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Abstract 
Background & Aims: Absorption, metabolism, and export of dietary lipids occurs in the small intestinal 
epithelium. Caco-2 and organoids have been used to study these processes but are limited in 
physiological relevance or preclude simultaneous apical and basal access. Here, we develop a high-
throughput planar human absorptive enterocyte (AE) monolayer system for investigating lipid-handling, 
then evaluate the role of fatty acid oxidation (FAO) in fatty acid (FA) export, using etomoxir, C75, and 
anti-diabetic drug, metformin. 

Methods: Single-cell RNA-sequencing (scRNAseq), transcriptomics, and lineage trajectory was 
performed on primary human jejunum. In vivo AE maturational states informed conditions used to 
differentiate human intestinal stem cells (ISCs) that mimic in vivo AE maturation. The system was scaled 
for high-throughput drug screening. Fatty acid oxidation (FAO) was pharmacologically modulated and 
BODIPYTM (B)-labelled FAs were used to evaluate FA-handling via fluorescence and thin layer 
chromatography (TLC).  

Results: scRNAseq shows increasing expression of lipid-handling genes as AEs mature. Culture 
conditions promote ISC differentiation into confluent AE monolayers. FA-handling gene expression 
mimics in vivo maturational states. FAO inhibitor, etomoxir, decreased apical-to-basolateral export of 
medium-chain B-C12 and long-chain B-C16 FAs whereas CPT1 agonist, C75, and antidiabetic drug, 
metformin, increased apical-to-basolateral export. Short-chain B-C5 was unaffected by FAO inhibition 
and diffused through AEs.  

Conclusions: Primary human ISCs in culture undergo programmed maturation. AE monolayers 
demonstrate in vivo maturational states and lipid-handling gene expression profiles. AEs create strong 
epithelial barriers in 96-Transwell format. FA export is proportional to FAO. Metformin enhances FAO 
and increases basolateral FA export, supporting an intestine-specific role.  
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Introduction 
The small intestinal (SI) epithelium is a selective barrier that serves as the point of entry for 

essential micro- and macronutrients to meet energy demands and preserve general homeostatic 
functions. Lipids are the most energy dense of the macronutrients and are absorbed by the SI epithelium1. 
The majority of dietary lipids are triglycerides (TAGs) and are broken down by the stomach and intestinal 
lumen into fatty acids (FAs) and monoglycerides1. FAs are then taken up by absorptive enterocytes (AEs), 
the predominant cell type of the SI epithelium1. Lipids can then be metabolized and used by AEs for 
cellular functions like energy production, membrane synthesis, and storage as lipid droplets2 or 
distributed to the body by the well-accepted lipoprotein-lymphatic system and by the less appreciated 
FA-portal vein pathway3–5.  

 Investigating uptake, metabolism, and export of dietary FAs, here collectively called ‘FA-handling’ 
in vitro is challenging due to the historical lack of physiologically relevant culture models. As metabolic 
disorders such as dyslipidemia, diabetes and obesity1,6,7 are on the rise8,9, there is strong interest in 
evaluating how genetics10–12 and environmental factors, such as alterations in gut microbiota13–16 and 
eating behaviors1,6,7, are associated with FA-handling mechanisms, which by nature are complex to study 
in humans or animal models. Limitations of 3D organoid cultures, ethical considerations of human 
research, and inadequacies of animal models compound the challenges and limit scientific progress 
toward solutions for these and other metabolic diseases. In this regard, an AE cell culture platform using 
primary human cells and coupled with simple and sensitive detection of FAs and their metabolites would 
represent a significant improvement and address many of the limitations of existing in vitro culture 
models.  

 Traditionally, cell culture models of human SI epithelium have largely relied on cancer or 
immortalized murine cell lines (i.e., Caco-217, ICCL-218, etc.), which retain properties consistent with 
undifferentiated states19,20,21. Organoid culture models have become popular alternatives because they 
are typically derived from primary intestinal epithelial stem cells (ISCs) and can differentiate into the main 
mature lineages of the differentiated gut epithelium22,23. Organoids are small (~100-1000µm diameter) 
spherical structures cultured in thick hydrogels. They are comprised of polarized cells where the enclosed 
apical or ‘luminal’ surface precludes application of FAs to the physiologically relevant surface to mimic 
dietary absorption23. Organoids can be cultured with the apical surface facing outward (apical-out 
organoids)24; however, this causes the basal surface to be enclosed and inaccessible, preventing 
sampling of exported or metabolized lipids. Collectively these factors limit interpretations, reduce 
throughput, and prohibit analyses necessary to accurately assess FA-handling across the AE monolayer. 

Conventional methods to detect FAs has relied on using radioisotope- and heavy isotope-labeled 
FA analogs25–31. These isotope-labeled FAs are thought to behave similarly to native FAs in absorptive, 
metabolic, and export processes25–31; however, special safety precautions and sophisticated downstream 
analytics (e.g., mass spectrophotometry) are required, limiting access of these assays to many 
investigators. Fluorescently-labeled FAs represent an attractive alternative because they do not require 
special handling, are sensitive, commercially available, and can be detected using a variety of common 
instruments and methods (e.g., plate readers, microscopes, thin layer chromatography)32. For example, 
BODIPYTM (B) is a brightly fluorescent fluorophore, and B-FA analogs have been shown to mimic 
endogenous FA metabolism and transport, making it an effective tracer for FAs in lipid-handling studies32–

36. Importantly, unlike isotopically labeled FAs, fluorescently labeled FAs also permit imaging of FA-
handling in live and fixed cells35,36. 

Our group has recently developed methods for culturing and indefinitely expanding primary 
human ISCs as 2D monolayers37. ISCs cultured this way can then be transferred to TranswellTM  inserts, 
cultured to confluence, and then terminally differentiated into absorptive and secretory lineages found in 
vivo37,38. Monolayers cultured on permeable Transwell inserts are in contact with apical and basal 
reservoirs where factors, drugs, and metabolites can be easily added or sampled throughout an 
experiment37. Unlike organoids, monolayers grow as planar sheets rather than spheres suspended in 
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thick hydrogels, allowing use of imaging systems that are in common use in basic science laboratories, 
robotic drug screening and validation platforms.    

Our study here has two primary goals; the first is to develop and validate a new culture system to 
study FA-handling, and second is to use the system to demonstrate utility for evaluating the impact that 
a set of drugs has on FA oxidation (FAO) and export of FA metabolites. We take an approach that first 
defines the baseline transcriptomic state of relevant lipid-handling genes and then tailor culture conditions 
to mimic the in vivo lipid-handling gene profiles. Readouts for FA-handling are designed for practicality, 
sensitivity, and high-throughput applications. Using this new system, we pharmacologically inhibit and 
potentiate FAO and observe changes in FA export that informs a hypothesis that FAO increases export 
of medium- and long-chain FA metabolites across the basolateral membrane. This is tested and the 
findings reveal new biological insights into the role of FAO on export of FAs with implications for 
understanding blood-glucose regulation and appetite control. 

  

Results 
Single-cell transcriptomics of jejunal and ileal human mucosa define early, intermediate, 
and mature nutrient-handling enterocytes   

First, we sought to characterize the baseline transcriptomic profiles of human AEs in vivo to guide 
the development of an in vitro model of human FA-handling. The distal SI (jejunum and ileum) represents 
the majority of absorptive epithelium in the human SI39;  however, lipid-handling transcriptional profiles of 
jejunal and ileal absorptive lineages have not been fully described at the single-cell level. Endoscopic 
biopsies have enabled single-cell transcriptomics to be performed on human duodenal40 and ileal41 
mucosa; however, single-cell transcriptomics has only recently been reported for the jejunum42,43, with 
limited characterization of absorptive function39,43.. To further define absorptive function of the distal SI, 
single-cell RNA-sequencing (scRNAseq) was performed on primary jejunal and ileal epithelium isolated 
from a healthy organ donor (Fig. S1). Annexin V staining demonstrated high viability (95.7%, Fig. S1) of 
single cells (Fig. S1A-E) with 1,788 having passed quality filtering (Fig. S1F, G). To identify the distinct 
cell types captured in the dataset, dimensional reduction was performed44, revealing that the cell 
populations represented the major reported cell lineages in the human SI epithelium40 (Fig. 1A). Most 
cells in the dataset clustered separately from the minority secretory lineages (enteroendocrine, goblet, 
BEST4+, and tuft). This main cluster was comprised of cells consistent with ISCs, transit-amplifying (TA) 
cells, and AEs (Fig. 1A). The high viability, quality and capture of the full complement of major SI epithelial 
lineages provided a strong foundation for transcriptomic characterization. 

In human duodenum and ileum, AEs are sub-categorized as early (eAE), intermediate (iAE), and 
mature (mAE) based on maturation state40,45. Genes associated with these three AE sub-sets were also 
observed in jejunal and ileal Leiden-clustering (Fig. 1A). Jejunal and ileal AEs clustered together 
demonstrating a high degree of transcriptomic similarity between these cells (Fig. S1H). Since Leiden-
cluster boundaries appear artificially binary, each cell was independently interrogated using a 
computational score comprised of curated gene sets that would predict cell lineages for each Leiden-
cluster.  Three different curated gene sets from prior studies were used to identify different cell cycle 
stages46, ISCs47–49, and AEs41 (Fig. 1B-D). The cell-cycle score showed most cycling cells are strongly 
associated at one end of the cluster, which is consistent with cells exhibiting the strongest ISC score (Fig. 
1B,C). By contrast, cells with the highest AE score were strongly associated with the opposite end of the 
same cluster (Fig. 1D). Twenty ISC signature genes that were reported to be the most highly expressed 
genes in human ileal ISCs41 were also highest in jejunal ISCs (Fig. 1E). These ISC-associated genes 
gradually decreased in jejunal AE populations consistent with differentiation (Fig. 1E). Conversely, 20 of 
the most highly expressed AE signature genes identified in human ileal mAEs41 were lowest in jejunal 
ISCs. These AE-associated genes gradually increased in jejunal AE populations as they differentiated. 
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(Fig. 1F). Together these data suggest jejunal AEs follow a similar maturation trajectory as duodenal and 
ileal cells from other reports40,41,45. 

Computational lineage trajectory analyses reveal human absorptive enterocytes 
progress through maturation stages with increasing FA-handling gene expression 

 A recent study of murine jejunal villi described an AE maturation program wherein spatially 
distinct zones along the villus were used to define AE functions (e.g., antimicrobial functions towards the 
base, lipoprotein secretion towards the tip)50. Whether human AEs also progress through maturation 
states corresponding to distinct functions along the length of the villus is unknown. Progressive 
expression of mature AE markers in our jejunal dataset (Fig. 1F) led to the hypothesis that human AE 
clusters correspond to lineages with distinct gene expression profiles of maturation along the villus. To 
test this hypothesis, we used a computational framework based on the rate of change of spliced and 
unspliced mRNA ratios (i.e., RNA velocity)51 and a differentiation-specific RNA velocity-based metric (i.e., 
latent time) (Fig. 1G,H)52. Human jejunal cells were used in the analysis to be consistent with previous 
mouse studies50. Vectors calculated based on the solved dynamical model of RNA velocity predict a 
trajectory of ISCs gradually differentiating to mAEs (arrows, Fig. 1G). Next, a latent time value between 
0 and 1 was assigned to each cell to order cells along the trajectory modeled by the RNA-velocity vectors 
(Fig. 1H). A latent time of 0 means that the cell has yet to enter the modeled trajectory whereas a latent 
time of 1 means that the cell has progressed completely through the modeled differentiation pathway. 
Through combining RNA velocity and latent time, we demonstrate a single path of likely cell transitions 
from ISCs into eAEs, followed by iAEs and culminating with mAEs (Fig. 1G,H).  

 To visualize the number of differentially expressed genes (DEGs) between these maturation 
states (i.e., eAE, iAE, and mAE), the 1,537 identified DEGs from these populations were plotted against 
all jejunal ISCs, eAEs, iAEs and mAEs as ordered by the calculated latent time (Fig. 1I, Fig. S2A-D, Table 
S3). ISCs and mAEs had the largest amount of DEGs (732 and 592, respectively) with eAEs and iAEs 
only having 106 and 107 DEGs, respectively (Table S3). The pattern of gene expression showed that 
genes highest in ISCs gradually turn off as the cells mature (Fig. 1I). Conversely mature AE genes begin 
to turn on in the eAE and iAE states (Fig. 1I). The cell maturation analyses were next further refined using 
curated gene sets specific for FA handling (Fig. S3A). Expression of genes associated with chylomicron 
assembly (APOA1, APOA4, APOB) were enriched in iAE and mAE populations, while distinct subsets of 
genes involved in regulating FA transport (CD36, SLC27A1, SLC27A5) and FAO (CPT1A, PPARG, 
PPARGC1A) were differentially enriched in each maturation state, suggesting discrete regulation of 
these lipid-handling mechanisms along the villi (Fig. S3A).  

In situ hybridization was performed on jejunal tissue sections from the same donor to validate the 
predicted computational trajectory by locating marker genes for each maturation stage to points along 
the villus (Fig. 1J,K). Consistent with our predictions, OLFM4 (ISC marker) localized to the crypt base, 
DMBT1 (antimicrobial function) was found in the upper crypt and lower villus, FABP1 (lipid chaperone) 
was enriched in the mid-villus region, and APOA4 (chylomicron assembly) was enriched at the villus tip 
(Fig. 1K). Together these findings support distinct transcriptional states and associated lipid-handling 
mechanisms with each AE maturation stage along the crypt-villus axis in the human jejunum. Consistent 
with findings in mice, human AEs appear to perform distinct functions as they differentiate along the crypt-
villus axis50. 

Characterization of culture model by scRNAseq demonstrates differentiation of human 
jejunal ISCs generates highly pure monolayers of absorptive enterocytes 
 In prior work, our group developed platforms that promote robust, long-term expansion of human 
ISCs37. When cultured on Transwell culture systems, ISCs can be induced to differentiate into AEs with 
strong barrier function and used for transport studies53,38 (Table S1). The Transwell membrane allows for 
application and retrieval of FAs and their metabolites from the apical and basal reservoirs, respectively. 
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Both are crucial parameters not available in organoids that enable mechanistic studies of FA-handling in 
vitro.  

To define cell phenotypes and characterize lineage purity at single-cell resolution, scRNAseq was 
performed on ISCs under expansion conditions53 (Table S2) and AE monolayers after 5-days of 
differentiation (Fig. 2A). Inhibition of Notch signaling is required for specification of the secretory 
lineage54,55. Because we initiated differentiation by removal of ISC growth factors without addition of a 
Notch inhibitor, we hypothesized that ISCs would follow an absorptive rather than secretory differentiation 
trajectory. Leiden clustering of ISC expansion and differentiation conditions showed two distinct clusters 
unique to each media formulation (Fig. 2B). 40% of cells in the ISC cluster were predicted by 
computational methods to be in either S- or G2/M-phase, whereas >99% of cells in AE differentiation 
conditions were predicted to be in G0/G1-phase (Fig. 2C).  

Computational cell cycle predictions cannot distinguish between cells in G1 or cells that have left 
the cell cycle, thus, scoring of ISC- and AE-gene profiles was performed to assess if differentiation 
conditions were sufficient to confer terminal differentiation towards an absorptive fate (Fig. 2D). ISC and 
AE scores were generated for cells grown in in vitro monolayers using curated gene sets that identify 
either ISCs or AEs (Fig. 2D). This scoring revealed that in vitro monolayers showed higher expression of 
ISC genes in expansion conditions and higher expression of AE genes in differentiation conditions (Fig. 
2D). Very rare cells expressing markers of classic secretory lineages (goblet cells, enteroendocrine cells, 
tuft cells, BEST4+ cells) were observed (Fig. 2E). These data demonstrated that culture conditions 
promoted ISC differentiation towards an absorptive cell fate and indicate the potential to model 
physiological AE differentiation in vitro.  

Culture methods developed in 96-Transwell format drive time-dependent ISC 
differentiation and AE maturation described by transcriptomic states 
 AE planar monolayers were scaled to a 96-well Transwell format for high-throughput applications. 
Transepithelial Electrical Resistance (TEER) was used to monitor barrier integrity56 over 15 days of ISC 
expansion (4 days) and AE differentiation (12 days) (Fig. 3A). As expected57, ISC conditions produced a 
stable and low TEER, while differentiation media (DM) produced an immediate and progressive increase 
in TEER that peaked at 7 days of differentiation (Fig. 3A). The progressive increase in TEER suggests 
changes in gene expression patterns consistent with mature AEs. To confirm this at the transcriptomic 
level, bulk RNA sequencing (bulk RNAseq) was performed on AEs in differentiation conditions for 0, 2, 
5, 7, 10, and 11 days (Fig. 3B-D). Principal component analysis (PCA) demonstrated tight agreement 
between technical replicates and showed rapid and large transcriptomic changes following just 2 days of 
differentiation (Fig. 3B). Bulk RNAseq of AE monolayers revealed a trajectory of progressive 
transcriptional changes through time (Fig. 3B), suggesting an intrinsic program of progressive AE 
maturation that begins upon removal of ISC niche growth factors.   

 Next, key FA-handling gene expression profiles were compared between in vivo scRNAseq data 
and in vitro bulk RNAseq data to further inform optimal time points to investigate FA-handling. Genes 
associated with pathways of FA-handling (i.e., FA transmembrane transport, FAO, lipid droplet formation, 
chylomicron secretion and TAG metabolic processes) generally increased in expression over time both 
in vivo and in vitro (Fig. 3C, D). There appeared to be a strong correlation in the magnitude of gene 
expression between mAEs in vivo and D7 AEs in vitro (Fig. 3C). Linear correlation was used to 
quantitatively describe the extent of similarity between FA-handling genes expressed during in vivo and 
in vitro AE maturation (Fig. S3B). Pairwise comparisons of mean lipid-handling gene expression values 
were made for each in vivo differentiation state and each in vitro differentiation state (Fig. S3B) revealing 
that D7 AEs are more similar to intermediate- and mature-AEs than ISCs and eAEs, providing evidence 
that in vitro directed differentiation mimics in vivo AE differentiation with respect to lipid-handling 
processes. (Fig. 3D). Together, these data show that 7-days of in vitro differentiation is sufficient to 
establish epithelial monolayers and lipid-handling gene expression patterns similar to in vivo AEs. 
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High-throughput planar AE cultures produce robust epithelial barriers and preserve FA-
handling functions detected by fluorescent FA conjugates 

High TEER and transcriptomic data suggest that AE monolayers could serve as an effective in 
vitro model for human AE lipid-handling. Strong barrier function is required for accurate interpretation of 
FA-handling by AEs, since a leaky barrier would allow FAs to bypass the AE monolayer. As a means to 
provide sensitive readouts for FA-handling that is accessible to most laboratories, we adopted fluorescent 
analogs that can be easily detected by fluorescent plate reader and thin layer chromatography. To 
validate barrier function, 10kD Dextran conjugated to Alexa FluorTM 647 (Dextran-647), a non-absorbable 
fluorescent polysaccharide, was applied to the apical monolayer surface followed by quantification of 
basolateral fluorescence at 2, 4 and 6 hours of apical exposure (Fig. 4A). There were nearly undetectable 
levels of Dextran-647 (< 0.2 pmols) in the basal reservoir at any time point, whereas Transwells without 
cells allowed > 30 pmols to diffuse through and reached an equilibrated concentration within ~4 hours. 
These data demonstrate strong barrier function and show that significant epithelial barrier defects can be 
readily detected by Dextran-647 signal in the basal reservoir as early as 2-hours post-exposure.  

BODIPY (B) is a bright fluorophore that has a different fluorescent signature than Dextran-647, 
facilitating separate detection of these two molecules by plate readers. B-FA analogs have been used 
extensively for lipid-trafficking and metabolism studies in vitro and in vivo and are considered to be 
accurately handled by absorption, metabolism, and export mechanisms58–62. Thus, to characterize FA-
handling properties of AE monolayers, we applied the MCFA analog B-C12 to the apical surface of AE 
cultures for 6 hours (Fig. 4B). Apical (input) and basal (output) media was collected, and AEs were lysed 
after 6 hours of apical exposure (Fig. 4B). Thin layer chromatography (TLC) was used detect and quantify 
input B-FAs as well as metabolized and exported B-FA products. A combination of polar and protonating 
solvents were used to resolve the complex mixture of B-FAs and metabolites (Fig. 4C). B-labeled FA 
standards were applied to the TLC plate in a separate lane and unknown FA-species of different carbon-
chain lengths were extrapolated (Fig. 4C, S4). These methods were scaled for the 96-well Transwell 
system using less than 170 µl of media or cell lysate. A previous study62 using TLC to identify B-lipid 
species with the same solvents used in this study reported naturally fluorescent bands that do not 
correspond to B-lipids and are labelled here as NFB (Fig. 4C). TLC demonstrated clear separation of key 
FA-species in all three reservoirs (i.e., Apical, Cellular, Basal) indicating robust sensitivity of this approach 
for detection of a broad range of FA-species (Fig. 4C). 

To evaluate FA-handling by AE monolayers, B-C12 was incubated with AE monolayers for 6 
hours followed by TLC analysis to identify the B-FA or B-metabolites in each reservoir (i.e., Apical, 
Cellular, Basal). TLC demonstrated that most of the B-labeled species in the apical reservoir were 
medium-chain FAs (B-C12, B-C8 and B-C6) (Fig. 4C). A short-chain species consistent with B-C4 was 
also detected in the apical reservoir at a lower level (Fig. 4C). In the intracellular reservoir, the largest 
species were TAGs, indicating robust FA esterification, and phospholipids indicative of B-C12 being 
metabolized and incorporated into the lipid bilayers63. In the cell lysates, FAs were some of the lowest B-
lipid species suggesting dynamic metabolism, diffusion, and mobilization. In the basal reservoir, FAs 
were the predominant B-lipid species with a smaller fraction consisting of TAGs suggesting basal export 
of FAs and chylomicrons (Fig. 4C). Together these data demonstrate robust detection of input B-FAs, a 
broad range of the derivative metabolites, and their relative distributions in each reservoir as the B-lipids 
are processed by AEs. 

Inhibiting FAO in AE monolayers decreases basolateral export of oxidized FA species 
 We next explored the utility of the platform for investigating small molecule perturbations on FAO.  
Etomoxir, a CPT1 (Carnitine palmitoyl transferase 1) inhibitor, was used to inhibit FAO. When CPT1 is 
inhibited, FAs cannot be imported into the mitochondria where FAO normally catabolizes longer-chain 
FAs to smaller-chain FAs64 (Fig. 5G). CPT1A is robustly expressed in primary human AEs both in vivo 
and in vitro at Day 7 of differentiation (Fig. 3C). After pretreatment with etomoxir, a variety of different 
chain-length B-FAs (SCFA; B-C5, MCFA; B-C12 or LCFA; B-C16) were applied to the apical reservoir to 
mimic postprandial AE exposure to FAs in vivo. Media from the basal reservoir was taken at 2-, 4- and 
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6-hours after application of fluorescent FAs. The impact of etomoxir on basal export of FAs and FA 
metabolites was evaluated in real-time by total fluorescence detection by plate reader, and TLC was used 
to identify Bodipy-labeled metabolites using small volumes of media from the 96-well Transwell platform 
(Fig. 5A).  

Strong barrier function through the duration of B-FA and etomoxir treatment was confirmed by 
lack of Dextran-647 in the basal reservoir (Fig. S5). When B-C5 was the apical input FA, basal 
fluorescence did not significantly change when FAO was inhibited (Fig. 5A). By contrast, when B-C12 
and B-C16 were the apical input FAs, FAO inhibition significantly reduced basal-reservoir fluorescence 
(Fig. 5A). TLC demonstrated that the most abundant lipid species in the basal reservoir of B-C5 treated 
cultures was B-C5 (Fig. S6), suggesting that this FA passively diffused through AE monolayers, as FAs 
become increasingly water soluble as chain-length decreases65. For control cultures (vehicle) treated 
with B-C12 and B-C16, the most predominant lipid species corresponded to B-C6 (Fig. 5B,C), indicating 
catabolism of B-C12 and B-C16.  

 Following treatment of B-C12 and B-C16 cultures with the FAO inhibitor, etomoxir, B-C6 
significantly decreased (Fig. 5B,C). In B-C12 treated cultures, etomoxir caused the apical input FA (B-
C12) to be the predominant lipid species in the basal reservoir (Fig. 5B).  In cultures exposed to apical 
B-C16, etomoxir treatment did not result in B-C16 being the predominant lipid species in the basal 
reservoir (Fig. 5C). These findings suggest that long-chain FAs (> B-C12) are less amenable to passive 
diffusion than short- (B-C5) and medium- (B-C12) chain FAs. Together these data indicate that FAs of 
shorter-chain length (B-C5, B-C6) are more amenable to basal export by AEs than FAs of longer-chain 
length (B-C12, B-C16), which appear to require catabolism via FAO to generate a shorter FA derivative 
(B-C6) that can then be readily exported or diffuse to the basal reservoir.   

While total basal-reservoir fluorescence and TLC show that etomoxir reduces FA export in B-C12 
and B-C16 cultures, these results cannot rule out the possibility that etomoxir reduces basal-reservoir 
fluorescence by inhibiting apical FA import thus resulting in less intracellular FA available to undergo 
FAO. To test whether etomoxir reduced apical FA import, fluorescence from the apical reservoir of B-
C12 and B-C16 treated cultures was quantified following 6-hours of etomoxir treatment (Fig. 5D). If 
etomoxir reduced FA import, there would be more total B-FA fluorescence in the apical reservoir 
compared to control, however, the data demonstrated the opposite, that etomoxir significantly reduced 
apical reservoir fluorescence in cultures exposed to B-C12 and B-C16 (Fig. 5D). These results support 
the conclusion that etomoxir does not reduce apical FA uptake.  

The finding that etomoxir significantly reduced both apical and basal reservoir fluorescence was 
somewhat surprising and raised the hypothesis that impaired FAO resulted in accumulation of B-FAs in 
the cellular reservoir. To test this, AE monolayers were treated with B-C12 or B-C16 along with vehicle 
or etomoxir. Following 6 hours of apical exposure, AE monolayers were imaged to quantify cellular 
fluorescence (Fig. 5E,F). Etomoxir significantly increased cellular reservoir fluorescence in B-C12/16 
treated cultures, further supporting the conclusion that impaired FAO reduced FA export (Fig. 5E). 
Together, these data support the conclusion that medium- and long-chain FAs are catabolized by FAO 
to smaller-chain FAs that can be exported as free FAs (Fig. 5G). 

 

Metformin and C75 potentiate FAO in AE monolayers and increases basolateral export 
of oxidized FAs 

To further support a role for FAO in regulating basal export of B-FAs, it was hypothesized that 
treating AE monolayers with drugs that augment FAO would result in increased FA export. To test this 
hypothesis, AE monolayers were independently treated with metformin and C75, drugs that demonstrate 
FAO augmentation in other cell types66,67. Metformin, commonly known as an anti-diabetic drug, 
potentiates FAO by preventing formation of the CPT1 inhibitor malonyl-CoA68 and C75, a weight-loss-
inducing drug, potentiates FAO by increasing CPT1 activity69 (Fig. 6E).  Following metformin or C75 
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exposure, B-C12 or B-C16 were applied to the apical reservoir to mimic post-prandial FA exposure. Media 
from the basal reservoir was collected at 2-hour intervals for 6 hours and total fluorescence was quantified 
to measure FA export. Metformin and C75 significantly increased fluorescence in the basal reservoir of 
B-C12 and B-C16 treated monolayers (Fig. 6A). TLC was performed to determine the lipid species 
exported to the basal reservoir of B-C12 and B-C16 cultures (Fig. 6B,C). A lipid species corresponding 
to B-C6 was the most abundant B-FA species in the basal reservoir of B-C12 and B-C16 treated cultures 
(Fig. 6B,C) indicating that B-C6 is the primary B-FA metabolite exported.  

To probe whether the B-FA export effects were dependent on FAO, AE monolayers exposed to 
B-C12 or B-C16 were co-treated with each of the FAO potentiators, C75 or metformin, and the FAO 
inhibitor, etomoxir. After 6hrs of B-FA exposure and drug treatment, basal reservoir fluorescence was 
quantified. Etomoxir blocked the ability of C75 and metformin to increase basal reservoir fluorescence in 
cultures exposed to B-C12 and B-C16 (Fig. 6D), supporting the conclusion that metformin and C75 
function in an FAO-dependent manner to increase basal export of oxidized long- and medium-chain FA 
metabolites.  
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Discussion  
Once born from an ISC, progenitor cells transition through a number of lineage states during their 

7-day lifespan in vivo70. Mouse studies suggest the absorptive lineage transitions through functional 
maturation states classified as early-, intermediate-, and mature-phases as they migrate up the villus 
axis50. These functional maturation states are associated with different biological roles related to 
antimicrobial functions early-on and progress into nutrient handling function toward their late and terminal 
maturation stage50. Here we demonstrate by single-cell transcriptomics that human jejunal AEs in vivo 
generally share a similar maturation defined by early-, intermediate- and late-maturation phases. 
Importantly, these states correlate with discrete lipid-handling gene profiles as AEs mature. While our 
study focused on lipid-handling genes and mechanisms, the transcriptomic datasets will be useful to 
evaluate aspects of nutrient handling (i.e., carbohydrate, protein, and vitamin metabolism) in primary 
human AEs. 

The absorptive lineage is the default pathway taken by progenitor cells unless the master 
regulator of secretory lineage fate, Atoh1, is expressed55. Chromatin states across the genome are 
associated with hardwiring of some lineage-specification programs71,72, and dynamic chromatin states 
have been described as cells move through ISC to secretory and absorptive lineage states71,72. Data 
presented here demonstrate that removal of ISC maintenance factors from ISC monolayers promote a 
stereotypical AE lineage program in an epithelial autonomous manner suggesting human AEs are 
hardwired to undergo progressive maturation over time. Since our in vitro AE monolayer system generally 
mimics in vivo AE maturation and lifespan, it is highly suited to define the intrinsic nature of chromatin 
dynamics through human AE maturation and is amenable to testing how extrinsic influences such as 
dietary factors or the microbiome might influence chromatin states and associated gene expression.  

The majority of dietary lipids consist of LCFAs. LCFAs undergo intracellular esterification to TAGs, 
are packaged into chylomicrons, exported through the basal membrane, and distributed through the 
lymphatic system1,2. Previous studies have demonstrated that SCFAs and MCFAs can bypass the 
chylomicron-lymphatic pathway and pass unesterified into the portal vein73. Because LCFAs can be 
oxidized to SCFAs and MCFAs via FAO, we hypothesized that FAs derived from FAO of LCFAs could 
be exported through the basal membrane as free FAs. Using our culture system, we demonstrate for the 
first time that smaller-chain FAs generated from FAO of LCFAs can be exported unesterified across the 
basal membrane of AEs. We demonstrate a dependency on FAO in regulating basal export of LCFA 
derived FAs as their basal export was decreased by inhibiting FAO with etomoxir and increased by 
enhancing FAO with C75 and metformin. This novel pathway of LCFA derived FA export might explain 
why patients with abetalipoproteinemia exhibit distribution of the majority of dietary FAs yet are unable to 
secrete chylomicrons74. 

Basal export of free FAs regulated by FAO could be involved in other physiological responses to 
dietary lipids, disease etiologies, and pharmaceuticals that target FAO pathways. Our findings 
demonstrate that metformin, a satiety-inducing/glucose-lowering drug, enhances basal FA export, raising 
the possibility that FAO and augmented basal FA export underlies some of metformin’s efficacies. In this 
regard, stimulation of free fatty acid receptors (FFARs), which are restricted to the basal surface75 of 
enteroendocrine cells (EECs)69 immediately adjacent to AEs, stimulate secretion of glucose-lowering 
GLP-1 and satiety-inducing PYY76 gut hormones. Reports demonstrate that metformin elicits intestinal 
GLP-1 secretion by EECs and that this effect significantly contributes to systemic glucose-lowering77.  

 Importantly, exposure of metformin to immortalized EEC lines fails to stimulate GLP-1 secretion 
suggesting metformin does not act directly on EECs to stimulate GLP-1 secretion but rather through a 
more complex mechanism78. In light of our results demonstrating metformin increases FA export, 
metformin may act to increase GLP-1 secretion via an AE-FAO-EEC axis. In this scenario apically 
localized MCFAs and LCFAs are absorbed by AEs, catabolized to shorter-chain FA species that can 
passively diffuse through the basolateral membrane where they interact with nearby FFARs on EECs to 
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stimulate GLP-1 release. Further development of our AE culture system to support co-culture of EEC and 
AEs with loss- and gain-of-function for key FAO genes will be required to test this hypothesis.  

 Aside from basic science applications, our high-throughput 96-well AE culture platform is highly 
suitable for drug screening and validation. Compared to standard 12-well Transwell plates, scaling the 
platform to 96-wells increases the plate form factor by 8 while simultaneously requiring approximately 8-
times less cells. This substantially increases the number of biological and technical replicates that can 
be performed per plate and reduces plate-to-plate variability when performing experiments to evaluate 
therapeutic indices for a drug. Real-time quantification of FA mobilization through the epithelial barrier by 
plate reader allows for kinetic studies while the planar format of these cultures facilitates simultaneous 
high-content microscopic readouts. While the AE monolayer surface and reservoir sample volumes are 
small, we show there remains sufficient material for RNA-sequencing and highly sensitive detection of B-
conjugated FAs and metabolites by plate reader and TLC. The scalability, physiological relevance, and 
sensitivity of our platform to detect changes in FA-handling could facilitate the discovery of treatments for 
metabolic disorders impacted by intestinal FA-handling such as obesity, dyslipidemia, and diabetes. 
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Materials and Methods 

Donor Selection 

Human donor intestines were accepted and received from HonorBridge (formerly Carolina Donor 
-dead 

only (as opposed to donation after cardiac death), negative for HIV, Hepatitis, RPR (syphilis), 
tuberculosis, or COVID-19. Tissue from a 29-year-old Caucasian male was used for single cell 
dissociation and scRNAseq. Tissue from a 51-year-old African American male was used for tissue 
culture, in situ hybridization, scRNAseq of collagen grown ISCs and AE monolayers and bulk RNAseq. 
Human donors had no history of bowel surgery, severe abdominal injury, cancer, or chemotherapy. 
Increased risk donors (i.e., history of incarceration or intravenous drug use) were accepted, provided 
negative infectious disease results. Additionally, donor cases where the pancreas was placed for 
transplant were excluded given that pancreatic transplants require removal of proximal small intestinal 
tissue.  

Organ resection and single cell dissociation 

Whole human intestines were transported to UNC Chapel Hill in ice-cold University of Wisconsin 
Solution, with tissue dissection beginning within eight hours of cross-clamping. First, fat, and connective 
tissue were trimmed from the donated organs and intestines were subdivided into six regions following 
measurement. For the small intestine, the proximal 20 cm was deemed Duodenum. Jejunum and ileum 
were determined through an even split of the remaining small intestine. Two 3x3 cm2 resections were 
isolated from the center of jejunum and ileum for dissociation.  

Resections were incubated in 10 mM NAC at room temperature for 30 min to remove mucus, then tissue 
was moved to ice-cold Isolation Buffer which consisted of 5.6 mM Na2HPO4, 8.0 mM KH2PO4, 96.2 mM 
NaCl, 1.6 mM KCl, 43.4 mM Sucrose, 54.9 mM d-sorbitol, and 100 uM Y27632, then washed several 
times by gently inverting the tubes. Tissues were then incubated in Isolation Buffer with 2 mM EDTA and 
0.5 mM DTT, then shaken vigorously to remove crypts. Shakes were repeated several times, checking 
for crypts and/or villi each time. High-yield small intestinal shakes were pooled to approximate 1:1 villus 
to crypt tissue by cell mass. Crypts and villi were dissociated to single cells using 4 mg/ml Protease VIII 
in DPBS + Y27632 on ice for ~45min with trituration via a P1000 micropipette every 10 min. Dissociation 
was checked on a light microscope then clumps were removed using filtration.  

Cell sorting, library prep, and sequencing 

Single cells were washed with DPBS + Y27632 then resuspended in Advanced DMEM/F12 + 1% Bovine 
Serum Albumin + Y-27632. AnnexinV-APC (1:100) was added for live/dead staining and one TotalSeq 
Anti-Human Hashtag Antibody per region to allow for tracking all six regions with a single library 
preparation. Cells were washed with Advanced DMEM/F12 + 1% BSA +Y27632 then resuspended in the 
same solution for sorting on a Sony Cell Sorter SH800Z. Cells were gated using forward and backward 
scatter and AnnexinV to enrich for live single epithelial cells. 25k cells were collected from each separate 
region, then all regions were combined before sequencing. Library prep was performed with the 
Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit v3.1. Sequencing was performed on an 
Illumina NextSeq 500.  

Single cell RNA sequencing data processing 

After sequencing, reads were aligned to reference transcriptome GRCh38 with the 10X Cell Ranger 
pipeline. Mapped reads were filtered and counted by barcode and UMI and then transformed into an 
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AnnData object using the Python implementation of scanpy (v1.7.2). Annotations for cell cycle phase 
were added following previously published methods79. The number of genes, number of UMIs, and 
percent mitochondrial expression for all cells in each sample were visualized and used to identify 
thresholds for high-quality cells to include in further analysis(Fig. S1F,G and S7A,B).80. Quality control 
parameters for both datasets are:  
 In vivo scRNASeq In vitro scRNASeq 
Minimum genes >500 >1000 
Percent mitochondrial 
reads 

<75% <50% 

Minimum counts >3,000 >5,000 
Maximum counts <50,000 <80,000 

 
Following filtering, read counts were log-transformed and normalized to the median read depth of the 
dataset. For both single cell sequencing experiments no batch correction was performed as each dataset 
was analyzed separately. Variability due to read count, percentage of mitochondrial reads and cell cycle 
phase were regressed out by simple linear regression. Highly variably genes were identified using Seurat 
v2. 2,585 and 4,186 highly variable genes were used for principal component analysis for the in vivo and 
in vitro scRNAseq datasets, respectively. Counts for each gene were scaled to have a mean of zero and 
unit variance. A kNN-graph was constructed with 10 neighbors was used to calculate Leiden clusters for 
both in vivo and in vitro scRNAseq datasets (In vivo clustering parameters: Leiden resolution = 0.5, 
num_neighbors = 10, num_pcs = 40; in vitro clustering parameters: Leiden resolution = 0.1, 
num_neighbors = 10, num_pcs = 15) and EPCAM-negative cells were removed from the in vivo dataset81. 
PAGA was used to initialize UMAP embeddings of Leiden clusters82.   
 
Regional hashtag deconvolution followed published methods for both scRNAseq datasets. Briefly, raw 
hashtag read counts were normalized using centered log ratio transformation followed by k-medoid 
clustering (k=6 medoids). Hashtag noise distributions were determined by removing the cluster with 
highest expression of a specific hashtag, then a negative binomial distribution was fit to the data of the 
remaining cells. Cells were considered positive for a hashtag if counts for the specific hashtag were above 
the distribution’s 99th percentile (p<0.01) threshold. Cells positive for multiple hashtags were excluded as 
likely doublets. Cells called for colon and duodenum were removed from the dataset. For in vitro data, 
only hashtags 1 and 3 were kept for analysis.  
 
RNA Velocity 
 
Velocyto 0.17.16 was used to generate the initial loom file and scvelo 0.2.4 was used for all integration 
of spliced/unspliced loom file integration with the processed anndata object and all subsequent trajectory 
analysis51,52. Briefly, to ensure connectedness of dataset, clusters that corresponded to stem cells and 
the different stages of enterocyte differentiation were used for trajectory analysis. All other clusters were 
removed from the dataset and the remaining clusters were reprocessed and reclustered. The resulting 
dataset was integrated with the spliced and unspliced read counts and 4100 highly variable genes were 
kept for fitting to the RNA velocity dynamical model. For moment calculation, num_pcs = 40 and 
num_neighbors = 50. Function arguments for calculating RNA velocity vectors and latent time were 
default values except for the specification of the dynamical model in scvelo.tl.velocity.  
 
Differential Gene expression for scRNASeq 
 
Differential expression analysis was performed using the de.test.wald function in the Python 
implementation of diffxpy (version 0.7.4)83. From the output data, significant DEGS (q <0.05) were 
attributed to the cluster with the highest mean value for each gene.  
 
Linear correlation Analysis 
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Read count data from both datasets were normalized to the same value then log-transformed. Mean 
expression values for each lipid-handling gene were calculated per-scRNAseq cluster and per group of 
in vitro differentiation bulk RNAseq. Pairwise comparisons of mean gene expression values for each in 
vivo differentiation state and each in vitro differentiation state were made (Fig. S4B). A line was drawn 
representing a perfect correlation of in vitro bulk RNAseq expression to in vivo scRNAseq expression 
(Fig, S3B). Residuals for each lipid-handling gene were calculated based on the deviation from this line. 
The residual sum of squares thus represents a quantitative measure of the overall similarity of expression 
of lipid-handling genes between each in vivo differentiation state and each in vitro differentiation state, 
with a lower value indicating a better fit to the line describing a perfect correlation.  
 
Transwell Preparation, ISC Seeding, Expansion and Differentiation 

The apical surface of 12-well and 96-well permeable Transwell inserts was overlayed with ice cold 1% 
Growth Factor Reduced Matrigel (Matrigel) diluted in ice cold DPBS. Transwell plates were left incubating 
at 37C in 5% CO2 overnight. Inserts were rinsed by replacing the 1% Matrigel with DPBS the following 
day. Jejunal ISCs grown on 2D collagen scaffolds were suspended in EM containing 10 mM Y27632 
using an established protocol38. Suspended ISCs were seeded on the apical surface of Transwell inserts 
at densities of approximately 300K-400K cells/cm2 (Table S1). EM was added to the basal reservoir at 
the time of seeding. Apical and basal media was replaced the day after seeding with fresh EM (Table 
S2). EM in apical and basal reservoirs was replaced with DM to initiate differentiation (Table S2).  

Single cell dissociation of Transwell epithelial monolayers  

Media was removed from ISCs expanded on collagen and from AEs on 12-well transwell inserts and 
washed with 1x DPBS. 1.5mls of 3mM EDTA in PBS was applied to ISCs expanded on collagen and on 
apical and basal reservoirs of 12-well transwell cultures until most cells were lifted off the collagen or  
Transwell surface as determined by visual inspection every 2 minutes under an inverted microscope. 
EDTA was aspirated using a P1000 micropipette and redistributed over the Transwell surfaced to 
facilitate detachment of cells from the Transwell at 2-minute intervals until the majority of cells had 
detached. After the cells detached, 1.5mls of DPBS was applied to each well and rinsed by aspirating 
and re-applying the EDTA/DPBS. Cells were then aspirated and pelleted by centrifugation at 500g for 5 
minutes. The supernatant was removed and replaced with 1ml of 4mg/mL cold protease in DPBS. Cells 
in cold protease were incubated on ice and pipetted every 2 minutes before visual examination of 
dissociation under an inverted light microscope. This was repeated until all cells were singlets. Following 
single cell dissociation, the cold protease was quenched with Advanced DMEM/F12 + 1% FBS. Cells 
were pelleted as described above and resuspended in Advanced DMEM/F12 +1% FBS. 

Bulk RNA sequencing preparation, processing, and analysis 
 
To investigate the dynamic changes in gene expression as ISCs differentiate into AEs in vitro, RNA-seq 
was performed on human intestinal epithelial monolayers immediately before seeding onto Transwells 
(D0) and at Days 2, 5, 7, 10, and 11  (D2, D5, D7, D10, D11) of differentiation on Transwells.  N=3 
samples were collected from each time point and RNA was extracted using RNAqueous-Micro Total RNA 

°C. RNA quality was assessed prior 
to library preparation by using the  Agilent 2100 Bioanalyzer to determine the RNA integrity number 
(RIN)84. After confirmation that each sample had a RIN of at least 8, integrated fluidic circuits (IFCs) for 
gene expression and genotyping analysis were prepared using the Advanta™ RNA-Seq NGS Library 
Prep Kit for the Fluidigm Juno™ and sequenced with the Fluidigm Biomark™ HD system. Gene level 
expression was obtained through pseudo alignment of reads to human genome GRCh38 using Kallisto85. 
Expression values for plotting were obtained by TMM normalization across all samples using EdgeR 
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package86. Sequencing data from each time point were combined and then were normalized to the 
dataset median and log-transformed. Principal component analysis was done with scikitlearn (v0.24.0). 

Transepithelial Electrical Resistance 

Barrier integrity of 96-well Transwell cultures was monitored by quantifying TEER using EVOM or EVOM3 
TEER meters in conjunction with STX100C96 electrodes.  

Basal Fluorescence Quantification 

100uM Etomoxir, 40uM C75, 3mM metformin or 1x vehicle (DMSO) were suspended in 100uls of DM 
and applied to the apical surface of AE Transwell cultures for 1 hour. Following incubation, apical media 
was replaced with 100ul of DM containing drugs or vehicle, 1uM Dextran, Alexa Fluor 647 (Dextran-647) 
and 20uM of either BODIPY-FL C5, -C12 or -C16. Basal media (50ul) was collected at 2, 4 and 6 hours 
and replaced with an equivalent volume of DM. Quantification of basal fluorescence was performed using 
a CLARIOstar Plus Microplate Reader. Fluorescence arbitrary units (AU) were converted to pmols using 
a standard curve. 

Thin Layer Chromatography 

For the assessment of FA-handling via TLC (Fig. 4), BODIPY-FL C12 was applied to the apical surface 
of AE Transwell cultures. Apical and basal media was collected after 6 hours. Cells were released from 
Transwell inserts via application of 100ul of 1x TrypLE Express containing 10mM Y27632. Cells were 
lysed by undergoing 3 freeze-thaw cycles. Lipid extracts were generated from apical and basal media 
along with cell lysates using the Bligh and Dyer method 87. Lipid extracts were resuspended in 100% 
ethanol and spotted on silica gel TLC plates. Lipid species were separated by placing spotted silica gel 
plates in a glass chamber containing either a polar (chloroform/ethanol/triethylamine/water, 30:34:30:8 
mL) or protonating (petroleum ether/ethyl ether/acetic acid, 30:34:30:8 mL) solvent. The following 
BODIPY analogs were used to identify lipid species BODIPY-FL C5 (B-C5), -C12 (B-C12), -C16 (B-C16), 
BODIPY 493/503 (B) -BODIPY-FL C12-HPC (phospholipids). BODIPY-FL C4 (B-C4), -C6 (B-C6) 
and -C8 (B-C8)  are not commercially available therefore their location on TLC plates was inferred by 
generating a standard curve of the distances travelled by BODIPY-FL C5, -C12 and -C16 in polar solvent. 
18:1-18:1-C11 TopFluor TG is a TAG conjugated to a fluorophore with similar properties (chemical 
structure and excitation/emission) as BODIPY and was used to infer the location of TAGs on TLC plates 
due to BODIPY-TAG analogs not being commercially available at the time of this publication. Only basal 
media samples were collected and assessed via TLC from the experiments in figure 5 and figure 6. 
Following incubation in solvent, spotted silica gel plates were dried and scanned on an iBright FL 1000 
Imager to detect fluorescent lipid species. Excitation and emission channels were set to 455-485 and 
508-557 respectively. A previous study62 using TLC to identify B-lipid species with the same solvents 
used in this study reported naturally fluorescent bands that do not correspond to B-lipids and are labelled 
here as NFB.  

Microscopy and Image Analysis 

AE monolayers were treated with vehicle or 20uM etomoxir and exposed apically to B-C12 or B-C16 for 
6 hours. After 6 hours of apical B-C12 or B-C16 exposure, AE monolayers were rinsed with fresh DM 
and fixed in 40% glyoxal solution for 20 minutes. Following fixation, AE monolayers were rinsed with 1x 
DPBS. Next, the transwell membrane containing the fixed AE monolayers were removed from the 
transwell inserts and placed on glass slides. AE monolayers were then overlayed with mounting media 
and covered with a glass coverslip. Fluorescent images of AE monolayers were taken at 40x 
magnification on a Keyence BZ-X810 microscope. 

Code and Data Availability 

Sequencing datasets will be available on the NCBI Gene Expression Omnibus under accession number 
GSE186583. Python scripts demonstrating the main parts of our analysis will be available on GitHub. 
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FIGURE LEGENDS 
Figure 1 
Single-cell transcriptomics of healthy human absorptive epithelium. (A-D) Unbiased Leiden 
clustering of primary jejunum and ileum. (A) Identification of cell types. (B) Inferred cell cycle state based 
on expression of previously categorized G1, G2M, and S phase associated genes46. (C) ISC score based 
on expression of established ISC genes LGR5, OLFM4, ASCL2, SMOC2, SOX9. (D) AE score based on 
expression of established AE genes APOA1, APOA4, APOC3, ALDOB, SEPP1. (E-F) Gene expression 
of ISC, and AE populations identified in 1A. (E) Expression of top 20 ISC genes previously identified in 
human ileum41. *LGR5 was not within the top 20 ISC genes previously identified in human ileum, but it 
was included for reference. (F) Expression of top 20 AE genes previously identified in human ileum41. (G) 
Bottom right, vectors calculated based on a dynamical model of RNA velocity showing likely cell 
transitions of ISCs, eAEs, iAEs and mAEs. Top left, schematic showing likely positions of identified ISC 
and AE populations along the crypt-villus axis. Note that secretory and ileal lineages were removed from 
the analysis to focus on the relationship between ISCs and maturing of jejunal AEs. (H) A latent time 
value between 0 and 1 was assigned to each cell to order cells along the trajectory modeled by RNA 
velocity. A latent time of 0 means that the cell has yet to experience any differentiation in the modeled 
trajectory whereas a latent time of 1 means that the cell has progressed completely through the modeled 
differentiation pathway. (I) Identified human jejunal AEs were ordered based on latent time (x-axis) and 
DEGs of identified human ISC and AE populations were plotted on the y-axis. *LGR5 was not among the 
top 20 ISC genes identified in human Ileum41 (J) UMAPs showing expression of select DEGs from 
population of cells along the ISC to mAE differentiation axis. (K) In situ hybridization of ISC and eAE 
DEGs OLFM4 and DMBT1 respectively (left). In situ hybridization of iAE and mAE DEGs FABP1 and 
APOA4 respectively (right). 

Figure 2 
Single-cell transcriptomics of 2D ISC and AE cultures. (A) Schematic of isolation, expansion, and 
differentiation of ISCs from the jejunum of a healthy organ donor. (B) Unbiased Leiden clustering of 
collagen grown ISCs (green) and ISCs differentiated for 2 days (orange). (C) Inferred cell cycle state 
based on expression of previously categorized G1, G2M, and S phase associated genes46. (D) Left, ISC 
score based on expression of established ISC genes LGR5, OLFM4, ASCL2, SMOC2, SOX9. Right, AE 
score based on expression of established AE genes APOA1, APOA4, APOC3, ALDOB, SEPP1. (E) 
Expression of secretory lineage markers MUC2, CHGB, TRPM5, BEST4. 

Figure 3 
RNA-sequencing reveals a time dependent AE maturation program in jejunal ISCs in vitro. (A) 
Transepithelial electrical resistance (TEER) of jejunal ISCs n=12 Transwell inserts. ISCs were maintained 
in expansion media for 3 days then switched to differentiation media for 12 days. TEER was monitored 
daily. Red triangles indicate time points where cells were lysed for bulk RNA-seq. A Kolmogorov-Smirnov 
test was performed comparing TEER between D0 and D1-D7. **** p < 0.0001. (B) Principal component 
analysis of sequenced transcriptomes. ISCs (grey) differentiated for 0 (D0), 2 (D2), 5 (D5), 7 (D7), 10 
(D10), and 11 (D11) days. (C) Expression of FA-handling genes in vivo (left) and in vitro (right). (D) 
Residual plot of key lipid-handling genes. Linear correlation was used to quantitatively describe the extent 
of similarity between FA-handling genes expressed during in vivo and in vitro AE maturation. 

Figure 4 
Application of fluorescent polysaccharide and FA reveal integral barrier and FA-handling in vitro. 
(A) Left, schematic showing application of Dextran-647 to the apical surface of AEs or empty Transwell 
cultures. Right, subsequent sample collection and fluorescence quantification via plate reader. ISCs were 
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differentiated for 7 days before application of 1uM Dextran-647. 50uls of media from the basal reservoir  
were removed at 2, 4 and 6 hours from empty Transwell insert s or AE cultures and replaced with fresh 
differentiation media; ** p < 0.005, **** p < 0.0001. (B) Schematic of B-C12 application to AE Transwell 
cultures and subsequent retrieval from apical, cellular, and basal reservoirs. (C) Thin layer 
chromatography of apical, cellular and basal reservoirs of AE Transwell cultures after 6 hours of B-C12 
application using polar and protonating solvents. A previous study62 using TLC to identify B-lipid species 
with the same solvents used in this study reported naturally fluorescent bands that do not correspond to 
B-lipids used and are labelled here as NFB. *Location of B-C4, B-C6 and B-C8 were inferred from the 
experiment in supplemental figure 4. Experiments were performed in triplicate (n = 3 AE transwell 
cultures). 
 

Figure 5 
Inhibiting FAO reduces FA export 
(A) Left, schematic showing basal reservoir sampling following application of B-FAs to the apical surface 
of AE Transwell cultures and subsequent quantification of basal fluorescence via plate reader. Right, 
quantification of basal fluorescence from B-C5, -C12, and -C16 treated AE cultures treated with vehicle 
(DMSO), or etomoxir (Eto). ** p < 0.01, *** p < 0.005, **** p < 0.0001. 50ul of basal media were collected 
and quantified by plate reader at 2-, 4- and 6-hours post FA application. (B, C) Left, TLC of basal-reservoir 
media collected 6 hours post vehicle or etomoxir and B-C12 or B-C16 application.  Right, quantification 
of the fluorescence contributed by the B-C6 band divided by the cumulative fluorescence of all bands in 
each TLC lane; ****p < 0.0001. (D) Apical-reservoir fluorescence of B-C12, or B-C16 treated AE Transwell 
cultures treated with vehicle (DMSO) or etomoxir; * p < 0.05, ****p < 0.0001. (E, F) Left, cellular-reservoir 
fluorescence of B-C12, or B-C16 treated AE Transwell cultures treated with vehicle (DMSO) or etomoxir; 
** p < 0.01, ****p < 0.0001. (G) Schematic showing proposed mechanism of reduced B-FA export by 
etomoxir. B-Cx denotes fluorescence coming from all B-lipids in basal, apical or cellular reservoirs. A 
previous study62 using TLC to identify B-lipid species with the same solvents used in this study reported 
naturally fluorescent bands that do not correspond to B-lipid standards used. Approximate locations of 
NFBs are labelled as NFB. *Location of B-C4, B-C6 and B-C8 were inferred from the experiment in 
supplemental figure 4. B-FAs were applied at a concentration of 20 uM. Etomoxir was applied at a 
concentration of 100uM.  Experiments were performed in triplicate (n = 3 AE transwell cultures). 
Figure 6 
Enhancing FAO augments FA export 
(A) Quantification of basal-reservoir fluorescence from B-C12 or B-C16 treated AE cultures treated with 
vehicle (DMSO), C75, or metformin (Met); * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.0001. (B, C) 
Left, TLC of basal-reservoir media from B-C12 or B-C16 treated AE cultures treated with vehicle, C75 or 
metformin. ; * p < 0.05, *** p < 0.001, **** p < 0.0001. (D) Basal-reservoir fluorescence of B-C12 treated 
cultures treated with either vehicle, C75, metformin, C75 and etomoxir, or metformin and etomoxir. 
Fluorescence was measured 6-hours post B-FA application; * p < 0.05, ** p < 0.01. (E) Proposed 
mechanism of enhanced FA export by C75 and metformin. Concentrations of C75, metformin and 
etomoxir were 40uM, 3mM, and 100uM respectively.  A previous study62 using TLC to identify B-lipid 
species with the same solvents used in this study reported naturally fluorescent bands that do not 
correspond to B-lipid standards used and are labelled here as NFB. *Location of B-C4, B-C6 and B-C8 
were inferred from the experiment in supplemental figure 4. Experiments were performed in triplicate (n 
= 3 AE transwell cultures). 
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Supplemental Figure/Table Legends 
 
Supplemental Table 1 
Reagents, materials, and instruments 

Supplemental Table 2 
Media conditions 

Supplemental Table 3 
DEGs of jejunal ISC, eAE, iAE, and mAE lineages as determined by DEG analysis comparing these 
populations. 

Supplemental Figure 1 
(A-E) FACS density plots showing FACS gating strategy for sorting live cells from dissociated human 
small intestine. Titles above plots indicate the gate which the cells came from (i.e., the previous density 
plot). (A) shows initial doublet discriminator, with exclusion of likely red-blood cells and immune cells. (B) 
Forward-scatter based doublet discriminator. (C) Back-scatter only doublet discriminator. (D) Forward-
scatter width-based doublet discriminator. (E) Final gate used to distinguish live cells based on negative 
gating for AnnexinV-APC.  (F,G) Violin plots showing distributions of QC parameters including: number 
of total reads per cell, number of genes counted in each cell, and the percent mitochondrial reads per 
cell. (F) Pre-filtering distribution of QC parameters. (G) Post-filtering distribution of QC parameters. (H) 
Region of cells overlayed on UMAP. 

Supplemental Figure 2 
Expression of top 30 DEGs in ISCs (A), eAEs (B), iAEs (C), and mAEs (D). * LGR5 was not among the 
top 30 DEGs in ISCs but it was included for reference. In vitro expression of top 30 in vivo ISC (E), eAE 
(F), iAE (G) and mAE (H) DEGs. SNHG19, SNHG25 and NEAT1 were not detected in our in vitro data 
set and were excluded. 

Supplemental Figure 3 
(A) Expression of lipid-handling genes in in vivo ISC and human AE populations. Genes were selected 
from Go terms relating to lipid metabolic processes. Fatty acid binding protein genes were selected 
manually and not derived from Go terms (bottom left). The following genes were not detected in our 
dataset and were excluded; DGAT2L7P, MIR29B1, MIR30C1, MIR548P, APOA2, PLIN4 ABCD2, GRM1, 
NTSR1, SLC17A6, SLC17A7, SLC1A6 , ABCD2, TWIST1. (B) Matrix showing linear regression plots for 
each gene described in figure 3C. Each dot represents a gene from the above matrix plots. The dotted 
line shows the line that was used to calculate residuals and is drawn with slope = 1 (i.e., in vitro 
differentiation bulk RNA seq (n=3 samples per time point) mean expression perfectly matches in vivo 
scRNAseq mean expression for each cluster). Red dots indicate lowest residual sum of squares for each 
row (i.e., lowest residual for each time point sampled in the in vitro differentiation experiment). 

Supplemental Figure 4 
TLC (polar) of basal media from AE cultures after 6 hours of incubation with B-C12 (Left). Retention factor 
(Rf) of B-C5, -C12 and C16 standards were used to generate a standard curve to infer the chain length 
of FAs whose Rf values do not correspond to B-FA standards used (right). The three unknown FAs are 
predicted to correspond approximately to B-C4,-C6 and -C8.  

Supplemental Figure 5 
Quantification of Dextran-647 in the basal reservoir  of AE monolayers from basal samples of FA-handling 
screens taken at 2, 4 and 6 hours. ****p < 0.0001. Experiments were done in triplicate (n=3 Transwell 
cultures per condition).  
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Supplemental Figure 6 
Thin layer chromatography was performed on the basal-reservoir media of B-C5 treated cultures treated 
with either vehicle or etomoxir. B-C5 and etomoxir concentrations were 20uM and 100uM respectively. 
A previous study62 using TLC to identify B-lipid species with the same solvents used in this study reported 
naturally fluorescent bands that do not correspond to B-lipid standards used and are labelled here as 
NFB. *Location of B-C4, B-C6 and B-C8 were inferred from the experiment in supplemental figure 4. 
Experiment was performed in triplicate (n = 3 AE transwell cultures). 
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