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Abstract  11 

 Given the important role food plays in health and wellbeing, the past decades have seen 12 

considerable experimental efforts dedicated to mapping the chemical composition of food 13 

ingredients. As the composition of raw food is genetically predetermined, here we ask, to what 14 

degree can we rely on genomics to predict the chemical composition of natural ingredients. We 15 

therefore developed tools to unveil the chemical composition of 75 edible plants’ genomes, 16 

finding that genome-based annotations increase the number of compounds linked to specific 17 

plants by 42 to 100%. We rely on Gibbs free energy to identify compounds that accumulate in 18 

plants, i.e., those that are more likely to be detected experimentally. To quantify the accuracy of 19 

our predictions, we performed untargeted metabolomics on 13 plants, allowing us to 20 

experimentally confirm the detectability of the predicted compounds. For example, we find 59 21 

novel compounds in corn, predicted by genomics annotations and supported by our experiments, 22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477528
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

but previously not assigned to the plant. Our study shows that genome-based annotations can 23 

lead to an integrated metabologenomics platform capable of unveiling the chemical composition 24 

of edible plants, and the biochemical pathways responsible for the observed compounds. 25 

 26 

Background 27 

“Make every bite count”, recommends the U.S Departments of Agriculture (USDA) 28 

Dietary guidelines for Americans (2020-2025)1, reminding us of the multiple roles food, and 29 

specifically fruits and vegetables, play in our wellbeing, serving as a source of energy and 30 

nutrients, modulating our health, and affecting disease2–4. Plants are complex organisms 31 

characterized by large genomes. For example,  the corn genome (2,280 Mb) encodes 57,181 32 

proteins, annotated to Gene Ontology (GO) categories, helping unveil the biological processes 33 

these proteins participate in and their potential molecular functions5. The genome can also be a 34 

strong predictor of phenotypic traits6, like color, taste and aroma, known indicators of the 35 

nutritional value of a plant7. Indeed, color and pigments including carotenoids, betalains and 36 

anthocyanins are well known for their bioactive properties8.  Furthermore, the genetically 37 

predetermined polyphenols, alkaloids, carotenoids and phytosterols have well-documented 38 

antioxidant and anti-inflammatory activities effecting multiple diseases, from Cancer to diabetes 39 

or hypertension9. 40 

Our current knowledge on food composition is limited to 150 nutrients catalogued by 41 

USDA, despite the fact that the true number of chemical compounds in food ranges from tens10 42 

to hundreds of thousands across all known plant species11.  The bulk of  our knowledge on the 43 

chemical composition of food comes from mass spectrometry and other low-throughput 44 
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analytical methods and is compiled in repositories such as FooDB12 and The Dictionary of Food 45 

Compounds13 (DFC), cataloguing comprehensive information on the detected compounds, 46 

including both evidence-based and predicted annotations.  47 

Our work is driven by the hypothesis that the full list of known and yet unknown chemicals 48 

present in plants are encoded in the genome of the respective organism, encapsulating its 49 

metabolic capacities. Recent advancements in genomics have resulted in the emergence of 50 

extensive annotation efforts to decipher the genetic potential and the metabolic capacities of 51 

edible plants. For example, KEGG14 links genes to their functional annotations such as enzymes, 52 

reactions, and chemical compounds and catalogues them in metabolic pathway maps, offering 53 

functional annotations for 7,254 organisms across the tree of life, out of which 56 are edible 54 

plants. Another contributor to plant genome metabolic annotations is PlantCyc15, a BioCyc16 55 

based platform adapted to annotate the functional diversity of plant genomes. 56 

Here we explore to what degree genome-based annotations can offer a valuable resource 57 

to expand the knowledge of the compound composition of foods. To do so we rely on 58 

metabologenomics17–19, to integrate genomics and metabolomics, used in the past to discover 59 

novel natural products17,20. To be specific, we develop a systematic metabologenomics pipeline, 60 

coupled with thermodynamic feasibility analysis aiming to predict the composition of edible 61 

plants. We validate our predictions by comparing them to the chemical knowledge curated by 62 

food composition databases like FooDB, DFC, and USDA4. We also collect new experimental data 63 

to explore the chemical composition of 13 plants. Our findings indicate that genomics-based 64 

annotations offer a predictive platform capable of systematically capturing the chemical 65 
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composition of plant-based food, from fruits to vegetables and allow us to predict and 66 

experimentally test the presence of novel compounds in plants. 67 

 68 

Results 69 

The existing knowledge on food composition 70 

We collected data for 75 edible plants with published and annotated genomes from two 71 

well established databases: KEGG and PlantCyc. Our collection represents plants from 28 families 72 

including monocots and dicots (Figure 1a), covering major plant food groups: fruits (apple, 73 

banana and orange), grains (rice, corn and quinoa), vegetables (tomato, potato and spinach) and 74 

proteins (soy, chickpeas and pigeon pea).  75 

To estimate the currently available knowledge on the chemical composition of edible 76 

plants, we collected compound annotations from FooDB, DFC, and USDA, cataloguing 5,834, 77 

5,151, and 140 compounds respectively, across all plants (Figure S1A). FooDB carries 723±452 78 

compounds on average per plant (median: 850), a number that can be as low as three compounds 79 

for clementine (citrus clementina) and as high as 2,181 compounds for tea (Camellia sinensis). 80 

DFC carries 83±121 compounds on average per plant (median:33) with as low as one compound 81 

for vegetable marrow (Cucurbita pepo subsp. pepo) and red rice (Oryza punctata) and as high as 82 

697 compounds for tea. Finally, USDA carries 88±46 compounds on average per plant 83 

(median:110), with a single compound for false flax (Camelina sativa) and Chinese white pear 84 

(Pyrus × bretschneideri) and 128 compounds for apple (Malus domestica). 85 

 86 

Genomics contribution to food composition 87 
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To estimate the contribution of genome-based annotations to the existing knowledge on 88 

food composition, we collected plant-related compounds from KEGG and PlantCyc. KEGG stores 89 

information about 7,245 organisms, out of which 546 are eukaryotes and 92 are plants, including 90 

56 edible plants. PlantCyc is a plant-oriented database storing 126 genomes, out of which 58 are 91 

edible. These databases overlap and complement each other (39 plants overlap), together 92 

covering 75 metabolically annotated plant genomes. Overall, KEGG and PlantCyc contributed 93 

1,201 and 3,737 new unique compounds respectively, adding a total of 5,224 new compounds 94 

(unique and common) to the composition of plants in our catalogue (Figure S1B).  95 

To illustrate the contribution of genomics-based annotations to edible plants (Figure 1b), 96 

we focused on corn (Zea Mays), a highly consumed staple crop21 worldwide and in the US. 97 

Existing knowledge for corn includes 1,221 compounds from FooDB, 311 compounds from DFC 98 

and 127 compounds from USDA. Considering overlaps between all sources, this compiled to a 99 

total of 1,038 unique compounds. Next, we set out to explore the value of adding genome-based 100 

annotations to corn’s existing knowledge. 101 

One contribution of genomics-based annotations is the metabolic context of these 102 

compounds, carried by a network of pathways. Some known pathways are only partially 103 

annotated even after considering multiple databases. For example, in Monoterpenoid 104 

biosynthesis in corn (Fig 2B) six out of nine compounds are annotated in both databases. Of the 105 

three remaining compounds, (R)-Ipsdienol is known to be present in food but was not annotated 106 

to any plant in our collection. The two remaining compounds, Ipsdienon, a product of the 107 

reaction catalyzed by EC 1.1.1.386 directly from (R)-Ipsdienol, and (6E)-8-Oxolinalool, a product 108 

of the reaction catalyzed by EC 1.14.14.84, are currently documented in food but not in corn 109 
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(white circles, Figure 2b). To strengthen the stringency of our work, these compounds, whose 110 

presence is documented in food, but not known to be associated with corn, are not included in 111 

the plant’s catalogue.  112 

Consider another example, the tocopherol biosynthesis pathway. Tocopherols are an 113 

important class of compounds for health and nutrition22 (α-tocopherol  better known as vitamin 114 

E). Figure 2c shows the tocopherol biosynthesis pathway in corn and the delineated contribution 115 

of each database to its compounds. We find that while databases such as FooDB and DFC 116 

annotate the lower half of the pathway, capturing products such as vitamin E and its derivatives. 117 

In contrast, genomics-based annotations offers a full pathway annotation, adding 4 new 118 

intermediates: 3-(4-hydroxyphenyl)pyruvate, homogenistate, phytyl diphosphate and 2-methyl-119 

6-phytyl-1,4-benzoquinol and 2 new cofactors: S-adenosyl-L-homocysteine and S-adenosyl-L-120 

methionine, shedding light on the metabolic processes leading to the production of vitamin E in 121 

corn.  122 

Taken together, genomics-based annotations added 3,021 compounds to the list of 123 

chemical compounds potentially present in corn, increasing its compound library by 64% (Figure 124 

2a). Across our collection, genomics-based annotations increased the number of compounds by 125 

2,363±728 chemicals on average per plant, an increase of 75%±15%. After this increase, our 126 

database documents 3,239±1,054 compounds per plant. We find that some plants are well 127 

annotated in FooDB, DFC, and USDA, while others are poorly annotated (Figure 3). Tea (Camellia 128 

sinensis) contains the highest number of FooDB, DFC, and USDA annotations (2,547 compounds 129 

out of a total of 4,379) showing an increase of 42% in new compounds. Some varieties of rice 130 

(Oryza glaberrima, Oryza longistaminata, Oryza barthii), white yam (Dioscorea rotundata), wild 131 
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tomato (Solanum pennellii) and woodland strawberry (Fragaria vesca) are not catalogued by 132 

FooDB, DFC or USDA, hence for these plants genomics-based annotations contributed 100% of 133 

the compounds. Other plants like clementine (citrus clementina), lotus (nelumbo nucifera) and 134 

african oil palm (elaeis guineensis) are poorly annotated (<250 compounds) in FooDB, DFC, and 135 

USDA, hence the addition of genomics-based annotations increased our knowledge about their 136 

chemical composition by more than 85%.  137 

 138 

Pathway enrichment analysis 139 

Genomics-based annotations not only increase our knowledge about the chemical 140 

composition of plants but also help us unveil the network of pathways responsible for the 141 

production of the newly predicted chemical compounds. Indeed, metabolic pathway mapping 142 

allows for a better understanding of the metabolic mechanisms responsible for the synthesis and 143 

modulation of natural products and offer a knowledge base towards the prediction of currently 144 

undetected compounds.  145 

Metabolic pathways are divided into two main classes: primary and secondary 146 

metabolism. Primary metabolism is the collection of pathways involved in growth, energy, and 147 

reproduction of a plant, while secondary metabolism captures all other functions23, like flavonoid 148 

biosynthesis, xenobiotics metabolism or plant-hormone metabolism to name only a few. For corn 149 

we collected 789 pathways out of which 35% belong to primary and 65% belong to secondary 150 

metabolism. We asked if certain pathways are represented more than others in our catalogue. 151 

To test for pathway bias we performed a hypergeometric enrichment test capturing the chance 152 

for a set of compounds mapped to a pathway in a certain plant to exceed the expected overlap 153 
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with the general reference pathway (p-value <0.05) (Figure S2). In corn, we found 479 enriched 154 

pathways spanning both primary (45%) and secondary metabolism (55%), indicating that our 155 

corn dataset is metabolically diverse.  156 

We next asked about specialized metabolism occurring only in corn, scanning our plant 157 

collection for enriched pathways specific to it (Figure 4a). Corn-specific pathways include 158 

specialized metabolism like kauralexin and zealexin biosynthesis24,25, maysin biosynthesis26, 159 

bergamotene biosynthesis27 and all-trans-farnesol biosynthesis28. Each of these natural products 160 

of the diterpenoid, volatile sesquiterpenes and flavone families are produced by the plant to 161 

acquire resistance against biotic and abiotic stress, such as herbivore attack. 162 

Generalizing, the analysis performed for corn, we next classified pathways to 163 

primary/secondary in our entire collection. We identified 789 pathways across the full plant 164 

catalogue, 35% of which are related to primary and 65% to secondary metabolism, a fraction 165 

similar to the one observed for corn, offering evidence of diversity in our catalogue (Figure 4b, 166 

e). We find most pathways to be enriched (p-value <0.05), with the exception of pathways 167 

belonging to glycan biosynthesis and secondary biosynthesis metabolism. Other pathways 168 

belonging to secondary metabolism showed a large variation in p-values as multiple outliers were 169 

observed above the enrichment line (Figure 4b).  170 

 We found 762 enriched pathways across all plants (p-value<0.05), out of which 34% are 171 

related to primary and 66% are related to secondary metabolism. The distribution of the number 172 

of enriched pathways per plant shows two peaks (Figure 4c), corresponding to the two databases, 173 

KEGG and PlantCyc. The peaks capture the fact that KEGG has fewer, more complex and generic 174 

pathway map representations while PlantCyc has a larger number of smaller pathways. For 175 
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example, KEGG represents the metabolism of alanine, aspartate and glutamate in one map while 176 

PlantCyc breaks down this process into 10 smaller pathways.   177 

Different plants are known for their production of specialized compounds and natural 178 

products. Examples include the production of curcumin by turmeric, thymol by thyme and vanillin 179 

by vanilla plants29, prompting us to identify pathways enriched in single plants, pointing towards 180 

unique functionalities. Indeed, we observed a bimodal distribution of the number of plants per 181 

enriched pathway, one of the peaks being closer to 60 plants and another around 5 plants, 182 

indicating the presence of specialized plant metabolism in our catalogue (Figure 4c). Overall, we 183 

find that 30 out of 75 plants have at least one plant-specific enriched pathway (Figure S3) out of 184 

which we explored seven (Figure 4a). An example of such unique pathway is anthocyanin 185 

biosynthesis (delphinidin 3-O-glucoside) in grapes (Vitis vinifera), present in seeds and grape skins 186 

and used to differentiate between types of wine30,31. Other examples include: (1) hordatine 187 

biosynthesis in Barley (Hordeum vulgare subsp. vulgare). Hordatine, an antifungal compound, 188 

highly abundant in young barley shoots, reported to be a potential inhibitor of two main COVID-189 

19 proteins, a protease (PDB ID: 7BQY) and a RNA polymerase (PDB ID: 7bV2)32 and found in 190 

measurable quantities in different types of beer33. (2) Ricinoleate biosynthesis, found in castor 191 

bean (Ricinus communis) and the main constituent of castor oil, was shown to have antibacterial 192 

activities, and its elastic properties make it a candidate for packaging polymers with potential 193 

applications in biomedical and food technology34. (3) Capsaicin, a specialized component in 194 

pepper (Capsicum annuum)35 was recently shown to have positive dietetic effects and beneficial 195 

antioxidant activity through association with the gut microbiome36. (4) Sorgoleone, an 196 

allelochemical exuded from sorghum (Sorghum bicolor) roots is known to effect both microbial 197 
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communities and neighboring plant growth37.  Finally, we find a variety of acyl-sugar biosynthesis 198 

pathways in tomato (Solanum lycopersicum). Acyl-sugars are created in tomato trichomes and 199 

have commercial and medicinal uses38. Another unique pathway in tomato is phenylpropanoid 200 

volatiles glycoconjugation, a pathway describing specialized volatiles found in tomato fruits 201 

contributing to its signature smell39. 202 

In summary, genomics-based annotations bring diverse metabolic information from both 203 

primary and secondary metabolism, offering evidence of new specialized compounds.  204 

 205 

Experimental confirmation of genomics contribution to food knowledge 206 

To experimentally test the capacity of plant genomics to predict the presence of 207 

compounds in plants, we performed untargeted metabolomics experiments on 13 out of the 75 208 

plants in our collection, resulting in a catalogue of 939 detected compounds (see Methods). On 209 

average, 371±130 compounds were detected per plant, ranging from 264 in pear to 652 in apple, 210 

and 370 compounds for corn (39.4% of our experimental catalogue). These experimental results 211 

allow us to evaluate the accuracy of genomics-based predictions. For this, we measured the 212 

overlap of the chemical structures between experimentally detected compounds and our known 213 

genomics-based compound collection, finding that genomics-based annotations show a 214 

significant overlap with experiments (p-value= 0.018, SI section 1).  215 

To be specific, we identify 59 compounds that are found only in genomics-based 216 

annotations and were also detected in our experiments results (Figure 5a). We clustered these 217 

new compounds based on their chemical structure and classified them into primary and 218 

secondary metabolism (Figure 5b, Figure S5), finding that the majority of compounds were 219 
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attributed to primary metabolism (30) and might represent pooled intermediates and their 220 

possible fragments. Metabolite detection may also vary depending on the compound and spectra 221 

libraries used in identification. As primary compounds are better studied and annotated, 222 

secondary metabolites and their fragmentation products are less abundant in spectra libraries40. 223 

Overall, we observed well characterized fractions of lipids, cofactors, sugar and amino acid 224 

derivatives.  225 

We identified seven compounds, present in corn that might potentially affect human well-226 

being (Figure 5c). For example, Citrulline, a non-essential amino acid known to effect 227 

cardiovascular health and dilate blood vessels, and primarily found in watermelon and in smaller 228 

amounts in other fruits including a variety of corn species41, is marketed as a dietary supplement 229 

for bodybuilders and athletes to improve exercise endurance. N-Acetyl-D-Glucosamine, 230 

previously detected in the shell that protects the first leaf of a corn shoot42, is known to help 231 

support the joints and may help promote healthy skin43. Another compound detected is 232 

nicotinamide ribonucleotide (NMN), reported to be detected together with NAD+, a well-known 233 

cofactor, always present in the cell44. Well-being benefits related to this compounds stem from 234 

its effects on NAD+ content. This compound has been well studied and as a member of the 235 

vitamin B3 family45 and is being used for the treatment of a number of cardiovascular, 236 

neurodegenerative and metabolic disorders46. Other compounds detected in corn and unveiled 237 

by genomics-based annotations have potential cancer related effects. For example, 5-238 

methylthioadenosine (MTA), a sulfur-containing nucleoside has recently reported as tumor 239 

suppresser47. Another cancer associated compound, hypotaurine, a sulfinic acid with antioxidant 240 

properties, derived from cysteine and an intermediate in taurine production, is one of the top 241 
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ranked metabolites for differentiating low and high grade tumors48 but was also shown to evoke 242 

a malignant phenotype in glioma, the most common primary brain malignancies in adults49.   It is 243 

also marketed as a dietary supplement, together with taurine and L-carnitine and associated with 244 

semen quality improvement50. Some other compounds observed in this subset were suggested 245 

to have both a well-being and economic/industrial importance. For example, Pipecolic acid, a 246 

product of lysine metabolism, is an important regulator of immunity in plants and humans. In 247 

plants, it accumulates upon pathogen infection and is associated with systemic acquired 248 

resistance (SAR)51. Pipecolic acid is also an important intermediate of pharmaceutically and 249 

biologically derived compounds such as immunosuppressive agents and antibiotics52,53. 250 

Our experimental investigation also unveiled 22 compounds found only in FooDB, DFC 251 

and USDA. These include: (1) 6-Methoxy-2(3H)-benzoxazolone (MBOA), a degradation product 252 

of the known bioactive compound 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 253 

(DIMBOA). DIMBOA is the main benzoxazinone synthesized in young corn tissues and 254 

accumulates in the cells. It is exuded by the roots and acts as a biocide against pests and as an 255 

attractant for soil bacteria. MBOA, the more stable form, is often detected in corn soils54. 256 

Interestingly, while DIMBOA is annotated to the corn genome, MBOA, its derivative is not. (2) 257 

Vanillic acid, a phenolic detected in corn grits55, (3) Trigonelline, an active alkaloid known to be 258 

found in corn and associated with antioxidant, anti-carcinogenic, anti-diabetic and anti-259 

hypercholesterolemia properties56, (4) Syringic acid, a phenolic compound found in fruits and 260 

vegetables including corn and reported to have anti-oxidant, antimicrobial, anti-inflammatory 261 

and antiendotoxic properties57, and (5) Feruloylputrescine, a polyamine monoconjugate 262 

previously detected in corn kernels58.   263 
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Finally, we considered all the plants in our catalogue for which we have experimentally 264 

detected compounds. We find that the number of compounds added by genomics-based 265 

annotations is typically higher than the number already catalogued by FooDB, DFC, and USDA 266 

(49±15 and 26±14 compounds respectively, Figure S6). In other words, our analysis shows that 267 

genomics-based annotations significantly enhance existing knowledge of edible plants’ chemical 268 

composition, helping us uncover potentially novel bioactive compounds.  269 

 270 

Genomics annotations contribute to the feasibility of compound accumulation 271 

 The number of currently identified compounds detected by metabolomics is limited by 272 

instrumentation, standard libraries, and analysis pipelines. As a final step, we set out to explore 273 

genomics-based annotations’ contribution to our ability to predict compounds that accumulate 274 

in a plant. Indeed, chemicals that accumulate are more likely to be present in sufficient quantity 275 

to be experimentally detected or to enter the bloodstream, potentially modulating health. 276 

Indeed, transient compounds may be harder to detect. To study the likelihood of a compound to 277 

accumulate we used Gibbs free energy (ΔG) reaction values combined with a genome-scale 278 

metabolic network topology. To establish thermodynamic feasibility, we determine the 279 

probability that a compound accumulates given all the reactions it takes part in the network 280 

context (Figure 6a). In other words, thermodynamic feasibility offers a method for compound 281 

ranking based on cumulative ΔG values. We collected ΔG values from modelSEED59 and PlantCyc 282 

and calculated the cumulative ΔG value (score) for each compound. If the compound acted as a 283 

reactant in a reaction, we assume that it is consumed, hence it is a transient compound, assigned 284 

a negative ΔG value. In contrast, if the compound is a product of the reaction, it is assigned a 285 
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positive value. Compounds with positive scores are produced more than consumed, thus they 286 

are likely to accumulate. The reaction representing the largest ΔG value is called a sink reaction, 287 

as it shifts the balance largely towards either the consumption or production of a compound. In 288 

corn, we scored 2,985 compounds (63% of total compounds), out of which 1,460 have positive 289 

ΔG values, i.e., are expected to accumulate.  290 

To illustrate our findings, we explored the compounds on the vitamin E biosynthesis 291 

pathway in corn (Figure 6b). We observed likely accumulation of pathway products α and β 292 

tocopherol and of the intermediates γ and δ tocopherol. Intermediates shown to accumulate are 293 

likely involved in more than one reaction outside the pathway. For example, phytyl diphosphate 294 

is involved in 7 reactions and 5 pathways. The largest ΔG value measured for this set of reactions 295 

representing the sink was annotated to the phytyl salvage pathway, describing the conversion of 296 

degraded chlorophyl to phytyl phosphate, contributing to its high likelyhood to accumulate. A 297 

compound could likely accumulate if it is an intermediate appearing in two reactions with a large 298 

ΔG value difference. For example, 2,3-dimethyl-6-phytyl-1,4-benzoquinol is involved in two 299 

reactions, both annotated to the vitamin E biosynthesis pathway, where the ΔG value for the 300 

reaction producing it (20.64 kcal/mol) is larger than the ΔG value for the reaction consuming it (-301 

12.05 kcal/mol). Overall, 1,754±588 compounds were scored per plant, covering an average of 302 

79±17% of its compounds. The fraction of scored compounds was as high as 96.5% of the total 303 

compounds in Oryza longstaminata, a species of rice, and as low as 50% in adzuki bean (Vigna 304 

angularis). 305 

To estimate the predictive power of our approach, we first asked if kinetics-based 306 

annotations have increased the predictive power of our platform compared to total genomics-307 
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based annotations. We find that Kinetics-based annotations show a more significant overlap with 308 

the experiments compared to genomics (p-value=0.0018, SI section 1, Figure S4), and they are 309 

characterized by a high degree of structural similarity, significantly different from a random 310 

sample of the same size from genomics annotations (p-value<0.001, SI section 1). 311 

Next, we used the experimentally detected compounds in the 13 plants for which we 312 

performed untargeted metabolomics, to estimate the performance of our approach. Similar to 313 

known machine learning methods, we use ΔG scores as a ‘classifier’ predicting the likelihood of 314 

a compound to accumulate. We then compare it to our experimentally detected compound 315 

catalogue as ground truth values (a binary classification denoting presence or absence). We 316 

calculated standard performance metrics, such as the true positive and false positive rates and 317 

the area under the receiver-operator curve (ROC), AUCROC. In addition, we calculated the 318 

precision, recall and F-1 scores. Since our data may be imbalanced, we initially set the threshold 319 

of prediction to be larger than zero (positive values). We then performed a moving threshold 320 

analysis (see Methods) to determine the optimal threshold for best performance in each plant 321 

found in both our annotation and experimental catalogue (Table S1). Most AUCROC values were 322 

above the discrimination line (0.5), several representing acceptable discrimination (AUCROC 323 

values between 0.69 to 0.76) (Figure 6c). Overall, AUCROC values were better for the compounds 324 

that are expected to accumulate than the compounds predicted based on the whole genome, 325 

confirming the predictive power of this thermodynamics-based analysis.  326 

Finally, we selected the top ranked 110 corn compound families with the best 327 

performance of our thermodynamics-based approach (AUCROC=0.74). This list contained 15 328 

experimentally detected compounds including AMP, S-adenosylhomocysteine (SAH) and 5-329 
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methylthioadenosine (MTA), which are cofactors maintained as constant pools in the cell. Other 330 

compounds such as succinate, Glycerol 3-phosphate, and 3-phospho-D-glycerate are key 331 

products of major energy producing pathways, such as carbon fixation by photosynthesis, 332 

glycolysis and the TCA cycle. Interestingly, L-glutamate and D-Galacturonic acid were also 333 

detected. L-glutamate was previously reported as a key metabolite in corn, measured in the large 334 

amounts in the endosperm60,61. D-Galacturonic acid is the main component of pectin, a 335 

polysaccharide naturally found in plant cell walls. Thus, both compounds are likely to accumulate 336 

and be detected in metabolomics measurements, supporting the predictive power of our 337 

approach.  338 

 339 

Discussion 340 

Here we developed a systematic methodology to extract the contribution of genomics-341 

based annotations to the molecular composition of foods. We found that genomics-based 342 

annotations not only boosted, in some cases by more than 85%, the number of compounds 343 

known to be present in a plant (in comparison to FooDB, DFC, and USDA databases) but also 344 

offered valuable mechanistic knowledge in the form of chemical structures and the metabolic 345 

pathways responsible for their production. Using multiple types of annotations (compound, 346 

reaction and pathway) we surveyed the contribution of genomics in depth. These annotations, 347 

combined with experimentally detected compounds, were used to gain new insights into the 348 

chemical composition of edible plants, specifically corn.  349 

The molecular composition of plants changes in time and in response to biotic and abiotic 350 

stresses such as environmental conditions, herbivore and pathogen attacks and hormonal 351 
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signals, all governed by complex genetic and metabolic regulation. We therefore set out to 352 

explore the feasibility of a compound to accumulate, affecting the likelihood of being 353 

experimentally detectable. We find good discriminative power, supporting the large-scale use of 354 

thermodynamic annotations. As experimental data and thermodynamics annotations expand, 355 

they may lead to significant enhancement in the predictive power of metabologenomics. 356 

While the advent of genomics offers new insights into the composition of edible plants, it 357 

is not without limitations. Various biases that might arise from such data were explored 358 

throughout this work, representing only a few of the multiple factors that might affect our 359 

knowledge of food composition. One major limitation is the availability of annotated plant 360 

genomes. While the cost of sequencing dropped significantly, we find that the number of non-361 

model plant genomes annotated remains limited and grows slowly. Other factors such as 362 

annotation quality and database standardization can also limit omics-based analysis. As shown 363 

here, two major databases, KEGG and PlantCyc, has introduced some redundancy in pathway 364 

mappings, partially rooted in the different pathway definitions used. As data continues to 365 

accumulate, standardization and mappings between the different data sources is key to deriving 366 

new insights. Finally, the use of metabolomics to detect compounds in edible plants highly 367 

depends on the instrumentation used, standard libraries and identification methods. For 368 

example, it is known that mass-spectrometers have poor detection of stereoisomers62–64. Even 369 

though considerable efforts have been made to establish spectral analysis pipelines, high-370 

throughput metabolomics compound identification remains limited. Future improvements in 371 

metabolomics analysis and annotation could significantly enhance our knowledge of specialized 372 

metabolites and natural products in edible plants.  373 
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Finally, the genomics-based annotation analyzed here greatly contribute to our existing 374 

knowledge of the composition of edible plants. The integration of genomics and metabolomics 375 

has been suggested as a promising combination towards the and identification of promising 376 

compounds65. Thus, this work offers a steppingstone towards a better understanding of food 377 

composition, offering insights based on fast-growing computational and experimental datasets.  378 

 379 

 380 

Methods 381 

Data collection 382 

Compound annotations were collected from open-source (FooDB and USDA) and 383 

proprietary (DFC) databases. Genomics based compound, reaction and pathway annotations 384 

were collected from KEGG and PlantCyc. ΔG values were gathered from PlantCyc and modelSEED. 385 

All annotations were completed with SMILES, InChIKey and mass. Plant diversity was analyzed 386 

and visualized using the ETE3 toolkit66 tree functions (ete3, version 3.1.2). All taxonomic data 387 

originated from NCBI. Overall, our catalogue includes 15,296, out of which  12,662 first block 388 

InChi keys representing chemical families. The database files are available on 389 

https://github.com/Barabasi-Lab/Plant-genomics 390 

 391 

Mass spectrometry experiments 392 

 A selection of 13 produce items were purchased from two local grocery stores (Whole 393 

Foods Market and Stop & Shop): apple, banana, basil, black bean, carrot, chickpea, corn, garlic, 394 

lettuce, olive, onion, peach, pear, pepper, potato, spinach, soybean, strawberry, sugar beet, and 395 
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tomato. Each produce item sample contained the combined material of six units (for example 6 396 

apples) and was prepared in a humidity-controlled room with minimum light exposure. Sample 397 

preparation included peeling, chopping, freeze drying (-80oC for 24 hrs, Catalog No. 10-269-56B 398 

from LabConco/Fisher) and pulverizing into a fine homogenized powder (Kitchen Aid, 170W, 399 

Model No. BCG111OBO). All samples were prepared by the Giese lab (Northeastern University, 400 

Boston MA USA). The final samples were stored at -80 °C in vials containing 200 mg of powder 401 

and argon gas. The samples were shipped to two metabolomics centers (West Coast 402 

Metabolomics Center, UC Davis, CA USA and Metabolon, Morrisville, NC USA) for analysis on 403 

multiple platforms including UHPLC-CSH C18-HRMS-Orbitrap, UHPLC-BEH Amide-HRMS-404 

Orbitrap, UHPLC-PFP-HRMS-Orbitrap, and Shimadzu LC and SelexION QTRAP MS and annotation 405 

(see  SI section 2). 406 

 Experimental results were annotated by spectral matching or identified by a reference 407 

standard library. Results from both metabolomics centers were merged and standardized to 408 

InChIKeys (PubChem). Since metabolomics methodologies does not account for stereochemistry, 409 

only the first block of the InChIKey is used to compare two entries. Therefore, the resulting list is 410 

one of unique compound structures found in each food item.  411 

 412 

Statistics and enrichment tests 413 

 Enrichment analysis was performed with the hypergeometric distribution test (python 414 

3.8, scipy67 1.6.3). Pathway enrichment test was performed per organism. To that end, we first 415 

collected all the compound annotations for the reference pathways from KEGG and PlantCyc. 416 

including all known annotations attributed to that pathway. We calculated the number of 417 
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compounds found in each pathway in the organism and tested it for significance against the 418 

reference. To account for multiple testing on the same pathway, Bonferroni correction was 419 

applied to pathways’ p-values.  420 

 421 

Compound similarity across genomics, kinetics, and experiments 422 

To investigate the degree of structural similarity and overlap between molecules retrieved by 423 

different techniques, we performed similarity search and clustering on a variety of molecular 424 

fingerprints (FP). We leveraged the python package RDKit68 to standardize SMILES and InChIKeys 425 

associated with each chemical annotation, using Morgan fingerprints (FP). To generate a Morgan 426 

FP, all substructures around the heavy atoms of a molecule within a defined radius are generated 427 

and assigned to unique identifiers. These identifiers are then hashed to a vector with a fixed 428 

length. The chemoinformatic community employs 1024- or 2048-bit vectors, populating them 429 

with fragments up to radius 1 or 2. For our analysis we increased the resolution up to 8192 bits 430 

and radius 3, to capture fragments of bigger size and reduce the potential bit collision69. 431 

Since the first block of the InChIKey represents several stereoisomers, we assign a bit 432 

vector to each first block as the union of all bit vectors representing the related isomers. We then 433 

compare the degree of structural similarity between any pair of compounds by computing the 434 

Jaccard similarity between binary vectors. 435 

We assess structural similarity for a given set of N chemical compounds, by calculating the 436 

intrinsic dimension of their Jaccard similarity matrix �𝑆𝑆𝑖𝑖𝑖𝑖�, a function of the spectrum {𝜆𝜆𝑖𝑖} of �𝑆𝑆𝑖𝑖𝑖𝑖�,  437 

𝑛𝑛 = 𝑒𝑒
−∑ 𝜆𝜆𝑖𝑖

∑ 𝜆𝜆𝑘𝑘𝑁𝑁
𝑘𝑘=1

log� 𝜆𝜆𝑖𝑖
∑ 𝜆𝜆𝑘𝑘𝑁𝑁
𝑘𝑘=1

�𝑁𝑁
𝑖𝑖=1

= 𝑒𝑒𝐻𝐻 , (1) 438 
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where the Shannon entropy H of the normalized spectrum is used to estimate the number of 439 

independent components synthetizing the same amount of structural similarity observed in the 440 

sample. The higher is 𝑛𝑛 the more chemically diverse is the sample. We used n to assess how 441 

different the kinetics annotations are compared to a random sample from the genomics set 442 

(comparison with 1000 subsamples) (SI Section 1). 443 

 444 

Thermodynamic feasibility analysis 445 

 We collected available thermodynamic annotations for all the plants in our collection. 446 

Thermodynamic annotations in the form of ΔG values (Kcal/mol) were collected from 447 

ModelSEED59 and PlantCyc15. 448 

As our validation set is based on metabolomics identified compounds, we used the first 449 

block of the InChIKey string as a compound identifier. First block identifiers collapse stereoisomer 450 

information, a known limitation of mass spectrometry. To calculate the cumulative score of ΔGs 451 

for a compound we collected all the reaction annotations in which it is involved. If the compound 452 

was acting as reactant in a reaction its ΔG value would be assigned a negative value and if it would 453 

be a product, a positive value. All the values were then summed to represent a likelihood to 454 

accumulate score where a positive value indicated a likely to accumulate compound and a 455 

negative value a likely to be consumed value. This approach was applied for each plant in our 456 

plant collection with corresponding experimental results.  457 

 458 

Performance evaluation 459 
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 To evaluate the performance of the thermodynamics feasibility approach we used the 460 

first block of the InChI key of our experimentally detected compound catalogue as a validation 461 

set and ground truth. For each plant we created a binary matrix representing the predicted score 462 

(calculated likely to accumulate value) and the experimental outcome (detected/not detected) 463 

using a cutoff threshold of a positive score (>0). We then created an ROC and precision-recall 464 

curve and calculated the area under the curves. To test for optimal performance, we first ranked 465 

our data according to the highest scores, implying better likelihood to accumulate and/or be 466 

detected experimentally. Next, we applied a moving threshold analysis to establish the cutoff 467 

threshold leading to optimal performance. Briefly, we systematically increased the portion of 468 

ranked data, calculating performance metrics for each step and identified the threshold leading 469 

to optimal performance by finding the maximum geometric mean of sensitivity and specificity, 470 

and updated performance metrics accordingly. All calculations were performed and plotted using 471 

the sklearn (version 0.24.1) and seaborn (version 0.11.1) python packages and Python 3.8).    472 
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Figure 1 – Plant phylogenetic diversity and schematic overview of genomics contribution to 681 

food composition knowledge. (a) Phylogenetic tree representing the 75 plants in our collection 682 

colored by plant order. (b) Collection and evaluation of genomics-based annotations to food 683 

composition knowledge. Functional annotations include compounds, reactions and pathways. (c) 684 

Kinetics-based annotations help us to infer compounds likely to accumulate and hence 685 

experimentally detectable. (d) Validation of our kinetics-based approach against new 686 

metabolomics experiments, that detected compounds for 13 plants in our collection. 687 

 688 

 689 

 690 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.24.477528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477528
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Figure 2 – Genomics-based annotations boost corn composition knowledge. (a) Database 692 

annotations for corn, indicating that some compounds are annotated in multiple databases. The 693 

total number (N=4,721) represents the number of unique compounds for corn after the addition 694 

of genomics-based annotations. Genomics databases are represented by KEGG and PlantCyc. 695 

Other food related databases used in this work are DFC (the dictionary of food compounds), 696 

FooDB and USDA. Finally, experiments denote the set of compounds collected by metabolomics 697 

experiments reported here for corn. (b) A partial adaptation of the Monoterpenoid biosynthesis 698 

pathway in corn (KEGG) showing annotation availability, overlap and gaps in the coverage of 699 

different databases and genomics-based annotations. The different colors denote annotation 700 

sources as single or multiple concentric circles. (c) Vitamin E biosynthesis (tocopherols) pathway 701 

in corn (PlantCyc). Circles denote compounds and edges denote reactions. The different colors 702 

denote annotation sources as single or multiple concentric circles. 703 

 704 

 705 
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 706 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

Figure 3 – Contribution of the different 

sources of food composition across the 

entire edible plant catalogue. Genomics-

based annotation are presented in two 

shades of green and include the KEGG (light 

green) and PlantCyc (dark green). Food 

composition databases include FooDB 

(yellow), DFC (red), USDA (blue).  

Compounds detected in metabolomics 

experiments are shown in orange. 
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 716 

Figure 4 – Pathway enrichment analysis. (a) Plant specific significantly enriched pathways (hypergeometric test, p<0.05, Bonferroni multiple 

testing correction). The coverage of each pathway is defined by the ratio of present compounds to the total number of compounds in the 

reference pathway. These include signature known pathways like Capsaicin biosynthesis in pepper (red bars), acyl sugars and alpha tomatine 

pathways in tomato (light red bars) and maysin and zealexin biosynthesis (yellow bars). (b) A boxplot of the p-values (hypergeometric test, 

p<0.05, Bonferroni multiple testing correction) of pathway categories in corn. Medians found below the dashed line (0.05 enrichment line) 

represent the enriched pathways. We find that most pathways are enriched, indicating the diversity in our pathway coverage. (c) A density 

plot describing the distribution of enriched pathways per plant. We observed two peaks compatible with the two genomics databases included, 

KEGG (lower number of maps, each containing a larger number of reactions) and PlantCyc (larger number of maps, each containing a smaller 

number of reactions) (d) A density plot describing the distribution of the number of plants per enriched pathway. While most pathways are 

found in many plants, we observe several plant specific pathways described in detail in (a) and Figure S3. (e) A boxplot of enriched pathways 

(hypergeometric test, p<0.05, Bonferroni multiple testing correction) classified as primary and secondary metabolism. Medians found below 

the dashed line (0.05 enrichment line) represent an enriched class. 
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Figure 5 –Bioactive compounds in corn unveiled by genomics. (a) Venn diagram comparing all 718 

sources of data contributing to the corn compound collection. The black circle marks the fraction 719 

of compounds unique to genomics-based annotations and metabolomics experiments reported 720 

here. (b) A structural similarity based clustermap of the 59 compounds highlighted by the black 721 

circle in panel (a). Compounds are classified to primary (blue) and secondary (red) metabolism 722 

according to the pathways they are part of. Greyscale denotes structural similarity as Jaccard 723 

distance, 0 being not similar and 1 being composed of the same bits in their vector 724 

representation. (c) The potential of corn as a nutritional influencer on wellbeing as learned with 725 

the addition of genome based-annotations, associated with antioxidant and anti-inflammatory 726 

activity promoting, heart, skin and metabolic health.  727 

 728 
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 729 

 730 

 731 

Figure 6 – Application of kinetics-based annotations to predict likely to accumulate compounds. (a) 

Schematic description of the kinetics-based annotations approach. Gibbs free energy values, ΔG, were 

collected for each reaction in each plant and used to calculate the cumulative score of a compound. If a 

compound is a reactant in a reaction, it gets a negative ΔG value and if it is a product, it gets a positive ΔG 

value. (b) Vitamin E biosynthesis (tocopherols) pathway of corn (PlantCyc), describing the possible 

outcomes of our approach. Circles are compounds and edges are reactions. (c) Performance of our 

approach including (i) optimal threshold analysis on the top-ranking compounds predicted to accumulate, 

establishing the window of best performance denoted by the area under the receiver operator curve, 

AUCROC and the area under the precision recall curve, AUCPR for each plant, and (ii) the optimal receiver 

operating curves for plants included in this analysis. 
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