubling time of cells. 724

725

%% synchronistation demonstration of the synchronisation effect 726

clear lagPop stdLagPop decsyncPop leadsyncPop 727

728

tmes = zeros(Ndrop,length(inocula)); 729

k=0; 730

for thActv = spanThActv 731

k = k +1; 732

clear tmes tsync tstsdsync decsync dec lead leadsync 733

734
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dec = ones(Ndrop,length(inocula))*nan; 735

lead = ones(Ndrop,length(inocula))*nan; 736

tmes = ones(Ndrop,length(inocula))*nan; 737

738

for inoc = 1:length(inocula) 739

740

for i = 1: Ndrop 741

742

r = round(poissrnd(inocula(inoc))); %draw a random inoculum 743

according to the poisson distribution. 744

if r~=0 745

timeSeries = ones(r,length(timeSpan))*nan; %timeSerie of the 746

growth for each bacteria in this drop 747

timeSeriesActv = zeros(r,length(timeSpan)); %timeSerie of the 748

growth activator for each bacteria in this drop 749

clear tlag 750

%lognormal 751

tlag = lognrnd(mu,s,r,1); %draw randomly the cell-lag according 752

to the corrected cell-lag distribution measured. 753

grate = normrnd(mg,vg,r,1); %draw randomly the cell growth rate 754

according to the growth rate distribution measured. 755

756

757

timeSeriesActv = exp(grate.*(timeSpan-tlag))-1; %production of 758

molecule is linear with number of cells so it follows the 759

exp growth 760

timeSeriesActv(timeSeriesActv<0) = 0; % molecule contration 761

cannot be negative. 762

timeSeriesActv = (timeSpan-tlag).*rActv.*timeSeriesActv; 763

%multiplication by time and production rate. 764

765

%calculate the total concentration of molecule produced by all 766

%the cell in the drop. Need of condition for drop with one cell 767

%(no need to sum over cells) 768

if r>1 769

actv = sum(timeSeriesActv); 770

else 771

actv = timeSeriesActv; 772

end 773

774

%find the time at which the concentration of molecule gets 775

%above a given threshold. 776

tActv = timeSpan(find(actv>thActv,1,’first’)); 777

778

dec(i,inoc) = tActv - min(tlag); % difference of lag time of the 779

leader cell and the lag time due to production of molecule. 780

lead(i,inoc) = sum(tlag<=tActv); 781

782

783

tlagActv = tlag; 784

tlagActv(tlagActv>tActv)=tActv; %every cells lag time end when 785

the molecule gets above the threshold. 786

787

788

timeSeries(:,:)= exp(grate.*(timeSpan-tlagActv)); % proceed to 789

the exponential growth of every bacteria of this drop. 790

timeSeries(timeSeries<1)=1; % the timeseries must start at 1 791
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before the division of the bacteria 792

793

794

%calculation of the cell concentration in this drop along the 795

%time by suming the timeSerie of its bacteria 796

l = size(timeSeries); 797

if l(1)==1 798

totDrop = timeSeries/Vdrop; 799

else 800

totDrop = nansum(timeSeries)/Vdrop; 801

end 802

803

%measure the lag of the droplet by finding the time at which the 804

%cell concentration gets above Nth like in the experiments 805

tau = timeSpan(find(totDrop>Nthresh,1,’first’)); 806

if isempty(tau) 807

tmes(i,inoc) = nan; 808

else 809

tmes(i,inoc) = 810

timeSpan(find(totDrop>Nthresh,1,’first’))-log(Nthresh*Vdrop/r)/nanmean(grate);811

end 812

else 813

tmes(i,inoc) = nan; 814

end 815

end 816

end 817

818

for i = 1:length(inocula) 819

tsync(i) = nanmean(tmes(:,i)); 820

tstdsync(i) = nanstd(tmes(:,i)); 821

decsync(i) = nanmean(dec(:,i)); 822

leadsync(i) = nanmean(lead(:,i)); 823

end 824

825

lagPop(k,:)=tsync; 826

stdLagPop(k,:)=tstdsync; 827

decsyncPop(k,:)=decsync; 828

leadsyncPop(k,:)=leadsync; 829

end 830

831

%% 832

close all 833

834

835

Y = repmat(log10(spanThActv)’,1,10); 836

X = repmat(log10(inocula),11,1); 837

Z = lagPop; 838

839

%population lag time vs threshold and inoculum 840

figure(’Renderer’, ’painters’, ’Position’, [10 10 900 900]), 841

surf(X,Y,Z); 842

843

%title(’population lag time’) 844

xlabel(’inoculum’) 845

xticks(log10(round(inocula))) 846

xticklabels(round(inocula)) 847

848
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ylabel(’threshold’) 849

yticks(log10(spanThActv(1:2:end))) 850

yticklabels(num2str(spanThActv(1:2:end)’,’%1.0e’)) 851

zlabel(’population lag time’) 852

c = colorbar; 853

set(gca,’FontSize’,30) 854

c.Location=’northoutside’; 855

view(35.207879105520632,39.388548057259705) 856

857

% population lag time minus leader cell lag time 858

figure(’Renderer’, ’painters’, ’Position’, [10 10 900 900]), 859

Y = repmat(log10(spanThActv)’,1,10); 860

X = repmat(log10(inocula),11,1); 861

decsyncPop(decsyncPop<=dt)=0; 862

Z = decsyncPop; 863

864

surf(X,Y,Z); 865

866

%title(’time difference between cell leader lag time and lag time of 867

population’) 868

xlabel(’inoculum’) 869

xticks(log10(round(inocula))) 870

xticklabels(round(inocula)) 871

872

ylabel(’threshold’) 873

yticks(log10(spanThActv(1:2:end))) 874

yticklabels(num2str(spanThActv(1:2:end)’,’%1.0e’)) 875

zlabel(’lag pop - lag leader cell’) 876

c = colorbar; 877

set(gca,’FontSize’,30) 878

caxis([0, 2]); 879

c.Location=’northoutside’; 880

view(35.207879105520632,39.388548057259705) 881

882

%number of cells that multiply before synchro 883

figure(’Renderer’, ’painters’, ’Position’, [10 10 900 900]), 884

Y = repmat(log10(spanThActv)’,1,10); 885

X = repmat(log10(inocula),11,1); 886

Z = leadsyncPop; 887

888

surf(X,Y,Z); 889

890

%title(’number of cell leaders’) 891

xlabel(’inoculum’) 892

xticks(log10(round(inocula))) 893

xticklabels(round(inocula)) 894

895

ylabel(’threshold’) 896

yticks(log10(spanThActv(1:2:end))) 897

yticklabels(num2str(spanThActv(1:2:end)’,’%1.0e’)) 898

zlabel(’number of leader cells’) 899

set(gca,’FontSize’,30) 900

c = colorbar; 901

caxis([1 5]); 902

c.Limits = [1 5]; 903

c.Ticks = [1 2 3 4 5 6 7 8]; 904

c.Location=’northoutside’; 905
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view(35.207879105520632,39.388548057259705) 906
907

Statistical properties for extreme values 908

Extreme Value Theory tells us that the minima of finite samples, drawn from some 909

parent distribution, exhibit predictable statistical properties in the limit of large sample 910

sizes [7]. These properties are testable experimentally in our system, where we can 911

control the sample size - inoculum size N0, and repeat the sampling many times. The 912

theory predicts how the mean and variance of sample minima depend on N0, given the 913

parent distribution. It moreover contains the powerful statement that the distribution 914

shape converges to a universal one in the limit N0 →∞, which reflects the decay of the 915

original distribution tails. Similar statements hold for maximum as well as other 916

extreme values (e.g. second largest, etc). 917

To develop some intuition for the scaling of moments with sample size, imagine 918

drawing N0 random variables from a normal Gaussian distribution. To estimate the 919

minimal drawn number, we divide the real line into N0 equal-probability bins (see 920

illustration below). On average, there will be one number drawn from each bin; 921

therefore we may estimate that the minimal value lies within the lowest bin, in the 922

range (−∞, x1). Clearly, the larger is the sample, the more bins we can use and still 923

have an average of one number in the lower one; as the sample becomes large, we are 924

increasing our chance of sampling low-probability events in the tail of the distribution. 925

To get the qualitative nature of the scaling, we seek a relation between the sample 926

size N0, also the number of bins, and the values of the continuous variables x in the 927

lowest bin. Comparing the probabilities,

x  = 
1

1

N
0

x  = 
1

1

N
0

Figure 4. Drawing a finite sample of size N0 from a continuous Gaussian
distribution. To estimate the minimal value drawn out of N0 values, we divide the real
line into N0 equi-probable bins; in the figure, N0 = 7. The estimate that the minimum
resides in the lowest bin can be used to derive the scaling

√
lnN0 in the limit of large

N0. Left we represent the probability density function of a Gaussian (mean 6h, SD 1h).
The probability to have value in the lowest bin between 0 and x1 = 1

N0
is equal to the

area of this bin highlighted in grey. Right we represent the cumulative density function
of the same Gaussian. The probability to have a value below or equal to x1 = 1

N0
is

equal to the y-value of the lower dotted line pointed out by the arrow.

928

1

N0
=

1√
2π

∫ x1

−∞
e−x

2/2dx.

For large N0, x1 is very small and the integral is dominated by the uppermost limit. 929

This means that if a random number is drawn from the lower bin, it is highly likely 930
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equal (or close to) the upper end of the bins; the chance of getting other values inside 931

the bin are exponentially smaller. Therefore we approximate 932∫ x1

−∞
e−x

2/2dx ≈ e−x
2
1/2.

With this relation, we can solve for x1(N0) in Eq. to find 933

x1 ∼
√

ln(N0).

This value of x1 gives the scaling behavior of the minimal random number out of a large 934

sample N0, on average. Computing the pre-factors correctly and estimating the 935

sub-dominant terms requires more careful approximations. 936

Although this argument is made for Gaussian random variables, the same scaling 937

holds also for the lognormal ones. To account for the mean and variance of the parent 938

distribution, in Fig. 3 we shift and scale by the nonzero mean and non-unit SD. 939

The most general form of the extreme value distribution was specified in Eq. 8 940

where θ0 is the location parameter, γ the scale parameter and k the shape parameter. 941

The mean and variance of this distribution generally depend on its parameters - and 942

this dependence varies between k = 0 (corresponding to the Gumbel distribution) and 943

k 6= 0 (corresponding to the Frechet or Weibull families). From a practical perspective, 944

we show below that empirically it is not required to know the actual parameters of the 945

distribution in order to test for their scaling property; it is sufficient to empirically 946

subtract the average and divide by the standard deviation. 947

For all cases where the first two moments exist, they are 948

〈θmin〉 =

{
θ0 + γ

k [Γ(1− k)− 1] k 6= 0 ,
θ0 + γε k = 0

σ2(θmin) =

{
γ2

k2

[
Γ(1− 2k)− Γ(1− k)2

]
k 6= 0 ,

γ2 π
2

6 k = 0.

Where ε is the Euler–Mascheroni constant and Γ the gamma function. Although 949

these are cumbersome expressions, they have the simple form 950

〈θmin〉 = θ0 + γf1(k)

σ2(θmin) = γ2f22 (k).

Therefore, even without estimating the nonlinear parameters of a distribution, the 951

two-parameter scaling by the two first moments amounts to an affine transformation of 952

the variable: 953

z =
θmin − 〈θmin〉

σ(θmin)
=
θmin − [θ0 + γf1(k)]

γ
√
f2(k)

= aθmin + b

with a, b constants that can depend on k. It is not difficult to show (see section below) 954

that if a variable is distributed according to a Generalized Extreme Value distribution 955

(GEV) with shape parameter k, θmin ∼ GEV (θ0, γ, k), then affine- transformed 956

variables z = a× θmin + b are also GEV-distributed, with modified scale and shift 957

parameters but with the same shape parameter: a× θmin + b ∼ GEV (θ̃0, γ̃, k). This 958

property is known as the invariance of the GEV distributions under affine 959

transformations. Therefore, the distribution collapse of sampled data after empirical 960
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scaling by mean and SD provides a test for their common shape, and thus for their 961

consistency with the extreme value properties. 962

Using the general expressions for mean and variance, we may express σ(θmin) as a 963

function of 〈θmin〉 964

σ2(θmin) =
f2(k)

f1(k)2
(〈θmin〉 − θ0)

2
. (9)

This relation was also tested in the measured data, as is depicted in the inset of the Fig. 965

3B. 966

Invariance of GEV under affine transformation 967

We here show the invariance of distribution shape under affine transformation, for the 968

entire GEV family of distributions. Suppose x is distributed according to Generalized 969

Extreme Value distribution x ∼ GEV (x0, γ, k) where x0 is the centering parameter, γ 970

the scaling parameter and k the shape parameter. The cumulative form of the GEV is 971

given by: 972

FX(x) = exp

[
−
(

1 +
k

γ
(x− x0)

)− 1
k

]
Now consider the variable y=ax+ b: the cumulative form of the distribution of y 973

(FY (y)) can be derived from the distribution of x (FX(x)): 974

FY (y)=Prob (Y 6 y)=Prob (aX + b 6 y)=Prob
(
X 6 y−b

a

)
=FX

(
y−b
a

)
. Therefore 975

using the expression of FX we can find FY . Using y0 =ax0 + b, 976

FY (x(y)) = exp

[
−
(

1 +
k

γ
(
y − b
a
− x0)

)− 1
k

]

= exp

[
−
(

1 +
k

γ̃
(y − y0)

)− 1
k

]
where γ̃ = aγ. This shows that y is also distributed according to a GEV distribution, 977

with modified shift and scale parameters but with the same shape parameter k. 978

It can be seen directly from the general expression of the mean and variance of the 979

GEV family, that the scaled variable 980

z =
x− 〈x〉
σ(x)

=
x

γf2(k)
− x0 + γf1(k)

γf2(k)
∼ GEV

(
f1(k)

f2(k)
,

1

f2(k)
, k

)
This GEV distribution of z has a mean 〈z〉 = 0, a standard deviation σ(x) = 1 and 981

only a single parameter k. This property of extreme values distribution is used in the 982

main text Fig.3D to demonstrate the equality between population lag times and leader 983

cell lag time. 984
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Supplementary figures 985
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Figure 5. The maximal density of bacteria in the droplets depends on the
abiotic inoculum. We measure the maximal density of bacteria reached for 6 different
inoculum (1, 4, 16, 64, 256, 1,024 cells) in rich medium. Each box plot is calculated from
40 droplets (30 for the inoculum 1,024). The different colours correspond to independent
replicates. (A) shows the yield of droplets prepared from a 100µl glycerol stock with
a ”naive” serial dilution that does not compensate the glycerol concentration across
bacterial inocula. We observe that the maximal density of bacteria depends on the
inoculum. At high dilution, ie small bacterial inocula, the maximal density reaches
2.6 · 109 cell·ml-1 whereas at low dilution, ie large inoculum, the maximal density goes
above 4 ·109 cell·ml-1. (A) and (B) share the same y-axis. (B) shows the maximal density
of an ”aware” serial dilution such as the density of glycerol is kept constant across the
bacterial inocula. To do so the glycerol density is balanced by addition of an appropriate
volume of 60% glycerol in the inocula. We see that balancing the glycerol in the droplets
results in a constant maximal density of bacteria, whatsoever the inoculum of bacteria
in the droplets. Thus, traces of glycerol coming from the frozen stocks influence the
maximal density of bacteria. Diluting ”naively” the glycerol of the frozen stock by 70x
(together with the cells) yield an increase of 150% of the maximal bacterial density
reached in droplets compare to a dilution of 70,000x. Thence, The millifluidic technology
has the sensitivity to measure precisely such abiotic effect. In our work we always took
care of balancing the glycerol concentration in the culture to keep it constant across
inocula.
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Figure 6. The growth rate of the droplets does not depend on inoculum size.
Boxplots of growth rate as a function of inoculum size estimated from time-series of 40
droplets (except 1,024 which is 30). The data are the same as in Fig 2A that shows the
lag time of these droplets. The growth rate is approximately constant, with a median at
0.84± 0.02 h−1. The colors correspond to three independent experiments.
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Figure 7. Effect of deconvolving the measurement error on single-cell lag-
time distribution. The same data shown in Fig. 2A are shown here. Results of the
simulation where no deconvolution is done on the cell lag time distribution Fig. 3B is
shown in dotted line. This simulation uses directly the raw cell-lag. It under-estimates
significantly the mean lag time as a function of inoculum size.
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Figure 8. Statistical properties of experiment with inoculum 1. The left panel
shows the probability density function of the growth rate in the experiment with inoculum
1 (Fig. 3B). The area of each bar is the number of observations in the bin. The growth
rate is defined as the maximum value of the derivative of the growth curves (Fig. 1C).
The estimation of the maximal value of the derivative for a droplet is given with its SD
(shaded area around the derivative Fig. 1C). The inset reports the histogram of the SDs.
The mean value of the SDs is taken as the typical error of the growth rate 4λ = 0.02.
The right panel shows that the lag time and the growth rate of each droplets is weakly
correlated across (Pearson coefficient of 0.43). Every points correspond to one droplet of
the experiment.
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Figure 9. Quantile to quantile plot (qqplot) of cell-lag time To determine
the distribution that underpin the cell lag time (θ) Fig 2B we plot the quantile of a
log-normam distribution versus the quantile of the distribution of the experimental
measurements. The resulting quantile to quantile plot is well fitted by a line of slope 1
indicating that the experimental values follows a log-normal distribution.
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Figure 10. Calibration curve of the voltage given by the fluorescent detector in the
channel GFP, called ”raw fluo”, to a bacterial concentration in cell·ml-1. The dashed
line depicts a linear fit on the experimental points. Its equation is given in the inset
with uncertainty. The vertical line depict the value of raw fluorescence for pure CAA
medium (the blank).
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Figure 11. Histograms of lag time for a range of inoculum. It is the same data
than Fig. 3A but showing the full histograms instead of points. Measured population
lag time for a given inoculum are arranged in histograms. The colors of the histograms
displayed in legend indicate their corresponding inoculum (in cells/drop) .

Figure 12. Probability density function estimates of the log-normal distribu-
tion of lag time. It the same data than Fig. 3B but in another way of representation
often used. The ”logn” in green dotted line is the fit on the data (blue bars). The ”lognD”
is the corrected log-normal distribution of lag after deconvolution of the gaussian noice.
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Figure 13. Inoculum effect on the lag for the strain P. fluo SBW25 PvdS229.
This strain does not produce pyoverdine due to a mutation in pvdS a gene that encodes
the extracytoplasmic family sigma factor PvdS and which directs expression of the
pyoverdin biosynthetic genes (Cunliffe et al. 1995). The pyoverdine is an iron chelator
the allows the pseudomonads to forage iron in their environment. The presence of the
inoculum effect despite the non-production of pyoverdin indicate that this metabolite
does not play a role in the coordinated exit of the lag phase. The three colors correspond
to three independent experiments in fresh CAA. Data are represented in boxplot for
every inoculum (with a little jitter for a better visualisation)
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Figure 14. Lag time of the population as a function of the inoculum size and
the growth activator threshold. The x-axis shows the dependence of the lag time
of the populations as a function of the inoculum size (in number of cells). The y-axis
shows the dependence of the lag time of the populations as a function of the threshold
of the growth activator (in arbitrary unit). The z-axis and the color-map depict the lag
time of the population (in hours). The threshold reported on the y-axis delimit the end
of lag phase for the cells that do not multiply yet in the population. The higher it is the
higher the growth activator concentration needs to be in order to end the lag phase of
the still non-dividing cells. We see that the higher is the threshold, the higher is the
population lag time, and the weaker is the dependence of the lag time with the inoculum
size. Our experimental observations correspond to the case where the threshold is small
which denote a strong dependence on the inoculum size.
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Figure 15. Number of cells that produce growth activator before the trig-
gering event ending the lag phase. The x-axis shows the dependence of the lag
time of the populations as a function of the inoculum size (in number of cells). The
y-axis shows the dependence of the lag time of the populations as a function of the
threshold of the growth activator (in arbitrary unit). The z-axis and the color-map
depict the number of cells that exit their lag phase before that the growth activator
exceed the given threshold value (in hours). The color-map is saturated for a value of 5
cells (yellow) but eventually the number of leader cells go above 5 in a certain range of
the plot. In a large range of inoculum size and growth activator’s threshold only one cell
has the time to exit its lag phase before the triggering event. This is visible by the large
region of the surface that remains dark blue. For values of threshold where the surface is
yellow the dependence of the lag time with inoculum size shown Fig 14 does not match
our experimental observation (strong dependence of lag time with inoculum size).
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17. F. Pérez-Rodŕıguez. Development and application of predictive microbiology
models in foods, chapter 18, pages 321–362. John Wiley & Sons, Ltd, 2014.

18. O. Rahn. Ueber den einfluss der stoffwechselprodukte auf das wachstum der
bakterien. Centralbl. f. Bakteriol. u. Parasitenk., 16:417–429, 1906.

19. M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron,
M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D.
Hinton. Lag phase is a distinct growth phase that prepares bacteria for
exponential growth and involves transient metal accumulation. Journal of
Bacteriology, 194(3):686–701, 2012.

35/36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477561
http://creativecommons.org/licenses/by-nc-nd/4.0/
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