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Abstract. Single-cell Assay for Transposase Accessible Chromatin us-
ing sequencing (scATAC-seq) is rapidly becoming a powerful technology
to assess the epigenetic landscape of thousands of cells. However, the cur-
rent great sparsity of the resulting data poses significant challenges to
their interpretability and informativeness. Different computational meth-
ods are available, proposing ways to generate significant features from
accessibility data and process them to obtain meaningful results. In par-
ticular, the most common way to interpret the raw scATAC-seq data is
through peak-calling, generating the peaks as features. Nevertheless, this
method is dataset-dependent because the peaks are related to the given
dataset and can not be directly compared between different experiments.
For this reason, this study wants to improve on the concept of the Gene
Activity Matrix (GAM), which links the accessibility data to the genes,
by proposing a Genomic-Annotated Gene Activity Matrix (GAGAM),
which aims to label the peaks and link them to the genes through func-
tional annotation of the whole genome. Using genes as features solves
the problem of the feature dataset dependency allowing for the link of
gene accessibility and expression. The latter is crucial for gene regulation
understanding and fundamental for the increasing impact of multi-omics
data. Results confirm that our method performs better than the previous
GAMs.

Keywords: Epigenomic single-cell data · Gene Activity Matrix · Bioin-
formatics

1 Introduction

Recent advances in New Generation Sequencing (NGS) technologies paved the
way for single-cell multi-omics data analysis, which captures different facets of
cells’ regulative state, including the epigenome, the genome, the transcriptome,
and the proteome [19]. Multi-omics approaches increase resolution and sensitiv-
ity in the characterization of cellular states, the identification of known or new

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.24.477458doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.477458
http://creativecommons.org/licenses/by-nc/4.0/


2 F. Author et al.

cellular phenotypes, and the understanding of cell dynamics [13]. This charac-
teristic supports a quantitative and comprehensive approach to studying cellular
heterogeneity [5].

In particular, the combination of transcriptomic and epigenomic data pro-
vides integrated information on the functional activation of genes and the struc-
tural organization of chromatin. There are different experimental approaches
to generate epigenomic data. This includes accessibility measurements, which
indicate whether chromatin is open or closed at genomic locations, exposing
other genomic regions for transcriptional and regulatory processes [15]. These
data have a very different organization than transcriptomic data indicating the
expression level of genes.

Analyzing data from multiple omics does not directly imply to gain richer
information on the cellular system, nor to gain a systemic understanding of
regulative modalities generating the data. To achieve that, a multi-omics analysis
must combine data-driven and model-driven approaches by considering not only
the multiple modalities but also their interrelations in the cellular system [29].
To consider them together, it is necessary to correlate the expression level of
genes (i.e., transcriptomic analysis) and the accessibility of their relevant coding
and regulatory genomic regions.

The concept of gene activity, i.e., the overall accessibility of a gene allowing
its transcription inside the cell [26] facilitates comparison between accessibility
and expression data. Gene activity is a necessary and not sufficient condition to
transcript a gene: a cell can have a coding region accessible at the epigenomic
level and the corresponding gene either strongly, weakly, or not expressed at all
at the transcriptomic level. This must be considered when comparing transcrip-
tomic and epigenomic data and build approaches to analyze them jointly.

A Gene Activity Matrix (GAM) [26] is an effective way to summarize acces-
sibility information deriving from single-cell experiments. In a GAM, columns
identify cells while rows identify genes. An element of the matrix (GAMg,c) rep-
resents the Gene Activity Scores (GAS) of the gene g in cell c [26]. The GAS
is a value describing the activity of a gene in a cell in a given model. The use
of the same genes in expression and activity experiments makes transcriptomic
data directly comparable with epigenomic data.

Current approaches to compute GAMs derive primarily from data-driven
strategies, which show limitations in capturing the contextual meaning and the
regulative implications of epigenomic data. This work takes a step towards inte-
grating transcriptomic and epigenomic data to support consistency in the joint
consideration of gene activity and gene expression. In particular, this paper in-
troduces a data- and model-driven computation of a Genomic Annotated GAM
(GAGAM), which leverages accessibility data and information from genomic
annotations of regulatory regions to weigh the gene activity with the anno-
tated functional significance of accessible regulatory elements linked to the genes.
GAGAM helps improve the resolution, explainability, and interpretability of the
results of the clustering and differential activity analyses, supporting the study
of cellular heterogeneity based on epigenomic data alone [26].
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2 Background

Single-cell Assay for Transposase Accessibility Chromatin sequencing (scATAC-
seq) is rapidly becoming the primary way to assess the accessibility of the
whole genome at the single-cell resolution. ScATAC-seq datasets employ dif-
ferent ways to define meaningful features to allow their analysis, as shown in
[9]. One of the most popular is the “peak calling”, which defines peaks (i.e.,
intervals on the genome that have a local enrichment of transposase cut-sites)
from an experiment-dependent set of chromosomal regions [36]. Since resulting
peaks directly derive from the experimental results, they are not univocal, as in
transcriptomic data. This hampers comparison of different analyses results and
identification of cell-type related marker genes.

As described before, a GAM is an effective way to define robust accessibility
features. The GAM considers the overall accessibility of the genomic regions
linked to a gene. Using scATAC-seq data, the gene activity scores composing
the elements of a GAM can be computed as the accessibility of the peaks related
to a gene in a cell. However, the way to link peaks to the correct genetic region on
the genome is not unique, and in the literature, there are three main strategies:

1. The GeneScoring sums the peaks in a broad region before and after a gene’s
Transcription Starting Site (TSS), weighted by their distance from it [18].
This is the easiest way to define the activity of a gene, but it does not
consider all the regulatory aspects.

2. Cicero defines the activity of a gene as the accessibility of the peaks over-
lapping the TSS and the accessibility of all the co-accessible peaks [26]. This
method is more structured than the previous one. However, it identifies the
genes through a single DNA base, i.e., the TSS, limiting the approach’s
effectiveness. Moreover, co-accessibility evaluation is a very long and com-
putationally heavy process, and the GAS estimation does not consider the
peak’s meaningfulness.

3. Signac GAM counts all the raw reads in the gene body [28]. The main limita-
tion of this method is the necessity of a fragment file related to the dataset,
which contains all the fragments read in each cell. It is a large file and rarely
available, thus making the computation often impossible.

In general, all these methods oversimplify the relationship between a gene
and its accessibility. The epigenetic mechanisms are related to the regulation
and resulting expression of the genes. However, this association is not direct and
linear. If a gene is accessible, it is not necessarily also expressed: the association
only gives an insight on whether transcription is possible or not.

Studying how accessibility links to gene expression becomes relevant due to
the emergence of new multi-omic Next-Generation Sequencing (NGS) techniques
allowing performing both scATAC-seq and Single-cell RNA sequencing (scRNA-
seq) simultaneously. One way to achieve multi-omic consistent integration is to
employ a model-driven approach.

For this reason, GAGAM introduces a new way to construct a GAM based
on the functional annotation of the peaks. GAGAM is not only a new GAM but
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also a new way to interpret epigenomic data in perspective to link them with
transcriptomic data. This method employs publicly available genomic annota-
tions and evaluates the activity based on the regulatory elements linked to the
gene by elaborating only the peaks related to the genes and their regulatory
regions. Thus, it provides a model-driven GAS that reflects the accessibility to
the whole transcription machinery, drawing a direct link to the gene expression.

3 Materials and Methods

Fig. 1 introduces the workflow for computation and evaluation of GAGAM start-
ing from a scATAC-seq dataset.

Fig. 1. Workflow for computation and evaluation of GAGAM. The workflow
starts with scATAC-seq data, and labels the peaks with the help of genomic annota-
tions and USCS tracks. Then it computes the three contributions forming GAGAM.
GAGAM is evaluated and compared to other GAMs through clustering experiments
with three well-established metrics: Adjust Rand Index (ARI) [17], and Adjust Mu-
tual Information (AMI) [35] (if the dataset is labeled) or Residual Average Gini Index
(RAGI) [6] (if the dataset is not labeled).

A scATAC-seq dataset contains a set P of peaks observed in a group of C
cells. Each peak corresponds to a region of the target genome and is defined by
its chromosome and a genomic coordinate pair p = (ch, start, stop). The dataset
is a binary matrix D|P |×|C| where rows are associated with peaks and columns
with cells. An element of D equal to 1 denotes a peak (row) accessible in a cell
(column).

The main contribution of GAGAM is to exploit information regarding over-
laps of peaks, gene bodies, and genetic regulatory regions (i.e., promoters and
enhancers) to build a GAM with higher information content.

3.1 Genomic Annotation

The genomic annotation of peaks is the first step to constructing GAGAM. This
process aims to enrich information regarding peaks with data coming from differ-
ent genomic annotations useful for a model-driven construction of a GAM. Fig.
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2 shows the genomic model considered in this work. It represents a genomic unit,
which includes three parts: (i) the gene body region, starting at the Transcrip-
tion Starting Site (TSS), (ii) the gene Promoter, preceding the coding region,
and (iii) a set of Enhancers that are distal to the gene.

Fig. 2. Genomic Model. The genomic model consists of the coordinates of all the
genomic regions related to the gene. The gene body region (in green) comes from the
NCBI RefSeq Genes annotations. The regulative regions, i.e., Promoter (in red), and
Enhancers (in orange), come from the cCRE ENCODE tracks.

The gene coding region is defined using NCBI RefSeq Genes [25] annotations,
consisting of genes’ genomic coordinates. Therefore, a gene g in a target genome
G is a tuple defining the gene’s chromosome and its genomic coordinates pair
(i.e., g = (ch, start, stop)). The NCBI RefSeq annotations are accessible using
the NCBI Eukaryotic Genome Annotation Pipeline [30]. It consists of an an-
notated and curated information list of protein-coding and non-protein-coding
genes. The annotation also includes all the pseudogenes and miRNA regions.
Since GAGAM aims to obtain something the closest possible to the transcrip-
tomic information, it only considers the protein-coding and lncRNA regions.

The regulative genomic regions are elements on the DNA footprints for the
trans-acting proteins involved in transcription, either for the positioning of the
basic transcriptional machinery or for the regulation. The annotation tracks are
associations between a genomic region and a label indicating the function of the
region. Given a target genome G it is possible to define a set R of regulative
regions with each region defined by the corresponding chromosome, the genomic
coordinates pair, and a label (e.g., promoter or enhancer) indicating the function
of the region (r = (ch, start, stop, l)).

Information regarding regulative gene regions are available from the Encyclo-
pedia of DNA Elements (ENCODE) project, which provides an extensive collec-
tion of cell- and tissue-based repertoires of genomic annotations, including, for
example, transcription, chromatin organization, epigenetic landscape dynamics,
and protein binding sites from the mouse and human genomes [24]. ENCODE
data are available through the ENCODE data portal [11].

This work only considers genomic annotations relative to promoter and en-
hancer functions. These regulatory elements are derived from the ENCODE
candidate cis-Regulatory Elements (cCREs). cCREs provides an extensive col-
lection of annotated regions for the human and mouse genomes. Classification of
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cCREs is based on biochemical signatures, considering DNase hypersensitivity,
histone methylation, acetylation, and CTCF binding data [24]. Since this work
aims to label peaks from both human and mouse datasets, cCREs tracks (in
BigBed format [16]) were collected from ENCODE for both the human [33], and
mouse [34] genomes.

The goal of the genomic annotation process is to associate each peak p ∈ P
obtained from a scATAC-seq dataset D to a set of genomic annotation labels by
analyzing how the peak overlaps to the different genomic regions.

GAGAM labels each peak p ∈ P with four possible labels: (1) prom for peaks
overlapping a promoter region, (2) enhD for peaks overlapping a distal enhancer
region and not a promoter region, (3) intra for the peaks contained into a gene
body region, and (4) empty in all other cases. The rule to assign the label is
summarized in the following equation:

PL : p ∈ P 7→



prom if ∃r ∈ R|r ⊆ p ∧ rl = prom

enhD if (∃r ∈ R|r ⊆ p ∧ rl = enh)∧
(∄r ∈ R|r ⊆ p ∧ rl = prom)

intra if ∃g ∈ G|p ⊆ g

empty otherwise

(1)

The operator a ⊆ b is used here to denote that the two regions a and b
belong to the same chromosome with b overlapping a (i.e., astart ≥ bstart∧aend ≤
bend). The computation of the intersection between peaks and annotation regions
leverages the bigBedToBed tool from ENCODE [32].

Performing genome annotation for the mouse genome is straightforward for
all considered datasets since both datasets, and annotation tracks refer to the
mm10 genomic assembly. Differently, for the human genome, the cCREs anno-
tation track is only available for the hg38 genomic assembly, while the human
dataset is based on the hg37 genomic assembly. For this reason, this work lever-
ages the UCSC LiftOver tool [20] to convert the peaks’ coordinate ranges from
the hg37 to the hg38 assemblies before performing peak labeling.

Given the list of annotated peaks, GAGAM builds a gene activity matrix
as a weighted sum of three separated matrices: (i) the promoter peaks matrix
(P) indicating accessibility of genes associated with promoter peaks, (ii) the
intragenic peaks matrix (I) indicating the accessibility of genes containing intra-
genic peaks, and (iii) the co-accessibility matrix (C) indicating the accessibility
of genes associated with distal enhancer peaks, obtaining a final curated and
model-driven evaluation of the activity of the genes:

GAGAM = wp ·P+ wi · I+ wc ·C (2)

3.2 Promoter Peaks Matrix

The promoter peaks matrix exploits model-driven information about promoter
peaks to identify relevant genes in the GAM. The golden rule applied in GAGAM
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is that a gene in a cell is active if, and only if, its promoter peak is accessible.
This rule reduces the set of interesting genes to consider when constructing a
GAM.

To follow this rule, let us denote with P p ⊆ P the subset of peaks in the
dataset D annotated as promoters (i.e., PL(p) = prom ∀p ∈ P p) and with
Dp

|Pp|×|C| the submatrix of D including only rows associated to promoter peaks.

GAGAM constructs a binary matrix GP|Gp|×|Pp| associating the set of genes
with active promoter peaks (Gp) to their related peaks. To associate a promoter
peak to a gene, GAGAM considers the overlapping of an enlarged gene body
region including 500bp before the TSS (i.e., an approximation of the mean peak
length) with the peak region. Based on this, the promoter peaks matrix is a
binary matrix computed as:

P|Gp|×|C| = GP|Gp|×|Pp| ×Dp
|Pp|×|C| (3)

This matrix is a GAM including accessibility data for the subset of genes
associated with the promoter peaks. In this way, GAGAM leverages available
knowledge on transcriptional regulatory regions to define the active genes based
on a model taking into account the knowledge of gene regulation and transcrip-
tion.

3.3 Intragenic Peaks Matrix

GAGAM also considers the contribution of the intragenic peaks (i.e., peaks lo-
cated in the gene body region) to the overall gene activity score. Similarly to
what was described before, let us denote with P i ⊆ P the subset of peaks in
the dataset D annotated as intragenic (i.e., PL(p) = intra ∀p ∈ P i) and with
Di

|P i|×|C| the submatirx of D including only rows associated to intragenic peaks.
GAGAM constructs a matrix GI|Gp|×|P i| associating genes with active pro-

moter peaks (Gp) to their related intragenic peaks. This matrix only considers
genes with active promoter peaks to follow the GAGAM golden rule (section
3.2). Some of the identified intragenic peaks could be part of genes that do not
have a promoter peak. Moreover, it could happen that given a gene region inside
a cell, intragenic peaks could be accessible even if the promoter peak is not.

Statistically, there will be more peaks inside the gene body region of a long
gene, meaning it might have a higher score after its length. To prevent this bias,
GAGAM employs a strategy from the GeneScoring [18] method to compute
the elements of GI. It weighs the contribution of the intergenic peaks with an
exponentially decaying function of their distance from the TSS (i.e., GIg,p =

a · e− d
5000 where a = 1 if p ⊆ g, 0 otherwise and d is the distance of the peak

from TSS). In this way, very long genes are not over-represented because the
most crucial part of the gene’s activity is near the promoter. Therefore, the
peaks near it are weighted more. Based on this, the intragenic peaks matrix is a
matrix computed as:

I|Gp|×|C| = GI|Gp|×|P i| ×Di
|P i|×|C| (4)
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3.4 Promoter-Enhancer co-accessibility Matrix

The co-accessibility matrix accounts for the connections between promoters and
enhancers. It leverages Cicero [26] to calculate the co-accessibility of the peaks.
The co-accessibility represents how couples of peaks tend to be simultaneously
accessible in the cells, expressing it in a range between 0 and 1. This calculation
“connects regulatory elements to their putative target genes” [26], meaning it
can find connections between the promoters and the distal regulatory regions
where different elements like Transcriptional Factors (TF) bind and enable the
transcription.

The first step to compute this matrix is to calculate the co-accessibility from
the scATAC-seq data with the Cicero function run cicero (for the explanation
of the calculation, refer to [26]). The result is a list of peaks couples with their
co-accessibility value (ca) and distance (d) in the form conn = (p1, p2, ca, d).

GAGAM selects only couples of promoter-enhancer peaks, i.e., couples with
p1 ∈ P p and p2 ∈ P e (or vice versa), with P e ⊆ P representing the subset of
peaks in the dataset D annotated as enhancers (i.e., PL(p) = enhD ∀p ∈ P e).

Moreover, GAGAM keeps only couples with ca ≥ cam (with cam the mean
value of all the co-accessibility scores above zero) and d ≤ dth (with dth =
30, 000 bp the distance threshold defined as suggested by the guidelines of Cicero
[26]).

To calculate the co-accessibility matrix C, GAGAM uses three matrices.
First, the binary matrix GP|Gp|×|Pp| previously defined in section 3.2 and asso-
ciating genes with promoter peaks. Second, the matrix PE|Pp|×|P e| associating
promoter peaks and enhancer peaks. The elements of this matrix are the co-
accessibility values ca of the couples of peaks available in the list produced by
Cicero, and 0 otherwise. Third, the matrix De

|P e|×|C| is a submatrix of D includ-
ing only rows associated with enhancer peaks.

Based on this, the co-accessibility matrix is computed as:

C|Gp|×|C| = GP|Gp|×|Pp| ×PE|Pp|×|P e| ×De
|P e|×|C| (5)

4 Results and discussion

4.1 Evaluation strategy

This section evaluates GAGAM by looking at different aspects.
First, GAGAM represents an interpretation of scATAC-seq data. As the ma-

jority of single-cell experiments, it must identify cellular heterogeneity. Based
on this consideration, the first approach to evaluate the capabilities of this new
gene activity matrix is to employ one of the many available pipelines to process
GAMs (Fig. 1). This work uses Monocle3 [31], given its simplicity and the fact
that Cicero GAM (see section 2) is dependent on it.

The standard Monocle workflow starts with a GAM, performs Principal Com-
ponent Analysis (PCA), visualizes the cells in 2D using UMAP [23], and most
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importantly, performs cells clustering. The clustering results should at least par-
tially represent the cellular heterogeneity of the dataset. This can be measured
using a group of metrics thoroughly discussed in section 4.2.

Moreover, it can be proved that GAGAM and, in particular, the selected
genes are not just a product of data manipulation but are biologically meaningful
in two ways. First, performing differential activity analysis on the GAM can
show that the differentially active genes are cell-type specific. This would also
demonstrate that employing marker genes allows classifying scATAC datasets,
something not possible with raw data. Second, using the RAGI index (one of
the metrics for the evaluation of the clustering performances defined in section
4.2), it is possible to assess the informativity of the GAGAM.

4.2 Metrics definition

The evaluation strategy proposed in section 4.1 is based on unsupervised clus-
tering of cells based on the selected genes. The obtained clusters are the outputs
that must be analyzed to understand if they represent cell heterogeneity. There
are two scenarios: (i) the starting dataset has cell labels; thus, each cell has a
label identifying its cell type, or (ii) there are no available cell labels, so there is
no ground truth to compare.

In the first case, the most direct way to measure the quality of the clustering
process is to compare the clusters to the cell-type labels. To show how much
the two classifications are similar, this paper uses the Adjust Rand Index (ARI)
[17] and Adjust Mutual Information (AMI) [35] from information theory. These
two metrics are often employed for this type of evaluation. In particular, [6]
uses them for their benchmarking. Thus, they help compare their results with
those produced in this paper. ARI and AMI range between 0 and 1, where 1 is
a perfect match, and 0 is complete uncorrelation. This evaluation employs the
R package ARICODE [8], which easily allows their calculation.

The second case requires a different approach. Since there is no reference
classification, ARI and AMI cannot be used. One method is to calculate ARI
and AMI comparing the results with the clustering-based labels obtained from
the scATAC-data data processing. Otherwise, [6] proposes a very fitting way: the
Residual Average Gini Index (RAGI) [6]. The RAGI investigates the differences
in the Gini index of markers and housekeeping genes. The idea is that a good
clustering should have marker genes active only in specific clusters and house-
keeping genes over all the cells. Therefore, RAGI can measure the quality of the
GAM itself. A good GAM should convey meaningful biological information that
should translate into a difference between the two sets of genes. Therefore, the
RAGI estimates if a GAM can correctly assess the gene activity. Anyway, RAGI
has the problem of being highly dependent on the employed genes to calculate
it. Still, the concept of housekeeping genes and, even more, marker genes are
not well-defined [22]. Therefore, it is essential to carefully choose the right set
of marker genes strictly related to the dataset sample. In this work, the list of
housekeeping genes derives from [10] for humans and [12] for the mouse. On
the other hand, the marker genes list comes from the CellMarker [37] database,
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which provides a curated list of markers per tissue. For the mouse brain datasets,
this work also employs markers from [14], and [21].

4.3 Datasets

GAGAM was tested on five datasets (see Table 1). Two datasets are from the
10XGenomic platform [27], and consist of a collection of respectively 5,335 (10X
V1.0.1 PBMC [1]) and 4,623 (10X V2.0.0 PBMC [3]) cells from human Periph-
eral Blood Mononuclear Cells (PBMC) samples. From the 10XGenomic platform,
there is also a mouse brain dataset with 5,337 cells (10X V1.1.0 Brain [2]). All
three datasets do not have cell labels. Therefore, ARI and AMI evaluations
are applicable only on the clustering-based labels. Next, this study employed
a dataset of bone marrow (Buenrostro2018 ) from [4]. This dataset consists of
2,034 cells and provides cell-type classification. The last dataset comes from a
multi-omic SNARE experiment (SNARE [7]). It consists of 10,309 cells from
the mouse cortex and comes with a partial classification of the cells. Two of the
considered datasets (10X V1.0.1 PBMC and Buenrostro2018 ) derive from [6],
a paper performing a benchmarking analysis on different methods allowing for
easy comparison of results.

Table 1. Datasets employed

Dataset Species Tissue Cells labels Reference

10X V1.0.1 PBMC Human PBMC No [1]

10X V2.0.0 PBMC Human PBMC No [3]

10X V1.1.0 Brain Mouse Brain Cortex No [2]

Buenrostro2018 Human Bone Marrow Yes [4]

SNARE Mouse Brain Cortex Yes [7]

4.4 Results

This section compares the performance of GAGAM with two state-of-the-art
GAM computation pipelines (i.e., Cicero and GeneScoring) following the eval-
uation strategy proposed in section 4.1. Since GAGAM is constructed from
three contributions (see eq. 2), it is advisable to evaluate different combina-
tions to select the best one. This experimental setup considers two versions of
GAGAM: GAGAM1 constructed considering only the promoter peaks and the
co-accessibility (i.e., wp = 1, wi = 0, and wc = 1) and GAGAM2 created using
the complete GAGAM workflow (i.e., wp = 1, wi = 1, and wc = 1).

Table 2 reports AMI and ARI results comparing Buenrostro2018 [4] and
SNARE [7] clusters, with their ground truth labels, and the other datasets
against the scATAC clustering results. Overall, Table 2 shows that both ver-
sions of GAGAM perform equally or better than Cicero and GeneScoring. Only
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on 10X V1.1.0 Brain, GeneScoring has a higher metric value than GAGAM.
However, comparing the results on [4] with the ones reported in [6] on the same
dataset shows how the GAGAM performances are on the high end of the bench-
marked paper methods (as shown in Table 5 from [6]).

Table 2. ARI and AMI results

ARI

Dataset Cicero GeneScoring GAGAM1 GAGAM2

Buenrostro2018 0.217 0.297 0.325 0.272

SNARE 0.082 0.040 0.115 0.128

10X V1.0.1 PBMC 0.397 0.550 0.463 0.620

10X V2.0.0 PBMC 0.523 0.493 0.492 0.539

10X V1.1.0 Brain 0.284 0.448 0.286 0.286

AMI

Dataset Cicero GeneScoring GAGAM1 GAGAM2

Buenrostro2018 0.344 0.435 0.466 0.458

SNARE 0.157 0.067 0.175 0.186

10X V1.0.1 PBMC 0.505 0.544 0.555 0.600

10X V2.0.0 PBMC 0.654 0.625 0.671 0.670

10X V1.1.0 Brain 0.437 0.639 0.455 0.453

Next, RAGI has been computed for all datasets to assess the clustering re-
sults and the information content of the GAMs. The results are in Table 3. For
the three different types of tissues, we employed three different sets of curated
markers, while the housekeeping genes were shared between the same species
datasets. For each method and dataset, there are two different results. One is
the RAGI score calculated on each GAM concerning the clustering results. The
other is computed on each GAM but resorting to the cell labels (when available)
or the clustering-based labels obtained from the scATAC data processing. This
way, all methods are evaluated against the same partition to understand which
GAM is the most biologically consistent. In particular, the 10X V1.0.1 PBMC
dataset is assessed with this metric in [6], and GAGAM outperforms all the
methods illustrated there.

In general, the results show how GAGAM has consistently good perfor-
mances. Nevertheless, in this case, Cicero performs better on the SNARE dataset.
Instead, GeneScoring offers low performances. Although its clustering results are
consistent with the ground-truth classification (as indicated by ARI and AMI),
the actual scores are not well defined. This suggests the importance of evaluat-
ing the GAMs on both metrics. Therefore, although there are some cases where
Cicero and GeneScoring have better results than GAGAM, the latter has a con-
sistent behavior on all the metrics, meaning it is the most reliable method on
both clustering results and actual GAS computation. It is essential to highlight
that some of the RAGI results (marked with *) have a p-value over the tolerable
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Table 3. RAGI result. Results marked with * have p-value over the tolerable threshold
(0.05).

Compared to each method’s clustering

Dataset Cicero GeneScoring GAGAM1 GAGAM2

Buenrostro2018 0.112 0.020* 0.186 0.141

SNARE 0.213 0.127 0.184 0.184

10X V1.0.1 PBMC 0.204 0.061 0.258 0.242

10X V2.0.0 PBMC 0.250 0.103 0.212 0.223

10X V1.1.0 Brain 0.277 0.112 0.280 0.280

Compared to labels or ATAC clustering

Dataset Cicero GeneScoring GAGAM1 GAGAM2

Buenrostro2018 0.136 0.034* 0.200 0.191

SNARE 0.267 0.140 0.217 0.219

10X V1.0.1 PBMC 0.229 0.086 0.243 0.243

10X V2.0.0 PBMC 0.270 0.127 0.252 0.268

10X V1.1.0 Brain 0.271 0.172 0.272 0.275

threshold (0.05), so they are not statistically meaningful, but we report them
anyways.

5 Conclusions

In conclusion, GAGAM is a new method to obtain a Gene Activity Matrix from
scATAC-seq data. It is based on a model-driven approach leveraging genomic
annotations of genes and functional elements. It introduces the promoter peak
accessibility into the score, which is necessary for the gene’s activity. Then, it
considers the contribution of intragenic peaks, weighted by their distance from
the TSS and the enhancer peaks connected to the promoter. The score obtained
this way represents a good model of the gene activity interpreted as the set of
elements that should be accessible to allow gene transcription.

Experimental results demonstrate how GAGAM generally performs better
against other GAMs concerning its ability to identify cellular heterogeneity.
Specifically, the clustering obtained from GAGAM is evaluated with ARI, AMI,
and RAGI and has better results than Cicero and GeneScoring on all of these
metrics. In addition, GAGAM is a suitable method to interpret accessibility
data in general. Indeed, since it employs genes as features, it allows analyzing
scATAC-seq data through well-studied and investigated concepts like marker
genes. The same analysis would not be possible with raw accessibility data.
RAGI results support this claim and highlight the activity differences between
marker and housekeeping genes. This activity proves that the features selected
in GAGAM (i.e., the genes) and their activity scores are biologically meaningful.
Therefore, GAGAM provides an optimal and reliable middle ground between the
accessibility data and the gene expression data, crucial for future works in a field
where multi-omics single-cell techniques are fastly growing.
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In conclusion, GAGAM is a promising and reliable way to interpret scATAC-
seq data, which focuses on the accessibility of the genes and their regulatory
elements, acting as a direct link between epigenomic and transcriptomic.
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