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ABSTRACT 16 
Recent work identified single time points (“events”) of high regional cofluctuation in functional 17 
Magnetic Resonance Imaging (fMRI) which contain more large-scale brain network information 18 
than other, low cofluctuation time points. This suggested that events might be a discrete, 19 
temporally sparse signal which drives functional connectivity (FC) over the timeseries. However, 20 
a different, not yet explored possibility is that network information differences between time 21 
points are driven by sampling variability on a constant, static, noisy signal. Using a combination 22 
of real and simulated data, we examined the relationship between cofluctuation and network 23 
structure and asked if this relationship was unique, or if it could arise from sampling variability 24 
alone. First, we show that events are not discrete – there is a gradually increasing relationship 25 
between network structure and cofluctuation; ~50% of samples show very strong network 26 
structure. Second, using simulations we show that this relationship is predicted from sampling 27 
variability on static FC. Finally, we show that randomly selected points can capture network 28 
structure about as well as events, largely because of their temporal spacing. Together, these 29 
results suggest that, while events exhibit particularly strong representations of static FC, there is 30 
little evidence that events are unique timepoints that drive FC structure. Instead, a parsimonious 31 
explanation for the data is that events arise from a single static, but noisy, FC structure. 32 
 33 
KEYWORDS  34 
Resting-state fMRI, cofluctuations, events, simulations, RSFC, networks 35 
 36 
HIGHLIGHTS  37 

• Past results suggested high cofluctuation BOLD “events” drive fMRI functional 38 
connectivity, FC 39 

• Here, events were examined in both real fMRI data and a stationary null model to 40 
test this model 41 

• In real data, >50% of BOLD timepoints show high modularity and similarity to time-42 
averaged FC  43 

• Stationary null models identified events with similar behavior to real data  44 
• Events may not be a transient driver of static FC, but rather an expected outcome of it. 45 

46 
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INTRODUCTION 47 
The human brain is organized in large-scale systems, or ‘networks,’ with coordinated 48 

functions such as the visual network, somatomotor network, and default mode network. In 49 
humans, these networks can be identified by grouping regions of the brain that have highly 50 
correlated spontaneous BOLD fMRI signals - regions with high “functional connectivity (FC)” 51 
(Biswal et al., 1995; Power et al., 2011; Yeo et al., 2011). These FC networks have been shown 52 
to have a canonical spatial layout (most people have the same networks represented in the 53 
same locations), with stable patterns of individual variation (each person’s network topography 54 
is slightly different from the canonical layout and consistent within themselves across time 55 
(Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015; Seitzman et al., 2019). At both 56 
the individual and group level, functional network topology accurately predicts which regions of 57 
the brain will be activated during specific tasks (Braga et al., 2020; Gordon et al., 2017; Smith et 58 
al., 2009; Tavor et al., 2016) and variations in network topology are related to individual 59 
differences in behavior outside of the scanner (Bijsterbosch et al., 2018; Kong et al., 2019; 60 
Smith et al., 2015; van den Heuvel et al., 2009) 61 

However, analysis of spontaneous fMRI data is not straightforward. Unlike in task-fMRI, 62 
there is no predefined temporal structure that can be used to separate relevant signals from 63 
artifactual signals. Instead, typical analyses of spontaneous (resting-state) fMRI remove 64 
physiological artifacts (motion, respiration, cardiac rhythms, etc.) and assume the residual signal 65 
is the neural signal of interest (Power et al., 2020). It is typically presumed that this signal is 66 
equally present at all moments and FC is calculated using all available data over long periods. 67 
However, recent work suggested that rather than being constantly present, FC information 68 
might be inordinately present at particular time points called “events” (Esfahlani et al., 2020). 69 
Esfahlani and colleagues found that “events,” time points with the highest BOLD signal 70 
cofluctuation, reproduce static functional connectivity patterns better than the same number of 71 
“non-events,” time points with the lowest BOLD signal cofluctuation, and require relatively few 72 
timepoints to reproduce them well. The authors concluded that rather than functional network 73 
structure being present at all timepoints, it is driven by events – a discrete and temporally 74 
sparse phenomena (Esfahlani et al., 2020).This idea has deep implications for the field: a 75 
thorough analysis of events across brain organizational levels (e.g., from systems to cellular 76 
recordings) could reveal information about the physiological mechanisms of FC and new 77 
analysis methods focused on events could improve the clinical utility of fMRI (Esfahlani et al., 78 
2021; Greenwell et al., 2021).  79 

But, there are alternative interpretations of these findings which have not yet been 80 
explored. First, it is possible that differences between “events” and “non-events” are driven by 81 
contamination in “non-events” (motion, respiration, etc.) rather than by a unique signal present 82 
during “events.” Second, it has been shown that random sampling variability in BOLD data is 83 
high and alone can create the appearance of discrete states in stationary FC simulations (Hlinka 84 
& Hadrava, 2015; Laumann et al., 2017). This principle may apply here too – sampling 85 
variability could make a subset of single points look extreme, even if they are drawn from a 86 
continuous distribution around a static FC matrix (note that if this were the case, events 87 
methodology may still be a useful way to rapidly and accurately reproduce static FC structure, 88 
but this outcome would suggest that a deep focus on events physiology relative to other 89 
timepoints has less utility). In this paper, we ask (1) if events are unique points which drive FC, 90 
(2) if non-events are unique points with high contamination, or (3) if events and non-events are 91 
an expected consequence of static FC and sampling variability. 92 

To answer these questions, we conduct a series of analyses on real and simulated data. 93 
First, we use real data from the Midnight Scan Club dataset to test how unique events and non-94 
events are by examining whether their properties differ markedly from intermediate timepoints. 95 
Second, we create models of simulated static BOLD data to see if sampling variability on a 96 
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static signal is sufficient to explain event behavior. Finally, we examine why events are able to 97 
recreate static FC structure with so few time points. 98 
 99 
MATERIALS AND METHODS 100 
 101 
Overview and Dataset 102 
The goal of this project was to investigate if high cofluctuation moments in resting state fMRI 103 
BOLD signals are discrete events that drive functional connectivity. We used a combination of 104 
real and simulated data for these analyses. 105 
 106 
The publicly available Midnight Scan Club (MSC) dataset was used as our real sample dataset.  107 
The MSC dataset contains fMRI data from 10 highly sampled individuals (5 females, ages 24-108 
34). The data for each subject was collected across 10 fMRI sessions within 7 weeks. Across 109 
these sessions, the MSC dataset includes 5 hours of resting state fMRI; this resting-state data is 110 
the focus of our analyses. One participant (MSC08) has been excluded from these analyses 111 
because of head motion and drowsiness during rest. For single session-analysis and 112 
simulations, sessions with less than 333 usable timepoints (6/90 sessions) were excluded. All 113 
data collection was approved by the Washington University Internal Review Board and written 114 
informed consent was received from all participants. The dataset and processing have been 115 
previously described in detail (Gordon et al., 2017). A summary of relevant details is provided 116 
below.  117 
 118 
MRI Acquisition 119 
MRI data were acquired on a Siemens 3T Magnetom Tim Trio with a 12-channel head coil. T1-120 
weighted (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 3.74ms, TR = 2.4s, TI = 1.0s, 121 
flip angle = 8 degrees), T2-weighted (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 122 
479ms, TR = 3.2s) and functional (gradient-echo EPI sequence, TE = 27ms, TR = 2.2 s, flip 123 
angle = 90, voxels =isotropic 4mm3, 36 axial slices) MRI images were collected. Thirty minutes 124 
of resting-state fMRI were collected at the start of each session. 125 
 126 
Preprocessing 127 
Data processing for the MSC dataset is explained in detail elsewhere (Gordon et al., 2017). 128 
Relevant details for this project are shared below.  129 
 130 
Structural MRI Processing: For each participant, T1 images were averaged together and used 131 
to generate a cortical surface in Freesurfer (Dale et al., 1999). These surfaces were hand-edited 132 
and registered into fs_LR_32k surface space (Glasser et al., 2013). 133 
 134 
Functional MRI Processing: Slice time correction, motion correction, and intensity normalization 135 
to mode 1000 were all completed in the volume. The functional data was then registered to the 136 
T2 image (which was registered to the T1 image registered to template space), resampled to 137 
3mm isotropic resolution and distortion corrected (Gordon et al., 2017). All alignments were 138 
applied in a single step. 139 
 140 
Functional Connectivity Processing: Described in detail elsewhere (Power et al., 2014), 141 
preprocessing steps were taken to reduce the effect of artifacts on functional network analysis. 142 
This included the regression of nuisance signals (white matter, ventricles, global signal, motion 143 
and derivative and expansion terms), scrubbing of high motion frames (FD > 0.2 mm), and 144 
bandpass filtering (0.009 Hz to 0.08 Hz). For two subjects (MSC03 and MSC10), motion 145 
parameters were low pass filtered before censoring to address respiratory activity in the motion 146 
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traces (Fair et al., 2020; Gordon et al., 2017). Functional data was then registered to the surface 147 
and spatially smoothed (FWHM = 6 mm, sigma = 2.55) (Marcus et al., 2011). 148 
 149 
Network and region definition  150 
All analyses were done on parcellated timeseries extracted using a group-level map of 333 151 
cortical parcels (Gordon et al., 2016). These 333 parcels can be split into 12 functional systems: 152 
somatomotor (SM), somatomotor lateral (SM-lat), visual (Vis), auditory (Aud), cingulo-opercular 153 
(CO), salience (Sal), frontoparietal (FP), dorsal attention (DAN), ventral attention (VAN), default 154 
mode (DMN), parietal memory (PMN), and retrosplenial (RSP). These systems are used to 155 
group parcels in the visualization of FC matrices. 156 
 157 
Comparisons between events and static functional connectivity in real data  158 
Our first goal was to compare the network structure present in events, non-events, and 159 
intermediate bins. We followed the approach used in Esfahlani et al., 2020, calculating the RSS 160 
(root-sum-square) cofluctuation for each timepoint and binning timepoints by their RSS 161 
cofluctuation value. We compared the network structure present in each bin by creating FC 162 
matrices for each bin and calculating the similarity between bin FC and whole session FC and 163 
the modularity of bin FC. These measures are defined below. 164 
 165 
Cofluctuation Time Series and Events: The method for calculating cofluctuation and identifying 166 
events has been fully described elsewhere (Esfahlani et al 2020). It was followed exactly and is 167 
summarized here. The original fMRI BOLD timeseries was z-scored per parcel. For each edge 168 
(a unique pair of parcels), the z-scored values at each timepoint were multiplied, resulting in an 169 
edges X timepoints matrix. As described elsewhere, this timeseries (also called the edge-time-170 
series), represents the exact contribution of each timepoint to static FC (Esfahlani et al., 2020). 171 
For each time point, the RSS (root-sum-square) across parcels was calculated, resulting a 1 X 172 
timepoints matrix containing the RSS cofluctuation value at each timepoint. Timepoints were 173 
binned based on RSS cofluctuation value in 5% bins, with the 5% of points with highest 174 
cofluctuation in bin one, the next 5% of points in bin two and so on. 175 
 176 
Functional Connectivity (FC): For each session and subject, functional connectivity matrices 177 
were calculated using either the timepoints from the full session (‘static’ FC matrices) or from 178 
the timepoints in each bin (cofluctuation bin FC matrices). In all cases, FC was calculated by the 179 
product moment correlation between each pair of parcel timeseries, resulting in a 333X333 180 
functional network matrix. Parcels were grouped by functional system for visualization. Edges 181 
within the diagonal blocks represent within-system correlations, and edges in the off-diagonal 182 
blocks represent between-system correlations.  183 
 184 
Similarity: Similarity between each bin’s FC and whole-session ‘static’ FC was calculated by 185 
vectorizing both matrices and taking the correlation between them. 186 
 187 
Modularity: Modularity was calculated for each bin as measure of network structure. Modularity 188 
maximization is a strategy used to arrange nodes into communities in which there are more 189 
edges within communities than expected by random chance. Each matrix was thresholded for 190 
sparseness, keeping only the top 5% of weighted edges (5% edge density). Then, all remaining 191 
edge weights were set to 1, making the graph unweighted. Newman’s spectral optimization was 192 
used to identify the optimal network structure. This structure was then quantified using 193 
Newman’s modularity statistic, Q, which measures the fraction of within-network edges minus 194 
the expected value of within-network edges in a network with the same communities but random 195 
connections (Newman & Girvan, 2004). Larger values of modularity reflect stronger community 196 
structure than expected by chance.  197 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2022.01.24.477543doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477543
http://creativecommons.org/licenses/by/4.0/


 6 

 198 
Comparisons between events and static functional connectivity in simulated data  199 
Our second goal was to test whether the relationship between network structure and 200 
cofluctuation found in real data could be explained by sampling variability in a stationary model. 201 
To examine this, we created simulated data with the same dimensionality and static covariance 202 
structure as BOLD data but sampled from a random Gaussian distribution. 203 
 204 
Simulated BOLD Data: For each subject and session, data was sampled from a Gaussian 205 
distribution in the dimensionality of the real data from that session. Separately, a static FC 206 
matrix was calculated from the full 30 minutes of real data. The random timeseries were 207 
projected on to the eigenvectors derived from the static FC matrix, resulting in data matched in 208 
dimensionality and covariance structure with real BOLD data but stationary by construction. This 209 
strategy is largely adapted from prior simulation work (Laumann et al., 2017). We then did the 210 
same analysis in the simulation data as was described above for real data – calculating 211 
cofluctuation, binning frames by cofluctuation, and comparing the network structure present in 212 
each bin with two measures (similarity to static FC and modularity). 213 
 214 
Simulated Toy Model: To aid in our second goal, we did a supplementary analysis investigating 215 
the relationship between network structure and cofluctuation in a very simple non-BOLD-like 216 
data set. The data set comprised of 4 nodes total – 2 anti-correlated networks with two nodes 217 
each. Network A was defined by the simple sine(x) wave, and both network A nodes were given 218 
that signal. Network B was defined by sine(x + π/2) and both network B nodes were given that 219 
signal. Normally distributed random noise of half the magnitude as the real signal was added to 220 
all four nodes. Then, cofluctuation was calculated for each timepoint, timepoints were binned by 221 
cofluctuation, and similarity with time-averaged FC calculated for each bin.  222 
 223 
Temporal Spacing Analysis  224 
Our third goal was to compare the effects of different sampling methods on the network 225 
structure present in the sampled points. We specifically wanted to investigate the effect of 226 
temporal spacing on network structure.  227 
 228 
Comparison of Sampling Methods  229 
For each subject and session, we examined the network structure present in four groups of time 230 
points: high cofluctuation points (selected as the top 5% of points with highest RSS 231 
cofluctuation), low cofluctuation points (selected as the bottom 5% of points with the lowest RSS 232 
cofluctuation), consecutive points (5% of points selected consecutively beginning at a random 233 
point of the session and wrapping around when needed), and random points (5% of points 234 
selected randomly from the session). For consecutive samples, 100 iterations were done for 235 
each session to not bias the result by starting location. We further tested this by varying the 236 
number of time points selected rather than choosing 5% of time points. The number of time 237 
points was varied from 1 to 100.  238 
 239 
Circular Offset Analysis  240 
In a supplemental analysis, we examined the relationship between cofluctuation and network 241 
structure after removing temporal spacing effects. To do this, we binned time points by 242 
cofluctuation and then circularly shifted them by 1-10 points in both directions to maintain the 243 
temporal spacing found in the original binning while varying their cofluctuation values. However, 244 
because we previously scrubbed high motion points from this data set, it was not possible to 245 
select 5% of time points (as in other binned analyses) and shift them without running into 246 
scrubbed points. To address this issue, we randomly sampled only 5 points per bin and used 247 
fewer bins (95-100, 85-90, 70-75, 45-50, 20-25, 0-5). This resulted in a smaller number of 248 
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analyzed sessions with lower peak similarities for this analysis. To reduce bias from random 249 
sampling, we did 100 iterations and averaged the results. 250 
 251 
Dataset and Code Availability  252 
MSC data has been made publicly available 253 
(https://openneuro.org/datasets/ds000224/versions/1.0.3). The parcellated timeseries used for 254 
these analyses is available here (https://github.com/GrattonLab/MSC_ROI_data).The code for 255 
the analyses in this paper is available at 256 
(https://github.com/GrattonLab/Ladwig_2022_Events_Static_FC) which will made public upon 257 
publication. 258 
 259 
RESULTS 260 
 261 
Overview: 262 
Previous work showed that moments with high amplitude cofluctuations in BOLD, or “events”, 263 
estimate static functional connectivity patterns better than low cofluctuation moments, and can 264 
do so with relatively few timepoints (Esfahlani et al., 2020). This suggested that (1) high 265 
cofluctuation events may be unique, transient phenomena which drive the large-scale network 266 
organization that we observe over long timeseries (Esfahlani et al., 2020). But there are 267 
alternate interpretations of this result: (2) differences between low and high cofluctuation could 268 
be driven by low cofluctuation timepoints exhibiting more BOLD artifacts (e.g., motion or 269 
respiration) that disrupt functional connectivity measures or (3) events may arise as a 270 
consequence of sampling from a continuous distribution, where some moments will, by chance, 271 
exhibit higher cofluctuation than others.  272 
 273 
In this work, we test these three hypotheses. We test how network structure changes over a 274 
range of cofluctuation amplitudes, ask if this relationship is present in stationary simulated data, 275 
and analyze why events can recreate static correlation structure with so few time points.  276 

 277 
1. Network structure is continuously related to cofluctuation 278 
First, we examined the relationship between BOLD cofluctuation and network structure across a 279 
range of cofluctuation amplitudes. Our hypotheses are visualized in Fig. 1A. If events are 280 
specialized discrete timepoints that drive network structure, then they should especially well 281 
represent network structure (purple) relative to other points. If low cofluctuation points are 282 
discrete timepoints more contaminated by artifacts, they should especially poorly represent 283 
network structure (yellow). If BOLD cofluctuations exhibit random variation as would be 284 
expected from sampling variation, then there should be a continuous relationship between 285 
cofluctuation amplitude and network structure (green). 286 
 287 
For each participant and resting state session (30 minutes), we calculated BOLD cofluctuation 288 
amplitude at each timepoint (after standard preprocessing and denoising to improve alignment 289 
and remove artifacts, including those associated with motion, see Methods). In Esfahlani et al., 290 
2020, events were defined as the top 5% of timepoints ranked by cofluctuation. We extended 291 
this, grouping timepoints in each session into discrete 5% bins based on their cofluctuation (Fig. 292 
1B). For each bin, we calculated an FC matrix using Pearson’s correlation (Fig. 1C) and 293 
computed measures of network structure as in Esfahlani et al. 2020. (Fig. 1D-E). 294 
 295 
We reproduced both results from Esfahlani et al., 2020 showing that compared to FC from the 296 
lowest cofluctuation bin (“non-events”), FC from events is more similar to whole-session FC 297 
(revents = 0.792, rlowest = 0.514, t(89) = 42.2, p = 1.2e-60) and more modular (qevents = 0.562, qlowest 298 
= 0.478, t(89) = 12.3 p = 6.0e-21) (Fig. 1D, E). However, when we examined the relationship 299 
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across intermediate bins, we found that both metrics increased gradually with cofluctuation, not 300 
discretely for events. The increase was especially gradual at high values of cofluctuation. In 301 
fact, the top bin (events) was not substantially different than the 70th percentile bin (revents = 302 
0.792 vs. r70 = 0.797, rdiff=-0.005, t(89) = 0.48, p = 0.31; modularity: qevents = 0.562 vs. q70 = 303 
0.561, qdiff=-0.001, t(89) = 0.15, p = 0.45) and only slightly different than the 50th percentile bin 304 
(r50 = 0.740, q50 = 0.546, rdiff=0.052, qdiff = 0.016). Low cofluctuation points, while substantially 305 
different from events, were not obviously discrete when compared with the 10th and 20th 306 
percentile bins (rlowest = 0.514, qlowest = 0.478, r10 = 0.579, q10 = 0.499, r20 = 0.637, q20 = 0.515). 307 
Notably, many sets of points explicitly excluding events still recapitulate network structure well. 308 
These relationships were consistent in all 9 subjects (lines in Fig. 1D-E, separated by session in 309 
Fig. S1), suggesting that neither high nor low cofluctuation points are discrete, specialized, 310 
timepoints that drive network structure (or the lack thereof). Rather, network structure appears 311 
to be present in all bins, with variability that is positively correlated with the cofluctuation 312 
amplitude of a given time point. These results do not suggest that there are a small number of 313 
time points which drive functional connectivity. 314 

 315 
Fig 1: Network structure varies continuously with BOLD cofluctuation. (A) Previous literature 316 
showed that high cofluctuation events contain stronger network structure than low cofluctuation 317 
points (gray dots). We posited three hypotheses: (1) high cofluctuation points are discrete 318 
phenomena which drive network structure (purple), (2) low cofluctuation points are discrete 319 
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artifacts which do not contain network structure (yellow), or (3) there is a continuous gradual 320 
relationship between cofluctuation magnitude and network structure as would be expected from 321 
sampling variability (green). (B) To test these hypotheses, we binned time points into 5 322 
percentile bins of increasing cofluctuation. See example histogram here from MSC05 session 4. 323 
(C) For each bin, we calculated an FC matrix (examples here from MSC02 session 5) and 324 
calculated two measures of network structure – similarity to static FC and modularity. (D) 325 
Similarity to static FC increased gradually with cofluctuation for all subjects (black line = mean, 326 
colored lines = subjects, error bars represent SEM for the group). (E) Modularity increased 327 
gradually with cofluctuation as well. These results suggest that neither high nor low cofluctuation 328 
time points are discrete, unique entities.   329 
 330 
2. Stationary simulations produce similar behavior to BOLD events and non-events 331 

Above, we found that there was a consistent and gradual relationship between BOLD 332 
cofluctuation amplitude and network structure. Next, we asked, what drives this relationship? 333 
One possible explanation is sampling variability: with noisy data, some timepoints will have 334 
higher similarity to the session average, while others will have lower similarity, simply by 335 
chance. Here, we tested whether sampling variability could account for event behavior by 336 
creating and analyzing a simulated BOLD dataset with stationary covariance structure. In this 337 
simulated dataset, as in the real data in the previous section, we identified points of high and 338 
low cofluctuation and compared their relationship to network structure. 339 

The procedure to generate simulated data is shown in Fig. 2A. For each subject and 340 
session, data was generated by sampling from a Gaussian distribution in the dimensionality of 341 
real data. This data was then projected on to the eigenvectors of the static correlation structure 342 
from the real BOLD data for that subject and session, resulting in random Gaussian data with 343 
stationary correlation structure matching real data (see Methods).  344 

The analysis from Figure 1 was repeated on the simulated data. We calculated 345 
cofluctuation for each time point, binned time points by cofluctuation, computed FC matrices for 346 
each bin, and compared the network structure properties across bins. 347 

We found that the relationship between network structure and cofluctuation in simulated 348 
data was remarkably similar to the one found in real data. Similarity to static FC (Fig. 2B) and 349 
modularity (Fig. 2C) both showed gradually increasing relationships with cofluctuation in the 350 
simulated data, just as in real data. Visually, the network structure present in each bin was 351 
remarkably similar between simulated and real data (Fig. 2D). These results were consistent 352 
within individuals and sessions (Fig S2). These results suggest that the difference between high 353 
and low cofluctuation moments and their relationship to network structure can be explained by 354 
sampling variability alone. Further, we note that even very simple toy models made from 355 
correlated sine waves and noise show points of high and low cofluctuation amplitude and a 356 
gradually increasing relationship between cofluctuation amplitude and network structure (Fig. 357 
S3), indicating this property is not specific to BOLD data. 358 
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 359 
Fig 2: Sampling variability alone can produce event-like behavior. (A) For each subject and 360 
session, we generated a dimensionality-matched timeseries sampled from a Gaussian 361 
distribution. This time series was projected onto the eigenvectors of static FC calculated from 362 
that session. This yielded a simulated random Gaussian data set with BOLD-matched 363 
dimensionality and covariance structure. (B, C) Using the same analysis methods as in Fig 1, 364 
we found that the relationship between network structure and cofluctuation in simulated data 365 
was remarkably similar to the one found in real data. Both (B) similarity with session FC and (C) 366 
modularity increased gradually just as they did in real data. (D) Visually, the FC matrices made 367 
from specific cofluctuation bins look similar between simulated and real data. The data shown is 368 
an example from a single session: MSC02 Session 5. These results suggest the relationship 369 
between network structure and cofluctuation amplitude can be explained by sampling variability 370 
and static FC. 371 
 372 
3. Randomly selected timepoints can also reproduce network structure 373 
One particularly notable property of events is their ability to recapitulate network structure with a 374 
small number of timepoints. As shown in Fig. 1 and Esfahlani et al., 2020, 5% of time points in a 375 
30-minute resting state session (approximately 1.5 min. of total data) show high similarity with 376 
the static FC calculated from the whole session (r = 0.792). In contrast, past work (Gordon et 377 
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al., 2017; Laumann et al., 2015; Noble et al., 2017) suggests that large amounts (> 30 min.) of 378 
resting state fMRI data collection are required to achieve high reliability. This discrepancy 379 
appears to bolster the suggestion that events are discrete transient phenomena which drive 380 
static functional connectivity.  381 
 382 
However, in the previous sections, we showed that events are not unique in their ability to 383 
reproduce static FC (Fig. 1D). Many other points can recreate static FC. The 70th percentile 384 
points were correlated with static FC at r = 0.797 and the 50th percentile points are correlated at 385 
r = 0.740. These results raise the question: is the ability for a few points to recreate session FC 386 
driven by cofluctuation or something else?  387 
 388 
We hypothesized that this apparent discrepancy was related to how the events methodology 389 
samples time points. One reason that substantial data is required for reliable FC measures is 390 
because BOLD data is autocorrelated – each time point shares information with the time points 391 
around it. In contrast, the events methodology is not constrained to select temporally adjacent 392 
points. Looking at a sample timeseries, it is obvious that events are more spread out than 393 
consecutive points (Fig. 3A). This is confirmed by looking at the histogram of the distance 394 
between events (Fig. 3B).  395 
 396 
To test the effect of temporal spacing on network structure, we compared 5% of points (a) 397 
sampled consecutively (starting from a random section of the scan), (b) sampled randomly 398 
across the whole scan, (c) sampled from the highest cofluctuation points (events), and (d) 399 
sampled from the lowest cofluctuation moments. Fig. 3C shows the result: randomly sampled 400 
points are similarly correlated with the static session FC structure as events (rrandom = 0.78, revents 401 
= 0.79, t(89) = 1.7, p = 0.045). Random points show substantially higher similarity to static 402 
session FC than either low cofluctuation points (rlow = 0.50 t(89) = 43.0 p = 1.3e-60), or 403 
consecutively sampled time points (rconsecutive=0.58, t(89) = 35.2 p = 2.42e-54). These results are 404 
consistent over a range of bin sizes (Fig. 3D), suggesting that random temporal spacing is 405 
sufficient to estimate FC well. 406 
 407 
However, high cofluctuation points are not perfectly matched in spacing to random points 408 
(several occur in close succession relative to what would be expected in a random distribution, 409 
although they are more distributed than a typical consecutive timepoint FC analysis). To 410 
disambiguate the effects of cofluctuation magnitude and temporal spacing, we circularly shifted 411 
the cofluctuation-binned time points (see Methods) to keep temporal spacing constant and vary 412 
cofluctuation. We found that after accounting for temporal spacing, there remained a graded 413 
hierarchy where higher cofluctuation points contained more network structure than lower 414 
cofluctuation time points (Fig. S4). The simulation results in the previous section suggest that 415 
this is expected and can be parsimoniously explained by sampling variability. Jointly, these 416 
findings suggest that the ability to recreate network structure with a few time points is a function 417 
of both temporal spacing (as shown here) and sampling variability (as shown in the previous 418 
section). 419 
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 420 
Fig 3: Effects of temporal spacing on estimating FC. (A) Events (red dots) are more temporally 421 
spaced than consecutive points, shown here for MSC02 session 6. (B) Histograms of distance 422 
between sampled points using consecutive, random, or cofluctuation-based sampling, 423 
aggregated over all subjects and sessions. (C) Randomly sampled points are as similar to static 424 
session FC as are events; both match static session FC much better than consecutive or low 425 
cofluctuation points. (D) These relationships hold over a range of bin sizes. These results 426 
suggest that temporal spacing is an important factor in estimating FC well.  427 
 428 
DISCUSSION 429 
 430 
In this study, we asked if “events”, time points with high BOLD cofluctuation, are discrete, 431 
transient events that drive functional connectivity. We found that events are not discrete 432 
phenomena driving FC. When they are removed, static FC structure is still present. Further, 433 
there is a gradual positive relationship between network structure and cofluctuation amplitude, 434 
with relatively similar behavior for the top 50% of timepoints, including events. Next, we asked if 435 
this gradual relationship between network structure and cofluctuation could be explained by 436 
sampling variability on static FC. We created a simulated data set matched to BOLD in 437 
dimensionality and covariance structure. Our model produced the same gradual positive 438 
relationship seen in real data, including the existence of extreme points like events, suggesting 439 
that event behavior can be explained by sampling variability alone. Finally, we analyzed why 440 
events are able to recreate static FC with so few points. We found that small numbers of 441 
randomly sampled timepoints are also able reproduce static network structure well, suggesting 442 
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that both sampling variability and temporal spacing are important factors in estimating FC. 443 
Taken together, these results support the idea that while events are an especially good 444 
representation of the network structure present in static FC, there is not evidence that they are 445 
unique points driving it.  446 
 447 
Should events be used to study the neural underpinnings of functional connectivity?  448 
Although there is a large literature linking fMRI BOLD signal to neural activity (Heeger et al., 449 
2000; Logothetis et al., 2001), the physiological mechanism of FC itself is incompletely 450 
understood. Past work suggests that BOLD FC is constrained by structural connections (Honey 451 
et al., 2009; Johnston et al., 2008; Vincent et al., 2007) and is related to correlations in neural 452 
activity (Nir et al., 2008; Shmuel & Leopold, 2008; Vincent et al., 2007) but the underlying 453 
drivers of these spontaneous activity correlations remain relatively unknown. Because events 454 
contain similar functional connectivity patterns to static functional connectivity, it was suggested 455 
that these specific moments are responsible for functional connectivity measured over the 456 
timeseries (Esfahlani et al., 2020). From a research perspective, this would make them an 457 
excellent temporal target for investigating the neural mechanism of FC.   458 
 459 
In this work, we show that while events do match static FC well, they are not discrete markers 460 
for it. When they are discarded, static FC structure is still strongly present in the remaining time 461 
points. Further, there is a gradual and increasing relationship between cofluctuation amplitude 462 
and FC where many points (at least 50%) have a strong relationship with static FC. These 463 
results suggest that events by themselves do not (mechanistically)1 drive FC and it is unlikely 464 
there is a unique physiological event happening at high cofluctuation points which is creating the 465 
FC matrix. Given these observations, we consider it unlikely that investigating the unique 466 
temporal physiological activity coincident with events would glean additional new information 467 
about the physiologic origins of FC, beyond what might be seen at other timepoints as well. 468 
However, as events show a very strong relationship to FC structure, it is possible that their 469 
study may prove useful for denoising and analysis, to provide a higher signal to noise ratio for 470 
investigations of simultaneous BOLD and direct neural recordings.  471 
 472 
Relationship between events and static vs. dynamic functional connectivity 473 
Interpretation of events largely depends on one’s perspective about the temporal nature of FC. 474 
As has been summarized elsewhere (Lurie et al., 2020), there are two dominant perspectives 475 
on this topic. One perspective posits that functional connectivity exhibits meaningful temporal 476 
dynamics on a moment to moment basis which could represent differences in neural 477 
interactions related to ongoing cognition and task processing (Calhoun et al., 2014; R. M. 478 
Hutchison et al., 2013; Lurie et al., 2020). This view is supported by the fact that there are 479 
transient BOLD responses to tasks (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 480 
1992), that states can be found in resting-state FC data at second and minute time scales using 481 
sliding windows or instantaneous coactivation patterns (Allen et al., 2014; Chang & Glover, 482 
2010; Petridou et al., 2013; Shakil et al., 2016), and that changes in state properties have been 483 
linked to task behavior, ongoing cognition, and arousal (Chang et al., 2016; Gonzalez-Castillo et 484 
al., 2015; M. R. Hutchison et al., 2013; Kucyi & Davis, 2014; Kupis et al., 2021; Sadaghiani et 485 
al., 2015; Tagliazucchi & Laufs, 2014) as well as more stable measures of cognitive/behavioral 486 
traits and psychiatric disease (Damaraju et al., 2014; de Lacy et al., 2017; Liégeois et al., 2019; 487 
Rashid et al., 2016). From this perspective, static FC is less significant than its constituent parts. 488 
 489 

                                                
1 Events do not appear to drive FC in a unique way but do contribute the most to FC estimates as a mathematical 
necessity of their definition and relationship with correlation. 
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The second perspective posits FC is temporally stable and primarily reflects a history of co-490 
activation between regions (Laumann & Snyder, 2021). This is supported by evidence that 491 
functional connectivity patterns are consistent within people over sessions (Gratton et al., 2018; 492 
Laumann et al., 2015), only slightly altered during tasks (Cole et al., 2014; Gratton et al., 2016, 493 
2018), and present in anesthesia (Mhuircheartaigh et al., 2010) and slow wave sleep (Sämann 494 
et al., 2011). This perspective emphasizes that resting state FC patterns are only a weak 495 
marker of ongoing cognition, and are instead more related to stable neuroanatomical 496 
constraints, homeostatic processes, and learning related adaptations (Laumann & Snyder, 497 
2021). This perspective collides with the previous one in that it suggests that the dynamic states 498 
found during rest2 may be explained by sampling variability, motion artifacts, and arousal 499 
(Hindriks et al., 2016; Hlinka & Hadrava, 2015b; Laumann et al., 2017; Liégeois et al., 2017) 500 
rather than current cognitive content or information processing. From this second perspective, 501 
the focus of resting state analysis is on finding a clean and reliable static FC measure that may 502 
be informative about brain organization. 503 
 504 
The information held in events, then, largely depends on which perspective one takes. From a 505 
dynamic FC states perspective, events help identify states and characterize their properties in a 506 
more temporally specific way. Indeed, events have been used to identify states within resting 507 
state fMRI (Sporns et al., 2021), states that differentiate people (Jo et al., 2021) and states 508 
related to variation in hormone concentrations within individuals across days (Greenwell et al., 509 
2021). However, from a static FC perspective, events may instead reflect moments of randomly 510 
good representation of the static FC structure. From this view, the previous results could be 511 
interpreted as occurring because events are particularly good timepoints for identifying stable 512 
differences between people and stable static network structure that is relevant to hormonal 513 
neurobiology. 514 
 515 
Consistent with our findings, Novelli and Razi recently showed that many of the results of edge 516 
functional connectivity (eFC), including the presence of high amplitude cofluctuations, can be 517 
derived from static FC alone (Novelli & Razi, 2021). We showed in this current work that 518 
presence of events and the gradual relationship between cofluctuation and static FC is 519 
predictable from static FC too. While a more extended discussion of dynamic FC is outside the 520 
scope of this work, the results shown suggest that static FC and sampling variability are 521 
sufficient to explain the properties of high cofluctuation timepoints during rest reported so far. 522 
This work alone does not eliminate the possibility of multiple diverse states within resting state 523 
FC. Other modeling work has shown that events arise from biophysical models built on 524 
structural connectivity and simulated spontaneous BOLD signal dynamics (Pope et al., 2021). 525 
However, the present work provides a parsimonious explanation for how events could arise 526 
from a stationary but noisy signal. We echo Novelli and Razi in our interest in future explorations 527 
of edge FC features which cannot be explained by static FC (Novelli & Razi, 2021).  528 
 529 
Practical considerations for fMRI functional connectivity analysis 530 
Beyond fundamental neurophysiological concerns related to FC, events could be useful for a 531 
range of practical applications in FC analysis. First, we wondered if events could be used to 532 
define a filter for data points particularly suited to FC analysis. And second, given that events 533 
are good at recapitulating static FC, we wondered if it would be possible to reduce data 534 
collection by inducing more event-like time points. 535 
 536 

                                                
2 Significant differences in dynamic FC states are seen with tasks, but they tend to be relatively small (Cole et al., 
2014; Gratton et al., 2018; Laumann et al., 2017). 
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Traditionally, resting state FC analyses try to isolate relevant signal by identifying and extracting 537 
known artifacts (motion, respiration, etc.) and presuming the residual data is all equally useful 538 
(Power et al., 2020). Esfahlani and colleagues’ result was particularly exciting because it 539 
suggested that, after addressing artifacts, the remaining data varied in utility for defining FC 540 
structure, with events providing a means to isolate the particularly useful components (Esfahlani 541 
et al., 2020). Although in this paper we showed that events can be explained as a consequence 542 
of sampling variability on static FC, this does not rule out that they may be a useful analytical 543 
tool. In fact, recent work has shown that ETS (edge-time-series) are better at identifying 544 
individuals than static FC (Jo et al., 2021). The strategy of seeking out points with maximal 545 
network information as a ‘denoising’ strategy is a paradigm shift in fMRI FC analysis and could 546 
be an exciting avenue of future study. 547 
 548 
The second question is whether the fact that events can recapitulate FC with few timepoints 549 
suggests that FC may be effectively measured through much shorter data collection regimes. It 550 
has become evident in recent years that it is possible to study functional brain organization at 551 
the individual level if enough data is collected (Braga & Buckner, 2017; Gordon et al., 2017; 552 
Laumann et al., 2015; Noble et al., 2017), with most papers suggesting more than 30 minutes of 553 
high quality resting-state data is needed to measure static cortical FC reliably. This has 554 
motivated significant ongoing efforts to collect large amounts of individual ‘precision’ data 555 
(Fedorenko, 2021; Gratton & Braga, 2021; Naselaris et al., 2021; Pritschet et al., 2021) which 556 
have led to novel findings, but are costly and time-intensive, and may be difficult to acquire in 557 
clinical or pediatric populations. We wondered if, because events contain more network 558 
structure information than other time points, one could decrease data collection by increasing 559 
the rate of events and focusing analysis solely on those moments. However, the results in this 560 
manuscript suggest that event correspondence to static FC can be explained by sampling 561 
variability and spaced sampling – suggesting it would be difficult to ensure a high proportion of 562 
events in a short amount of data collection time. We are optimistic about new strategies for 563 
decreasing data collection needs such as new MRI techniques (Lynch et al., 2020) and efforts 564 
to reduce artifacts (Power et al., 2020) to address these continued issues in fMRI data 565 
collection. 566 
 567 
Limitations 568 
We will close by noting some limitations in this work and opportunities for future research. First. 569 
we used a dataset collected from a small number of individuals. However, we showed that the 570 
results were very similar across each participant and sessions within participants (Fig. S1), 571 
suggesting robustness in these results. Second, when simulating BOLD data, we used a very 572 
simple model which accounted only for spatial correlation and included no BOLD-like temporal 573 
features (e.g., autocorrelation, matched spectral structure) (Cordes et al., 2001; He et al., 2010; 574 
Liégeois et al., 2021; Zarahn et al., 1997). However, this simple model still was able to produce 575 
event-like behavior, as was an even simpler toy model from sine-waves (Fig. S4). That even 576 
such simple models showed event-like behavior suggests that events arise based on simple 577 
properties of the BOLD timeseries. Third, we focused on resting-state fMRI data in this 578 
manuscript, rather than data from task sessions. We are curious about the effects of tasks on 579 
BOLD cofluctuation: given that arousal and tasks can create real non-stationarities in BOLD 580 
data, we consider it possible that tasks and imposed states could change the prevalence and 581 
structure of events (Betzel et al., 2020; Cole et al., 2014; Gratton et al., 2016, 2018; Laumann et 582 
al., 2017; Tagliazucchi & Laufs, 2014). Future work will be needed to fully explore this issue. 583 
 584 
Conclusions 585 
In this work, we investigated high cofluctuation BOLD events and found evidence suggesting 586 
that, rather than events behaving as unique discrete timepoints that drive functional 587 
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connectivity, events may arise as an expected byproduct of a static functional network structure. 588 
Event recapitulation of network structure was not unique, but varied continuously across 589 
timepoints in real data, and was present in data from which events had been excluded. 590 
Simulations demonstrated similar responses from stationary signals. Finally, one of the primary 591 
interesting properties of events – that they can recreate static FC with a few points – is not 592 
unique and is driven in part by sampling rate. These results suggest that events are 593 
parsimoniously explained as a consequence of a highly correlated, modular, noisy signal 594 
(BOLD) and therefore might be better suited as methods for identifying good representations of 595 
static network structure than as a tool to investigate the mechanistic sources of functional 596 
connectivity.  597 
 598 
ACKNOWLEDGEMENTS 599 
Funding was provided by NIH grant R01MH118370 (CG), NSF CAREER2048066 (CG), the 600 
Washington University Intellectual and Developmental Disabilities Research Center Engelhardt 601 
Family Foundation Innovation Fund (BAS) and NIH T32NS047987 (DMS). This research was 602 
supported in part through the computational resources and staff contributions provided for the 603 
Quest high performance computing facility at Northwestern University which is jointly supported 604 
by the Office of the Provost, the Office for Research, and Northwestern University Information 605 
Technology. 606 
 607 
DECLARATIONS OF COMPETING INTERESTS 608 
None 609 
 610 
CITATION DIVERSITY STATEMENT 611 
Recent work in several fields of science has identified a bias in citation practices such that 612 
papers from women and other minority scholars are under-cited relative to the number of such 613 
papers in the field (Bertolero et al., 2020; Caplar et al., 2017; Chatterjee & Werner, 2021; Dion 614 
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First, we obtained the predicted gender of the first and last author of each reference by using 618 
databases that store the probability of a first name being carried by a woman (Dworkin et al., 619 
2020; Zhou et al., 2020).By this measure (and excluding self-citations to the first and last 620 
authors of our current paper), our references contain 7.04% woman(first)/woman(last), 11.27% 621 
man/woman, 19.72% woman/man, and 61.97% man/man. This method is limited in that a) 622 
names, pronouns, and social media profiles used to construct the databases may not, in every 623 
case, be indicative of gender identity and b) it cannot account for intersex, non-binary, or 624 
transgender people. Second, we obtained predicted racial/ethnic category of the first and last 625 
author of each reference by databases that store the probability of a first and last name being 626 
carried by an author of color (Ambekar et al., 2009; Sood & Laohaprapanon, 2018). By this 627 
measure (and excluding self-citations), our references contain 8.93% author of color 628 
(first)/author of color(last), 12.55% white author/author of color, 28.74% author of color/white 629 
author, and 49.78% white author/white author. This method is limited in that a) names and 630 
Florida Voter Data to make the predictions may not be indicative of racial/ethnic identity, and b) 631 
it cannot account for Indigenous and mixed-race authors, or those who may face differential 632 
biases due to the ambiguous racialization or ethnicization of their names.  We look forward to 633 
future work that could help us to better understand how to support equitable practices in 634 
science. 635 
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SUPPLEMENTAL INFORMATION 970 

 971 
Fig S1, related to Fig 1: Individual subject results for Fig 1 analyses. In all subjects and 972 
sessions, the relationships present between cofluctuation and correlation with time-averaged FC 973 
(A) and modularity (B) are continuous, positive, and gradual. It suggests that in all cases, 974 
neither high or low cofluctuation time points are discrete. Boxplots show the median, 25th and 975 
75th percentile values per subject calculated across sessions.976 
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977 
Fig S2, related to Fig 2: Individual subject results for simulation analysis. In all subjects, the 978 
relationships present between cofluctuation amplitude and correlation with time-averaged FC 979 
(A) and modularity (B) are continuous, positive, and extremely similar to the relationships 980 
present in real data. This suggests sampling variability in static FC is sufficient to explain the 981 
presence of high and low cofluctuation points in real data. 982 
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 983 
Figure S3, Related to Fig 2: The relationship between network structure and cofluctuation is 984 
present in extremely simple non-BOLD-like models. We created a 2 network, 4 node model from 985 
sine waves and tested the relationship between network structure and cofluctuation. (A) 986 
Network A is made of two nodes, each with the sine(t) wave. Network B is made of two nodes, 987 
each with sine(t+π/2) wave. Random noise was added to all four nodes. (B) Over the time 988 
course, there is moderately high magnitude (r = 0.7) correlation between in-network nodes. (C) 989 
As in real data, there were points of high and low cofluctuation so it was possible to bin time 990 
points the same way as was done in real and BOLD-simulated data. (D) A similar relationship 991 
exists between cofluctuation and network structure where higher cofluctuation bins are better 992 
able to reproduce network structure from the overall time course. Error bars here represent 993 
SEM over 1000 iterations of the model. (E) This relationship is visually obvious in correlation 994 
matrices. In high cofluctuation bins, the two antagonistic networks are strongly present, and in 995 
low bins there is little or no relationship between nodes.  996 
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 997 
Figure S4, Related to Fig 3: After accounting for spacing, there remains a graded hierarchy of 998 
network structure with cofluctuation. We completed a circular shifting analysis (see Methods) 999 
where time points are binned by cofluctuation and then circularly offset. Due to scrubbing, it was 1000 
not possible to select as many time points per bin (typically all time points, 5% of total time 1001 
points) without running into scrubbed points while circularly shifting the values. To address this 1002 
issue, we randomly sampled only 5 eligible points per bin and used fewer bins (95-100, 85-90, 1003 
70-75, 45-50, 20-25, 0-5). This resulted in a smaller number of sessions (53/90) which 1004 
contained full data for all bin and shift combinations. Because we used only five points, 1005 
correlation values (maximum = 0.45 in group data) were much lower than when we calculate 1006 
similarity with session FC using 5% of available points. We completed 100 iterations of this 1007 
analysis and averaged the results to reduce single trial bias of the random selection of 5 eligible 1008 
points. Higher cofluctuation bins have stronger correlation with time averaged FC compared to 1009 
their offset counterparts and lower cofluctuation bins have weaker correlation. This suggests 1010 
that while temporal spacing does in part drive the similarity of events to static network structure, 1011 
there is a relationship between cofluctuation and network structure. Fig 2 suggests this is 1012 
parsimoniously explained by sampling variability.  1013 
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