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Abstract
Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone

to contain visual artifacts that hinder downstream analysis, and automatically removing them is

therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for

image segmentation, but require pixel-level annotations, which are time-consuming to produce.

Here, we propose ScoreCAM-U-Net, a pipeline to segment artifactual regions in brightfield

images with limited user input. The model is trained using only image-level labels, so the

process is faster by orders of magnitude compared to pixel-level annotation, but without

substantially sacrificing the segmentation performance. We confirm that artifacts indeed exist

with different shapes and sizes in three different brightfield microscopy image datasets, and

distort downstream analyses such as nuclei segmentation, morphometry and fluorescence

intensity quantification. We then demonstrate that our automated artifact removal ameliorates

this problem. Such rapid cleaning of acquired images using the power of deep learning models

is likely to become a standard step for all large scale microscopy experiments.
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1. Introduction
Advanced microscopes extract rich visual information from biological samples at scales from

individual atoms to cells and tissues. Among the different imaging modalities, brightfield

illumination with transmitted light is the simplest to acquire while avoiding damaging the

sample1. The usefulness of this technology has led to its widespread adoption2–4, and thereby to

a dramatic increase in the volumes of microscopy data. However, the automated analysis

techniques required to extract information at scale are often hindered by the artifacts present in

the images5,6. Detecting and neutralizing the impact of such problematic image areas would

provide more accurate results from experiments3, making artifact segmentation an important,

albeit overlooked, research area in cell biology and beyond7,8.

While any signal that deviates from the reflection of expectation can be considered artifactual9,

the common source of artifacts in cell microscopy is the introduction of foreign objects during

sample preparation. These include dust, fragments of dead cells, bacterial contamination,

reagent impurities, defects on the light path, etc. We focus on detecting these low-level

anomalies8,10 in brightfield microscopy and use the term artifact with this meaning. Manually

identifying all the affected images or image regions is a time-consuming solution to this

problem11,12. A common alternative approach for large datasets is computer-aided delineation

and removal of the artifacts, but two complexities make this task challenging. First, artifacts are

generated stochastically leading to sparse data. Second, artifact characteristics, such as

morphology and texture, are often very heterogeneous and rarely well defined. These features

render computational modeling difficult.

Deep learning has emerged as the favored solution to artifact detection7,8. While strongly

supervised convolutional neural networks (CNN) such as U-Net13–17 are state-of-the-art for most

computer vision tasks, they cannot overcome some challenges that artifact detection brings7. A

major bottleneck for the strongly supervised deep learning methods is their requirement of

pixel-level annotation, which is time-consuming, and requires substantial expertise. As an

alternative, weakly supervised techniques such as ScoreCAM18, which involve only image-level

labeling, greatly reduce the time needed to prepare the dataset. In particular, generative

autoencoder-based models19–24 are trained to reconstruct artifact-free images and report

artifacts on test images as areas with large reconstruction error. Alternatively, one-class

classification approaches25,26,27 train a classifier on artifact-free images and report artifacts as

images with a low probability of belonging to this clean class. However, neither method performs
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well enough for adaptation in routine microscopy image processing workflows. Combining the

performance advantages of the strongly supervised methods and the convenience of

image-level annotations would therefore be of great practical interest and impact.

Here, we combine the merits of weakly and strongly supervised methods for artifact

segmentation from brightfield cell microscopy images using only image-level annotations. To our

knowledge, this is the first attempt to segment artifacts in microscopy images in a weakly

supervised way. We introduce ScoreCAM-U-Net, a model that combines the informative

pixel-level4 and cheap-to-generate image-level18 annotation schemes, and accurately detects

artifacts in held-out samples. As training is performed using only image-level labels, generating

training data is orders of magnitude cheaper, but without substantially sacrificing performance

compared to pixel-level data. We confirm that artifacts in microscopy images confound

downstream analyses such as nuclei segmentation or quantification of ligand binding, and

demonstrate that ScoreCAM-U-Net successfully overcomes these problems.

2. Methods

To delineate artifacts from brightfield microscopy images, we introduce ScoreCAM-U-Net, a

method that uses image-level annotations as input for training, and produces artifact

segmentations as an output. We compare the performance of our pipeline with a strongly

supervised counterpart trained on pixel-level annotations as well as with state-of-art models that

are trained using image-level labeling on three different datasets.

2.1. Datasets

We chose three datasets for this study to cover multiple common variables in experimental

design to better assess the generalizability of the results. Overall, the datasets cover nine

different cell lines, fixed and live cells, two different plate formats and two microscopes. The

datasets provenances have been described previously3,28,4,29 and we briefly describe their most

important properties here.

Seven cell lines dataset

Seven types of cells including human cells from breast cancer (MCF7), fibrosarcoma (HT1080),

cervical cancer (HeLa), hepatocellular carcinoma (HepG2), alveolar basal epithelial (A549), dog
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cells from kidney tissue (MDCK), and mouse embryonic fibroblast cells (NIH3T3) were seeded

in Collagen type 1-coated CellCarrier-384 Ultra Microplates (PerkinElmer, Waltham, MA; cat.

6057700). The cells were stained with 10µg/ml Hoechst 33342 (Thermo Fisher, Waltham, MA;

cat. H3570) and fixed in formaldehyde (Sigma, St. Louis, MO; cat. 252549). A 20x water

immersion objective was used to acquire images on an Opera Phenix™ high-content screening

system (PerkinElmer) in confocal mode. Nine fields of view were acquired from each well with a

total of 3024 images of size 1080x1080px (1px = 0.59µm) with 350 cells in each field of view on

average. All fields of view were imaged in fluorescent and brightfield modalities, with one

modality acquired first on all wells and then the second. This dataset is referred to as “seven cell

lines” in the further text.

LNCaP dataset

The cells of human prostate adenocarcinoma (LNCaP, from ATCC) were seeded in a

CellCarrier-384 Ultra Microplate (PerkinElmer), fixed in formaldehyde, and stained using

DRAQ5 fluor (Abcam, Cambridge, United Kingdom) to tag nuclear DNA. A 20x objective was

used to acquire images on a CellVoyager 7000 (Yokogawa, Tokyo, Japan) instrument in

confocal mode to acquire fluorescence and brightfield images of size 2556 × 2156 pixels (1 pixel

= 0.325 µm) with 681 cell in each field of view on average. Similar to the seven cell lines

dataset, one modality was acquired on all wells before moving on to the second modality.

ArtSeg-CHO-M4R dataset

The imaging was performed as described previously28. Briefly, live CHO-K1-hM4R cells were

seeded with a density of 25 000 cells per well into µ-Plate 96 Well Black plate (Ibidi) 5-7 hours

before the imaging to allow attachment. All the experiments were performed in the cell culture

medium DMEM/F-12 with 9% FBS (Sigma), antibiotic antimycotic solution (100 U/ml penicillin,

0.1 mg/ml streptomycin, 0.25 μg/ml amphotericin B, Sigma) and 750 μg/ml of selection antibiotic

geneticin (G418, Capricorn Scientific). The final volume in the well was 200 μl. All imaging

experiments were carried out at 37 °C in the 5% CO2 atmosphere. The images were captured

with Cytation 5 Imaging Multi-Mode Reader (BioTek, Bad Friedrichshall, Germany). Images

were obtained using a LUCPLFLN 20x objective lens with working-distance of 6.6 mm, and

numerical aperture of 0.45 (Olympus), using LED excitation source with 351(40) nm filter and

captured with 593(40) nm emission filter. The field of view size was 1224 x 904 pixels (1 pixel =

0.323 µm). For a single field of view, a brightfield image was obtained first, which was
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immediately followed by fluorescence image acquisition. These steps were repeated for four

fields of view in each well. In all experiments, a constant concentration of 2 nM UR-CG07230, a

TAMRA labeled fluorescence ligand was used to visualize cells expressing muscarinic M4

receptors in the fluorescence channel. In concentration-response experiments atropine,

arecholine (Sigma), UNSW-MK25931 and UR-SK7532 were used. UNSW-MK259, UR-SK75 and

UR-CG072 were kindly provided by Dr. Max Keller from the University of Regensburg. The

ArtSeg-CHO-M4R dataset is made freely available for public use.

Artifact annotation

The seven cell lines and LNCaP data were inspected and 11.4% and 6.5% of the samples were

found to have artifacts, 344/3024 and 51/784 fields-of-view respectively. The same number of

fields-of-view from each dataset were randomly sampled to be used as training images without

artifacts. At the same time, 99.2% of samples in the ArtSeg-CHO-M4R dataset (1171/1181)

were found to have artifacts. The clean images for this dataset were generated as described

below.

For all three datasets, pixel-level ground truth masks of artifacts were generated by manual

annotation. All annotators had prior training in bioimage analysis, microscopy and cell biology.

For seven cell lines and LNCaP datasets, the artifacts were annotated as polygons using VGG

image annotator33 and for ArtSeg-CHO-M4R dataset, as freehand annotations with the

MembraneTools module of Aparecium software34. For all datasets, the artifact pixels were

annotated while keeping the number of background pixels annotated as artifacts as low as

possible. For the ArtSeg-CHO-M4R dataset, the artifact annotations contain a considerable

number of background pixels in some images as it speeds up annotation and better reflects the

annotation process in real-world conditions.

For obtaining the weak labels for the seven cell lines and the LNCaP datasets, the images were

classified into either clean or artifact-containing images after a brief inspection by the annotator.

For the ArtSeg-CHO-M4R dataset, as the vast majority of images contain at least one artifact,

the clean images were generated by replacing the pixel values of manually annotated artifacts

with the values of the corresponding pixels in the estimated background image. The background

is estimated by fitting the original image with a two-dimensional second order polynomial

function35. To simulate imaging noise, a zero-centered noise profile of the background pixels is

added to the estimated background. No artifacts could be detected from the resulting images.

The modified areas were also not visually detectable by human experts.
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2.2. ScoreCAM-U-Net for artifact segmentation

Our weakly supervised artifact segmentation pipeline combines the ScoreCAM model18 that

highlights areas of the image most useful for differentiating between clean and

artifact-containing images with U-Net model4 that directly classifies pixels into categories. We

call this pipeline “ScoreCAM-U-Net '' (Figure 1).

ScoreCAM18 is a technique used to explain predictions made by deep learning methods, mostly

applied to models that perform image classification. ScoreCAM analyzes both the model output

and the corresponding image, and highlights parts of the image that had a large impact for the

particular prediction. It proceeds in four steps. First, visual representations (activation maps) of

the last convolutional layer are extracted from an image classification model (ResNet36 in our

implementation). Next, each activation map is upscaled to match the size of the input image,

normalized to a range between 0 and 1, and projected onto a copy of the input image via

multiplication, producing a projected input image. Then, the classification model (ResNet in our

implementation) uses projected inputs to calculate the probability of the input image belonging

to each class. Finally, all activation maps are summed, each multiplied by the corresponding

class-largest probability and passed through the ReLU37 activation function to generate the final

output (Supplementary Figure 1). Unlike other competitors that rely on gradients, ScoreCAM

uses the largest class probability to obtain the resulting map. It has been empirically shown that

this feature makes ScoreCAM less noisy and therefore more useful in practice18.

The strongly supervised U-Net13 model has already been successfully adapted for brightfield

nuclei segmentation and its architecture is described in detail in the corresponding paper4

(Supplementary Figure 1). The architecture consists of an encoder and a decoder connected by

a bottleneck, and skip links which pass the signal from the encoder to the decoder. We used an

encoder consisting of 15 convolutional layers that use convolutional filters of size 3×3 and a

rectified linear unit (ReLU)4,37 activation function. After every third layer, there is a 2×2

max-pooling layer and a skip connection to the decoder. Symmetrically, the decoder has 15

convolutional layers with ReLU activation functions. After every third convolutional layer, there is

an upsampling layer that upscales its input height and width by a factor of 2. Finally, the

bottleneck after the encoder has three convolutional layers. There are 64 filters in each

convolutional layer in the encoder, decoder, and bottleneck. `
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Figure 1: Artifact segmentation pipeline - ScoreCAM-U-Net. During training (top), ScoreCAM18

(purple) is used to generate pixel-level probability maps of artifacts and the corresponding

binary masks that are used to train the U-Net4 segmentation model (blue). During the

inference (bottom), the trained U-Net (blue) is used to segment artifacts from the images that

were deemed to contain artifacts (image with red borders) by the ScoreCAM (purple). Vertical

dashed lines: binarization of pixel probability maps values.

2.3. Model training and evaluation

2.3.1. Training

To train the ScoreCAM-U-Net model, the ResNet5036 classification model in the ScoreCAM18

framework was first trained to classify clean and artifact-containing images. The model is trained

on the seven cell lines dataset using 482 images for training, 101 for validation and 104 for
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testing; on ArtSeg-CHO-M4R, using 1386 images for training, 404 for validation, and 572 for

testing; and on LNCaP, using 70 images for training, 16 images for validation and 16 images for

testing. The test set in ArtSeg-CHO-M4R dataset was chosen such that ten

concentration-response curves with multiple competitive ligands could be obtained. The Adam

optimizer38 was used to optimize binary cross-entropy loss for 150 epochs. The initial learning

rate (0.002) was reduced by a factor of 10 when the validation loss did not improve for 10

consecutive epochs.

The output of ScoreCAM was binarized with the threshold of 0.05 and used as pseudo-labels

for the U-Net model, which was subsequently trained to segment the artifacts using the same

datasets’ splits and training procedure. All the experiments were conducted using a Tesla V100-

PCIE-32GB Graphics Processing Unit.

2.3.2. Comparison with other methods

We compared the segmentation results obtained from the ScoreCAM-U-Net to a number of

alternative solutions. As ScoreCAM-U-Net is a combination of ScoreCAM and U-Net models, we

first compared our performance to each of these models separately. We expected a strongly

supervised U-Net model trained on pixel-level annotations to show better performance than its

weakly supervised counterparts. We also compared the proposed approach to the current

state-of-the-art algorithms used to detect anomalies using image labels in domains other than

microscopy: Patch Support Vector Data Description (PatchSVDD)26,27, Patch Distribution

Modeling (PaDiM)27, and an autoencoder-based method (AE)24. All model architectures, training

parameters and training processes are adopted here as defined in the original papers24,26,27.

PaDiM and PatchSVDD are both embedding similarity-based methods that use convolutional

neural network-based approaches (encoders) that learn robust and short representations

(embeddings) from patches of clean images. During the inference, the encoders are used to

extract embeddings from test image patches and compare them to the embeddings extracted

from the clean images based on a similarity metric. The main difference between these two

methods is in the similarity metric employed to compare the embeddings as well as in the way

the embeddings are constructed. PaDiM applies the Mahalanobis distance metric39 and

constructs an embedding by combining the features of multiple encoder layers, whereas

PatchSVDD uses the Euclidean distance metric and constructs the representation from the

features of a single encoder layer. Based on the embedding comparisons, each test image

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.24.477467doi: bioRxiv preprint 

https://paperpile.com/c/Ht2o2R/BRl4
https://paperpile.com/c/Ht2o2R/6SeUl+kjUfO
https://paperpile.com/c/Ht2o2R/kjUfO
https://paperpile.com/c/Ht2o2R/yiF27
https://paperpile.com/c/Ht2o2R/6SeUl+kjUfO+yiF27
https://paperpile.com/c/Ht2o2R/dl59
https://doi.org/10.1101/2022.01.24.477467
http://creativecommons.org/licenses/by-nc/4.0/


patch is assigned a similarity score in which a low similarity score indicates the presence of

artifacts. The final segmentation of each test image is constructed after the similarity scores of

these patches are distributed to their pixels and the corresponding patch segmentations are

merged together.

The AE method also utilizes a convolutional neuronal network based approach (an

encoder-decoder network architecture) that first learns representations of the clean input

images (using the encoder) and then to reconstruct the original clean input images from the

learned representations (via the decoder). During inference, the trained model is expected to fail

to reconstruct the artifactual areas of the test images as the network has only acquired rich

representations of clean images. Therefore, artifacts manifest themselves in areas with a high

pixel-wise difference between the input image and its reconstructed counterpart.

We measure the ability of the models to correctly identify the presence of an artifact in the

image using the F1 score which is the harmonic mean of precision and recall. We also assess

the segmentation performance via calculating pixel-wise precision, recall, F1, and the

intersection over union (Box 1).
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Box 1. Performance measures

2.3.3. Post-processing

We first binarized the probability maps produced by the models at cutoffs of 0.75 for AE, 0.3 for

PaDIM, 0.0005 for PatchSVDD, 0.001 for ScoreCAM, 0.001 for ScoreCAM-U-Net and 0.45 for

U-Net. These cutoffs were selected to maximize pixel-wise IoU (Box 1) performance on

validation data. We then filtered out objects smaller than 1000, 500, and 500 pixels in the seven

cell lines, the ArtSeg-CHO-M4R, and the LNCaP datasets respectively using

remove_small_objects function from the skimage package40. The sizes of the filtered-out objects

were selected to maximize the pixel-wise IoU of the majority number of models, and different

sizes do not drastically change the performance of the models (Supplementary Tables 2, 3, and

4). We recommend using expert knowledge to select the size of objects to filter out.
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2.3.4. Measuring impact of artifacts and artifact removal on the

downstream analyses

To evaluate the utility of removing artifacts in microscopy experiments, we focused on two

common types of downstream analyses: nuclei segmentation and effective concentration

estimation from concentration-response assays. The former is a standard step in the majority of

cell microscopy workflows while the latter is an example of a commonly used pipeline where cell

segmentation is used for image intensity quantification which is followed up by regression

analysis.

Nuclei segmentation
In order to assess how nuclei segmentation accuracy inside the artifactual regions compares to

artifact-free areas, we evaluated the performance of nuclei segmentation in the seven cell lines

dataset inside and outside the artifactual areas. To detect and segment the nuclei from the

brightfield images we used an existing PPU-Net3 model. The training, ground truth preparation,

and post-processing steps for this model are described in the original publication3. We

calculated segmentation pixel-wise F1 and object-wise F1 scores (Box 1), following previously

described approaches3,41, and morphological properties (size and solidity) of the resulting nuclei.

Ligand affinity estimation

In downstream analysis of pharmacological experiments, the cell bodies are segmented from

brightfield images using a U-Net-based deep learning model28, and the cell fluorescence

intensities are quantified from a parallel fluorescence channel based on the segmentation. The

fluorescence intensities of cells depend on the strength of interaction (affinity) between the

protein and the interaction partner (ligand) as well as the ligand concentration. The strength of

protein-ligand interaction is determined using regression analysis of competitive ligand

concentrations and the well average fluorescence intensity information from up to 64 individual

images.

We studied the impact of artifacts and artifact removal on the determination of receptor-ligand

interaction affinity. For that, in each of the ten individual concentration-response experiments,

the cells were detected from brightfield images using a previously developed U-Net based
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segmentation model with an F1-score of 0.8928. The artifactual areas determined manually or

with ScoreCAM-U-Net were removed from the analysis. For experimental control, the analysis

was also carried out without any artifact removal. The average intensity of the detected cell

pixels as well as the average intensity of the background were determined from the aligned red

fluorescence protein filter (excitation: 531(40) nm, emission: 593(40) nm) fluorescence images

made in parallel with the brightfield images. The values were averaged for all images from the

same well. For each well, to find the specific fluorescence intensity of bound fluorescence ligand

the difference between cellular and background fluorescence intensities was calculated.

LogIC50 values corresponding to half maximal displacement of the fluorescence ligand were

obtained via nonlinear regression analysis. For that, the fluorescence intensity dependence on

the competitive ligand concentration was fitted with the Hill equation using GraphPad Prism 5.0

and "log(inhibitor) vs. response" nonlinear regression model which is equivalent to the logistic

regression.

Concentration-response experiments serve as a good example for image analysis pipelines that

rely on image intensity calculation and regression in the downstream analysis. For quantifying

the quality of the full pipeline, we chose the absolute difference between the LogIC50 values

calculated from manual artifact removal and the alternative option. The difference of LogIC50

values describes how accurate pharmacological parameters can be obtained with and without

anomaly removal. We also used the R2 value of the Hill equation fit as a metric, which reflects

the overall agreement between the experiment and the model. Finally, we chose the Pearson’s

correlation coefficient r between predicted fluorescence intensity values using manual artifact

removal and the alternative method, which allows isolating the effect of artifacts on the signal

directly without the influence of other sources of uncertainty.

3. Results
To develop and test a weakly supervised method for artifact segmentation: we confirmed that

artifacts exist and are prevalent in brightfield microscopy images; annotated artifacts in three

datasets; tested models for finding them automatically; and evaluated the impact of removal on

downstream analysis results.
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3.1. Artifacts in brightfield images are prevalent and diverse

The artifacts in the seven cell lines dataset range from very big (e.g. a clump of detached cells

covering 49% of the image pixels) to tiny ones only a few pixels in size. The average annotated

artifact size in this dataset is 4,417 pixels, which is larger than a typical nucleus in this dataset,

and 16% of images had at least 10% of their area covered by artifacts. The artifacts in the

seven cell lines dataset were heterogeneous in their size and morphological properties (Figure

2, Supplementary Figure 2).

In the LNCaP dataset, we annotated 60 objects that affected 6.5% of the images. The sizes of

artifacts range from big (e.g. a hair covering 10% of the image pixels) to small, which covers

only 0.07 % of the pixels, with the average artifact being 75,933 pixels (Supplementary Figure

2).

In the ArtSeg-CHO-M4R dataset, almost all images had artifacts, with a total of 13,713 artifact

objects in 1,171 affected images. Again, the largest object covered a large part of the image

(e.g. 63% as a clump of detached cells), while the smallest one was a few pixels in size

(Supplementary Figure 2). An average artifact in this dataset had an area of 3,450 pixels, or

0.31% of image size.
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Figure 2: Artifacts are heterogeneous, and range in shapes and sizes. A UMAP projection of

all artifacts from the seven cell lines dataset. The inputs to the UMAP are the pixels of each

patch that contains an artifact and the outputs are the first two features in the UMAP

embeddings of each patch. We then used these two features respectively as ‘x’ and ‘y’ values

to plot the corresponding input patch in 2D space.

3.2. Artifacts can be accurately detected with weak supervision

Next, we compared different approaches for artifact detection and segmentation qualitatively

and quantitatively (Figure 3 A,B; Supplementary Figure 3). We first evaluated the ability of the

models to detect artifacts in the images. As ScoreCAM-U-Net and ScoreCAM both use the

same ResNet classification backend, their detection performance is the same, with both models

achieving image classification F1 scores of 93.2%, 93.7% and 90% in seven cell lines, LNCaP
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and ArtSeg-CHO-M4R datasets respectively (Figure 3B, Supplementary Table 1). Other

methods were less accurate, with the only exception of U-Net outperforming ScoreCAM-based

models in the LNCaP dataset (99.4% F1 score for U-Net over 93.7% for ScoreCAM-U-Net;

Figure 3B).

We then assessed the models’ performance in segmenting artifacts. ScoreCAM-U-Net

outperforms the other non-strongly supervised models by achieving the highest area under the

precision-recall curve, as well as the largest average object intersection over union on seven

cell lines and LNCAP datasets (Figure 3B). There was no dominant weakly supervised model in

the ArtSeg-CHO-M4R dataset. Compared to the strongly supervised U-Net model,

ScoreCAM-U-Net got the second-highest IoU performance in the seven cell lines (49.5

ScoreCAM-U-Net vs 72.9 U-Net) and the LNCaP (39.9 ScoreCAM-U-Net vs 65.74 U-Net)

datasets (Supplementary Table 1).

Although the strongly supervised approach outperformed weakly supervised methods, it took

substantial time to prepare the pixel-level annotations required for the U-Net model compared to

weak labeling. On average, an expert spent 279 seconds to produce pixel-level annotation for a

single microscopy image, while it took them only 2 seconds to point out if a given image

contained an artifact. Hence, weakly supervised methods consume about two orders of

magnitude less of expert time for the given case. Therefore, when making a choice of method

for dealing with artifacts, it is reasonable to take into account the dataset size and the amount of

time needed to produce relevant annotations. For complex datasets which require large training

datasets for model development, generating precise pixel-level labels would be very time

consuming, and hence it is practical to prefer weakly supervised approaches like

ScoreCAM-U-Net.
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Figure 3: Artifact segmentation and image-level classification results for all models

(colors) in seven cell lines, LNCaP, and ArtSeg-CHO-M4R datasets. A) Examples of
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brightfield images and the corresponding artifact segmentation of all models

(columns, colors) and datasets (rows; separated by lines and dataset names).

White contour: expert annotated artifact boundaries; colored contours: artifact

segmentation boundaries of the corresponding model. B) Different performance

metrics for all models (colors) and datasets (rows). Left column: artifact

segmentation precision (x-axis) and recall (y-axis) of artifact detection at different

thresholds (points along the curve) for all models and datasets. Middle column:

artifact segmentation pixel-wise IoU (y-axis) for all models and all datasets. Right

column: image-level classification F1 score (y-axis) for all models (x-axis) and

datasets (rows).

3.3. Weakly supervised artifact removal improves downstream

analysis

After establishing the quality of the proposed ScoreCAM-U-Net method for artifact detection and

segmentation, we evaluated the impact of using it for cleaning images on two downstream

applications.

3.3.1. Removing artifacts improves quality of nuclei segmentation

As artifacts distort pixels that otherwise represent nuclei (Figure 4), we observed substantial

degradation in nuclei segmentation performance due to artifacts. The pixel-wise F1 score

decreased from 0.89 in artifact-free to 0.60 in artifactual regions; and the object-wise F1 score

decreased from 0.65 in artifact-free to 0.28 in artifactual regions (Figure 5). This had a direct

impact on naive analyses that do not differentiate between artifactual and clean regions,

reducing segmentation accuracy (0.87 pixel-wise F1, 0.61 object-wise F1; Figure 5). Importantly,

automatically removing artifacts using ScoreCAM-U-Net has the same impact as manual

removal, improving the segmentation performance to near-optimal 0.89 and 0.64 pixel-wise and

object-wise F1 scores (Figure 5).
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Figure 4: Visual impact of artifacts on nuclei segmentation. Two pairs of brightfield images with

corresponding nuclei segmentation (in dark red) overlaid. Zoomed-in purple circles represent examples of

artifact-free areas and artifactual areas (light red). White contours: artifact borders; yellow-ish white

contours: nucleus ground truth borders; arrows and text: guides to corresponding regions and elements.

We next considered nuclear size and morphology metrics with and without artifact correction.

Nuclei in areas containing artifacts show different morphological properties with nuclei solidity of

0.92 and size of 213 pixels while the same properties are 0.95 and 400 pixels respectively in the

artifact-free regions (Supplementary Figure 4). In concordance with the segmentation results,

automatically removing artifacts using ScoreCAM-U-Net recovers the expected nuclei size and

solidity of 397 pixels and 0.95 respectively for artifact-free areas, again performing close to the

gold standard of manual removal (Supplementary Figure 4). These results demonstrate that

automatic removal can overcome the detrimental effect of artifacts with quality close to manual

filtering.
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Figure 5: Impact of artifacts and artifact removal on downstream

analyses. Density (y-axis) of image-average nucleus segmentation

pixel-wise F1 (top, x-axis) and object-wise F1 (bottom, x-axis) in the

seven cell lines dataset for different areas of the image (colors). Pink:

area in the images manually annotated as not artifacts; blue: area in

the images manually annotated as artifacts; green: area in the images

automatically annotated as not artifacts by ScoreCAM-U-Net; yellow:

all image area. Dashed lines: mean pixel-wise F1 and object-wise F1

of segmented nuclei in the artifactual and artifact-free regions

(different colors).

3.3.2. Removing artifacts improves pharmacological parameter estimates
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Cell segmentation in images is a commonly used process to determine biochemical or

pharmacological parameters from microscopy experiments. Common examples of such

experiments include quantifying image intensity of the segmented areas. This can be followed

up by a test of significance or regression analysis to determine biochemical parameters like

half-life of a reaction or the half maximal effective concentration of a substance. We analyzed

how presence of artifacts affects the quality of a microscopy image-based analysis used to

determine ligand affinity to M4 muscarinic receptors using the ArtSeg-CHO-M4R dataset.

Manual anomaly removal has a clear effect on both the plateau locations and the estimated

Log(IC50) values (Figure 6, Supplementary Figure 5). The mean absolute difference between

Log(IC50) calculated with manual artifact removal and no artifact removal is 0.29 units,

equivalent to a two-fold error in dose. In contrast, after automatic artifact removal with

ScoreCAM-U-Net, the Log(IC50) difference from manual anomaly removal was reduced to just

0.16 units, which is similar to the standard deviation of 0.11 observed between biological

replicate experiments. The model fit explained 0.89, 0.86, and 0.74 of the data variation for

manual anomaly removal, ScoreCAM-U-Net anomaly removal, and no anomaly removal

respectively. Finally, the Pearson’s correlation coefficient of well-average fluorescence

intensities between manual anomaly removal and ScoreCAM-U-Net anomaly removal is 0.98

while the correlation between manual anomaly removal and no anomaly removal is only 0.93.

Overall, removing artifacts leads to an increase in replicate correlation, which itself results in

reduction in estimate uncertainty. The estimated ligand affinity better reflects the values

established from manually cleaned images. This confirms that artifact removal leads to

considerable improvement of downstream regression or statistical analysis which relies on

image intensity quantification.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.24.477467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477467
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6: Cell fluorescence intensity dependence on M4 receptor ligand concentration

determined with live-cell fluorescence microscopy at the presence of 2 nM UR-CG072.

Displacement curves of three different ligands are shown: pirenzepine (A and C), atropine (B)

and arecholine (D). Three different artifact removal methods at the image analysis stage are

compared (colors): manual artifact segmentation, ScoreCAM-U-Net segmentation and no

artifact removal. For each combination of ligand and artifact removal method a regression

analysis is performed with Hill equation (Hill coefficient fixed at -1) with the best fits shown as

continuous lines. For each displacement curve, the Log(IC50)±SD is presented, where SD

represents the standard deviation estimation of Log(IC50). Each displacement curve was

measured in duplicates with each data point representing the average fluorescence intensity

of cells in each well.

4. Discussion

We proposed ScoreCAM-U-Net, a deep learning model for identifying artifacts in brightfield

microscopy images that combines the benefits of weakly supervised learning which does not
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require delineating objects, and strongly supervised learning that provides pixel-level resolution.

As training is performed using only image-level labels, generating training data is orders of

magnitude faster, but without substantially sacrificing performance compared to pixel-level

annotation. To our knowledge, this is the first attempt to automatically detect artifacts in large

sets of brightfield microscopy images.

Our results demonstrate that artifacts have an adverse impact on nuclei segmentation and that

detection and measurement of nuclei are improved when removing such artifacts. We showed

that this impact manifests in both quantitative segmentation metrics such as pixel-wise and

object-wise F1 score, as well as morphological properties of the nuclei like solidity and size,

which are central for cytometry applications. Almost all study designs that use large-scale cell

microscopy and image quantification-based readout would benefit from our model.

One important application of cell microscopy is intensity quantification for studying the

localization and co-localization of fluorescently labeled molecules. To exemplify this type of

analysis, we studied how artifact removal affects the calculation of drug-receptor binding

affinities based on live-cell fluorescence and brightfield microscopy. After artifact removal with

ScoreCAM-U-Net, the estimated ligand affinities are in better agreement with the values

established from manually cleaned images. The model-based estimates also reduce linear

regression uncertainty and result variability of independent experiments, indicating a

combination of better fit of the theoretical model and improved reproducibility of the

measurements. Thus, artifact removal improves image intensity quantification independent of

the nature of statistical analysis applied downstream.

Our ScoreCAM-U-Net method establishes the utility of automatically segmenting artifacts from

brightfield microscopy images. The key benefit of our approach is its scalability, such that clean

images can be obtained for screening campaigns that would be unreasonable to process

manually, while its downside is an inability to differentiate different types of artifacts. For

example, the current model would not tell if an image contains an artifact of cell debris and the

other contains bacterial contamination. A natural extension can build on our approach to train a

model that can differentiate between different types of artifacts. Other extensions can use the

power of deep learning for other imaging modalities, such as histopathology, as well as to

further reduce annotation time. We envision that ultimately, all common artifacts will be

automatically segmented and optionally removed at the time of acquisition with no input needed

by the operator. Moreover, we believe that the encouraging results presented in this work will
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motivate use of weakly supervised segmentation methods such ScoreCAM-U-Net in other areas

where pixel-level annotations are prohibitively expensive or time-consuming to acquire, i.e.

medicine.
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Supplementary Material

Supplementary Table 1: Segmentation and image-level detection/classification results in seven cell lines,
ArtSeg-CHO-M4R, and LNCaP datasets. PW: pixel-wise; IoU: intersection over union.

Dataset Metric U-Net ScoreCAM-U-Net ScoreCAM AE PADIM Patch_SVDD

Seven Cell
Lines

Classification F1-Score 89.7 93.2 93.2 66.7 90.1 63.9

Segmentation PW-F1 84.4 66.2 47.2 39.7 50 28.3

Segmentation
PW-precision 86 74.4 42 32.4 59.7 39.6

Segmentation PW-recall 82.8 61 54.6 51.4 43.1 23.9

Segmentation IoU 72.9 49.5 31.1 24.8 33.4 17.1

ArtSeg-CH
O-M4R

Classification F1-Score 80.8 90 90 66.7 72.7 23.6

Segmentation PW-F1 62 34.9 40.1 42.4 22.6 3.1

Segmentation
PW-precision 79 30.3 58.1 47.3 36.1 40.4

Segmentation PW-recall 51.4 41.5 30.9 38.5 19.4 26.6

Segmentation IoU 45 21.3 25.1 26.9 12.8 1.6

LNCaP

Classification F1-Score 99.4 93.7 93.7 69.1 80 59.1

Segmentation PW-F1 79.3 55.7 52 0 17.7 11.6

Segmentation
PW-precision 75 50.5 75.2 0 17.8 9.9

Segmentation PW-recall 84.4 79.5 40.9 0 17.6 41.6

Segmentation IoU 65.7 39.9 35.2 0 9.7 6.9
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Supplementary Figure 1: Zoomed components of the pipeline. A) U-Net model used for object

segmentation. B) ScoreCAM18 algorithm which is used to generate the ground truth to train

U-Net during training, and used to determine whether there are any artifact objects in the

image during inference.
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Supplementary Table 2: Intersection over union of all models in the seven cell lines dataset after removing
predicted objects smaller than different cutoff sizes

Object size
cutoff(pixels) AE PaDIM Patch_SVDD ScoreCAM ScoreCAM-U-Net U-Net

20 21.1 33.4 27.9 23.4 52 72.9

50 21.2 33.4 27.9 23.5 52.1 72.9

100 21.5 33.4 27.9 23.5 52.1 72.9

500 24.8 33.4 27.9 23.9 53.1 72.9

1000 28.6 33.3 27.9 24.2 53.6 73

2000 33.3 33.2 27.9 24.2 54.1 73.2

Supplementary Table 3: Intersection over union of all models in the ArtSeg-CHO-M4R dataset after removing
predicted objects smaller than different cutoff sizes

Object size cutoff
(pixels) AE PaDIM Patch_SVDD ScoreCAM ScoreCAM-U-Net U-Net

20 26.8 13.4 3.4 27.3 23.1 44.4

50 26.8 13.4 3.4 27.3 23.1 44.4

100 26.9 13.4 3.4 27.3 23.1 44.4

500 26.9 13.3 3.4 26.5 22.9 43.7

1000 24.2 13.1 3.4 24.8 22.3 42

2000 18 12.3 3.4 20.3 20.2 35

Supplementary Table 4: Intersection over union of all models in the LNCaP dataset after removing predicted
objects smaller than different cutoff sizes

Object size cutoff
(pixels) AE PaDIM Patch_SVDD ScoreCAM ScoreCAM-U-Net U-Net

20 0 9.6 2.8 28.2 44.8 62.9

50 0 9.6 2.8 28.3 44.8 62.9

100 0 9.6 2.8 28.3 44.8 62.9

500 0 9.7 2.8 29.1 44.7 62.9

1000 0 9.3 2.8 28.5 44.7 62.9

2000 0 9.6 2.8 29.4 44.7 63.8
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Supplementary Figure 2: Artifacts are in different sizes. Size (mm2 in log10 scale, y-axis)

of nuclei and artifact objects (colors, x-axis) in seven cell lines (A), ArtSeg-CHO-M4R

(B), and LNCaP datasets (C). Boxes: 25th, 50th and 75th percentile; whiskers: 1.5x from

the interquartile range; circles: individual artifact or nucleus. Dashed red line: size of the

whole image.
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Supplementary Figure 3: Artifact segmentation examples for all models (colors) in seven cell

lines, LNCaP, and ArtSeg-CHO-M4R datasets (rows). Examples of brightfield images and the

corresponding artifact segmentation of all models (columns, colors) and datasets (rows;

separated by lines and dataset names). White contour: true artifact boundaries; colored

contours: artifact segmentation boundaries of the corresponding model.

Supplementary Figure 4: Impact of artifacts and artifact removal on downstream

analyses. Density (y-axis) plots of segmented nucleus size in pixels (top, x-axis)

and solidity (bottom, x-axis) in the seven cell lines dataset for different areas of the

image (colors). Metrics are calculated for different areas of the images (colors);

artifactual: artifactual areas in the images; artifact-free: area in the images other
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than the artifactual areas. Artifacts are detected in two ways; manual: the detection

of artifacts is performed manually; model-based: the ScoreCAM-U-Net model is

used to detect the artifacts. No artifact removal: the metrics are calculated without

removing artifacts. Dashed lines: mean size in pixels and solidity of segmented

nucleus in the artifactual and artifact-free regions(different colors).

Supplementary Figure 5: Cell fluorescence intensity dependence on M4 receptor ligand concentration

determined with live-cell fluorescence microscopy at the presence of 2 nM UR-CG072. Displacement

curves of three different ligands are shown: UNSW-MK259 (A, B and F), atropine (D and E) and UR-SK75

(C). Three different artifact removal methods at the image analysis stage are compared (colors): manual

artifact segmentation, ScoreCAM-U-Net segmentation and no artifact removal. For each combination of

ligand and artifact removal method a regression analysis is performed with Hill equation (Hill coefficient

fixed at 1) with the best fits shown as continuous lines. Each displacement curve was measured in

duplicates with each data point representing the average fluorescence intensity of cells in each well.
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