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Abstract  
 
Meiotic recombination is an essential biological process that ensures faithful chromosome segregation 

and promotes parental allele shuffling. Tetrad analysis is a powerful approach to quantify the genetic 

makeups and recombination landscapes of meiotic products. Here we present RecombineX 

(https://github.com/yjx1217/RecombineX), a generalized computational framework that automates 

the full workflow of marker identification, gamete genotyping, and tetrad-based recombination 

profiling based on any organisms and genetic backgrounds with batch processing capability. Aside 

from conventional reference-based analysis, RecombineX can also perform analysis based on parental 

genome assemblies, which enables analyzing meiotic recombination landscapes in their native 

genomic contexts. Additional features such as copy number variation profiling and missing genotype 

inference further enhance downstream analysis. RecombineX also includes a dedicate module for 

simulating the genomes and reads of recombinant tetrads, which enables fine-tuned simulation-based 

hypothesis testing. This simulation module revealed the power and accuracy of RecombineX even 

when analyzing tetrads with very low sequencing depths (e.g., 1-2X). Tetrad sequencing data from the 

budding yeast Saccharomyces cerevisiae and green alga Chlamydomonas reinhardtii were further 

used to demonstrate the accuracy and robustness of RecombineX for organisms with both small and 

large genomes, manifesting RecombineX as an all-around one stop solution for future tetrad analysis. 
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Author Summary  
 
Meiosis is a fundamental cellular process that ensures faithful chromosome segregation and 

promotes allele shuffling. Tetrad analysis, which isolates and genotypes all four meiotic products 

(i.e., tetrad) derived from a single meiosis, remains the most straightforward and powerful way of 

studying meiotic recombination and its modulators at fine scales. The wide application of tetrad 

analysis in yeasts, filamentous fungi, green algae, and land plants have substantially expand our 

understanding of meiotic recombination in terms of both genome-wide landscapes and molecular 

mechanisms. Here we described the first generalized computational framework named 

RecombineX that automates the full workflow of tetrad analysis based on any organisms and 

genetic backgrounds. In addition, aside from conventional reference-based analysis, RecombineX 

can also perform analysis based on parental genome assemblies, which enables analyzing meiotic 

recombination landscapes in their native genomic contexts. Using both simulated and real tetrad-

sequencing data, we further demonstrated RecombineX’s trustable performance, versatile usage, 

and batch-processing capability, manifesting RecombineX as an all-around one stop solution for 

tetrad analysis. Especially considering that meiotic gamete genome sequencing from different 

natural and mutant backgrounds can now be acquired, we expect RecombineX to become a 

popular tool that empowers future tetrad analysis across different genetic backgrounds and species. 
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Introduction 
 
 
Meiosis is a fundamental cellular process in eukaryotes, through which sexually reproducing 

organisms generate their gametes via two successive rounds of cell division. In the first round 

(meiosis I), homologous chromosomes duplicate, pair and swap genetic materials, and then segregate 

into two daughter cells. In the next round (meiosis II), the two sets of sister chromatids in each 

daughter cell further separate into different gamete cells to reduce the total chromosome number by 

half. The four gamete cells resulting from these two rounds of cell division are collectively referred as 

a tetrad. In most species, accurate homologous chromosome segregation at meiosis I relies on sister 

chromatid cohesion in combination with meiotic crossovers (CO) that are reciprocal exchanges of 

chromosome arms. These meiotic COs result from the repair by homologous recombination of 

meiotic prophase-induced DNA doubles strand breaks (DSBs). In addition to COs, DSB repair by 

meiotic recombination also produces recombinants without reciprocal exchange of chromosome arms 

called non-crossovers (NCOs). Both COs and NCOs are intrinsically associated with a tract of gene 

conversion (GC), which detection relies on suitably positioned markers. Both COs and NCOs shuffle 

parental genetic materials, which promotes the genetic robustness and phenotypic potential of the 

offspring gene pool.  

 

Given the vital role of meiotic recombination, different methodologies have been developed to 

characterize its underlying mechanisms and evolutionary implications. For example, meiotic 

recombination can be indirectly analyzed by examining linkage disequilibrium and haplotype 

structure with population genomics data (Ptak et al. 2005; Coop et al. 2008; Rasmussen et al. 2014; 

Spence and Song 2019). While powerful statistical inferences regarding recombination can be made 

this way with existing genomic data, additional factors such as demographic histories and selection 

schemes might perplex the result interpretation. In contrast, meiotic recombination can also be studied 

by directly examining the makeup of gamete genotypes in terms of parental genetic backgrounds. One 

way of doing this is to perform bulk genotyping analysis for random gametes (Wang et al. 2012, 2012; 

Hou et al. 2013; Kirkness et al. 2013; Hinch et al. 2019). Although this approach allows for detailed 

delineation of cumulative recombination landscapes across a large number of gametes, it lacks the 

power and resolution for inspecting individual meiosis event, which prevents an in-depth view of the 

meiotic recombination process. Alternatively, at least for a selection of model systems, it is feasible to 

isolate and genotype all four meiotic products (i.e., tetrad) derived from a single meiosis. This 

approach is called “tetrad analysis”, which remains the most straightforward and powerful way of 

studying meiotic recombination and its modulators at fine scales. For instance, a landmark study of 

this kind was performed on the budding yeast Saccharomyces cerevisiae, which led to the first high-

resolution meiotic recombination map for eukaryotes (Mancera et al. 2008). Thereafter, similar tetrad-
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based genome analysis have been carried out across multiple organisms and genetic backgrounds 

(including mutants) (Qi et al. 2009; Martini et al. 2011; Lu et al. 2012; Wijnker et al. 2013; Li et al. 

2015; Brion et al. 2017; Liu et al. 2018; Marsolier-Kergoat et al. 2018; Liu et al. 2019), which 

altogether substantially advanced our understanding of meiotic recombination and its genetic 

modulators.  

 

In contrast to the broad application of tetrad analysis, there is a lack of dedicated computational 

framework for corresponding data analysis. To our knowledge, ReCombine (Anderson et al. 2011) is 

the only tool developed for such purpose so far. ReCombine represents an important step towards 

automated and standardized tetrad analysis, but it was designed in the early days of next-generation 

sequencing and understandably appears somewhat constrained to cover today’s use scenarios in terms 

of functionality, versatility, and customizability. For example, ReCombine is hardcoded based on the 

S. cerevisiae reference genome and expects the reference-based S288C strain to be one of the two 

crossing parents. Also, manual configuration and curation are normally needed on a tetrad-by-tetrad 

basis, making ReCombine less suitable for processing large numbers of tetrads.  

 
Therefore, a new generation of computational solution for high-throughput and high-quality tetrad 

analysis is much needed. Here we introduce RecombineX, a generalized computational framework 

that automates the full workflow of gamete sequencing data analysis, especially for organisms whose 

tetrad can be isolated. Equipped with dedicated modules for polymorphic markers identification, 

gametes genotyping, recombination profiling, and recombinant tetrad simulation, RecombineX shines 

in its trustable performance, versatile usage, and batch-processing capability. Our tests based on both 

simulated and real data further demonstrated its consistent power and accuracy in multiple application 

scenarios, manifesting RecombineX as an all-around one stop solution for future tetrad analyses.   

 

Results and Discussion 
 
The general design of RecombineX  
 
RecombineX is a Linux-based computational framework designed for automated high-throughput 

tetrad analysis. It is self-contained by design and can be automatically installed and configured via a 

pre-shipped installer script. RecombineX comes with a series of task-specific modules handing 

different workflow phases: genomes and reads preparation -> parental markers identification -> 

gametes reads mapping and genotyping -> tetrad-based recombination events profiling (Figure 1). 

Depending on the available input data, RecombineX can be executed in two modes: 1) the reference-

based mode and 2) the parent-based mode. For each mode, we numbered the corresponding modules 

based on their execution orders, ensuring a well-organized data analysis workflow (Figure 2). Within 

each module, a task-specific executable bash script is provided for invoking the corresponding 
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module. A template directory with these modules pre-configured is further provided as a testing 

example, which can be easily adapted for users’ own project (Figure S1).     

 
Figure 1. An overview of the RecombineX framework. RecombineX conduct sequencing-based tetrad 

analysis in three major phases: A) parental marker identification, B) tetrad genotyping, and C) 

recombination event profiling. Depending on the available input data, users can run RecombineX in 

either reference-based mode (denoted by solid arrows) or parent-based mode (denoted by dashed 

arrows). In the reference-based mode, parent reads are mapped to the reference genome for reference-

based parental marker identification (①), based on which gamete genotyping is further performed by 

evaluating the gamete-to-reference read mapping support at each marker position (④). The resulting 

genotyping assignments across the four gametes from the same tetrad are jointly evaluated for 

profiling recombination events based on the reference genome coordinate system. In the parent-based 

mode, whole genome alignment is firstly constructed based on the native genome assemblies of the 

two crossing parents, upon which parent-based markers are identified accordingly (③). Optionally, 
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parent-based markers obtained from whole genome alignment can be further leveraged by reciprocal 

parent-based read mapping (②). In either case, gamete genotyping is performed by evaluating the 

gamete-to-parent read-mapping at each marker position(⑤). The resulting genotyping assignments 

across the four gametes from the same tetrad are jointly evaluated for profiling recombination events 

based on the coordinate systems of the two parental genome assemblies.  

 

 
Figure 2. The modular workflow design of RecombineX. RecombineX consists of seventeen task-

specific modules, with six modules dedicated for the reference-based mode (colored in yellow) and 

eight modules dedicated for the parent-based mode (colored in blue). As for the three remaining 

modules, two are designed for both reference-based and parent-based modes (colored in green), with 

the last one for simulation analysis (colored in red).    

In the reference-based mode, the sequencing reads of the two crossing parents are mapped to the 

reference genome to identify single nucleotide variants (SNVs) between the two parental backgrounds 

(Figure S2). The gamete reads are subsequently mapped to the reference genome, upon which 

RecombineX computes the best supported genotype at each marker position for each gamete (Figure 

S3). A genotype purity filter is further employed at this step to cull out markers with clear 

admixed genotype signals. Such admixed genotype signals normally come from ambiguous 

mapping and therefore it is reasonable to filter them out in normal tetrad analysis. However, 

admixed genotype signals can also reveal post-meiotic segregation (PMS) of unrepaired 
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heteroduplex DNA (mismatches) formed during recombination which frequency massively 

increases after inactivation of the mismatch repair machinery. PMS is important for 

dissecting the detailed molecular mechanisms of recombination. PMS is directly detectable in 

filamentous fungi that naturally form octads or after micromanipulation of yeast tetrads 

(Martini et al. 2011; Yeadon et al. 2016; Marsolier-Kergoat et al. 2018). To allow PMS 

identification, we added an option that enables RecombineX to report all marker sites with 

admixed genotype signals. Also, when needed, RecombineX can infer marker-specific missing 

genotypes by assuming a tetrad-wide 2:2 segregation ratio between the two parental backgrounds, 

which could come handy to recover genotypes that are otherwise inaccessible. By jointly analyzing 

genotype segregation and switching patterns within the same tetrad across different marker positions, 

RecombineX further identifies and classifies recombination events into different categories. In general, 

profiled recombination events are expected to fall in four major categories: CO without associated GC 

(referred as Type 1 CO thereafter), NCO (referred as Type 1 GC thereafter), CO with associated GC 

(referred as Type 2 CO thereafter), and the Type 2 CO associated GC (referred as Type 2 GC 

thereafter), although more complex cases could be encountered occasionally (Figure S4 and S5). It is 

worth pointing out that a CO event always associates with a GC tract and therefore Type 1 and Type 2 

CO events are biologically equivalent. It is due to lacking available markers that makes the CO-

associated GC tracts undetectable in practice. For all profiled recombination events, RecombineX 

generates detailed reports on their genomic coordinates, marker supports, genotype segregation 

patterns, and the associated linkage blocks for downstream analysis. 

 
In addition to the reference-based tetrad analysis described above, RecombineX also supports 

performing tetrad analysis directly based on the genome assemblies of the two crossing 

parents, which could be especially valuable for analyzing recombination events in their native 

parental genome contexts. In this parent-based mode, RecombineX builds the whole genome 

alignment of the two parental genome assemblies and identifies parental markers accordingly 

(Figure S2). When available, sequencing reads of the two parents can be further provided to 

derive consensus markers by further leveraging cross-parent read mapping results (Figure S2). 

Upon the obtaining of parental markers, the downstream analyses such as gametes reads 

mapping, gametes genotyping, and tetrad-based recombination profiling are performed based 

on both parental genome coordinate systems (Figure S3), with the corresponding results also 

reported in two mirrored copies. In this way, users can easily check for association between 

identified recombination events and various parental genome features (e.g., gene densities, 

repetitive sequence abundance, GC% contents, parental divergence, DSB hotspots, etc.) 

based on the same genome coordinate system.  
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Simulation-based validation for RecombineX’s parental marker identification modules 

Accurate and robust parental markers identification is a prerequisite for high-quality tetrad analysis. 

Several studies demonstrated that downstream recombination analysis can be severely compromised 

when relying on ambiguous markers, which are often derived from genomic regions associated with 

repetitive sequences or copy number variants (CNVs) (Wijnker et al. 2013; Qi et al. 2014). Therefore, 

with RecombineX, we designed and implemented multiple filters to effectively culling out markers 

falling in repetitive and CNV regions (Figure S2; See Materials and Methods for details). As a 

simulation-based test, we let RecombineX to identify markers segregated between two hypothetical 

parental genomes: the S. cerevisiae reference genome and a simulated S. cerevisiae genome with 

60,000 SNVs, 6,000 INDELs, and 6 CNVs, mimicking a typical 0.5% genomic divergence between 

two S. cerevisiae natural isolates (Peter et al. 2018). Among the 60,000 simulated SNV sites, 8,087 

sites fell in either repetitive or CNV regions, leaving the remaining 51,913 sites as valid targets for 

marker identification (Figure 3 and Table S1). Based on these two hypothetical parental genomes, we 

evaluated RecombineX’s marker identification performance in both reference-based and parent-based 

modes. In reference-based mode, RecombineX solely relies on the input parent reads to identify 

markers. While the power of marker identification positively correlates with parent sequencing depth, 

it quickly enters diminishing return with sequencing depth >30X (Figure 3 and Table S1). Therefore, 

as a rule of thumb, we generally recommend using >= 30X parental reads for marker identification 

with RecombineX. Based on our simulation, RecombineX is able to recover >90% valid marker 

targets (47,268 out of 51,913) with 30X parent reads. A close examination of these markers shows no 

false positive calling was made and ambiguous SNV sites from repeat-/CNV-associated regions have 

been effectively filtered out, proving the high reliability of RecombineX’s marker identification. The 

only CNV-associated SNV site that escaped from RecombineX’s CNV-filter locates near the 

boundary of a simulated CNV with no detectable per-site mapping depth deviation from the 

chromosome-wide median. In parent-based mode, RecombineX identified 49,669 markers based on 

parental genome alignment alone. In comparison, less consensus markers were identified due to the 

additional filter applied based on reciprocal parent read mapping.  The final consensus marker count 

scales with the sequencing depth of parent reads, while the improvement become marginal with 

sequencing depth > 50X. Although RecombineX has implemented a unique-alignment-based CNV 

filter for genome-alignment-based marker identification, we found 38 out of 8,087 CNV-associated 

markers escaped from this filter.  Nearly all of them (37 out of 38) were further filtered out when 

calling consensus markers, during which an additional mapping-depth-based CNV filter is applied. 

Therefore, the consensus marker identification protocol appears more robust against ambiguous 

markers from CNV regions. The only marker that escaped from both CNV filters is the same one as 

mentioned above, which shows very weak CNV signal in both reference-based and parent-based 
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modes. According to this result, we recommend opting for consensus marker identification strategy 

when running RecombineX in parent-based mode, if parent reads are available. 

 

 
 
Figure 3. Performance of polymorphic marker identification with RecombineX. A total of 60,000 

SNV markers (denoted as “all”) together with 6,000 Indels and 6 CNVs were simulated for two 

hypothetical parent genomes, among which 51,913 of them are considered as valid marker discovery 

targets as they are not associated with repetitive regions nor CNV regions. We gauged RecombineX’s 

performance for marker identification based on these two hypothetical parent genomes and their reads 

(simulated sequencing coverage: 10X, 20X, 30X, …, 100X) using different marker identification 

protocols implemented in RecombineX: reference-based mapping (green), whole genome alignment 

(blue), and consensus between whole genome alignment and parent-based read mapping (red). For 

each case, the total marker counts as well as the median and mean inter-marker distance were plotted 

respectively.  

 
Simulation-based validation for RecombineX’s gamete genotyping module 

To assess RecombineX’s gamete genotyping accuracy, we used RecombineX’s built-in simulation 

module to simulate one recombinant tetrad derived from two hypothetical crossing parents: P1 and P2. 

The inputs of this simulation module include a reference or parent genome to set up the coordinate 

system and a list of parental markers projected to the same coordinate system. Here we used the S. 

cerevisiae reference genome as the coordinate system and the above identified 49,153 reference-based 

markers based on 100X parent reads (Figure 3 and Table S1). For the simulated recombinant tetrads, 

we introduced CO and NCO events based on the count and size parameters estimated from real yeast 
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tetrads (Mancera et al. 2008) (Figure 4A). For the four resulting recombinant gametes, sequencing 

reads of varied depths (1X, 2X, 4X, 8X, 16X, 32X, 64X) were further simulated. With this simulated 

dataset, we evaluated RecombineX’s genotyping performance for mimicked scenarios of both fully 

and partially viable tetrads. For the scenario of fully viable tetrad, the simulated reads of all four 

gametes were used for genotyping (Figure 4B). For the scenario of partially viable tetrad, the 

simulated reads of only 3 gametes were used, leaving the remaining one to be inferred by 

RecombineX (Figure 4C and 4D). RecombineX infers missing genotypes by assuming a tetrad-wide 

2:2 segregation ratio between the two parental genotypes across the whole genome. While such ratio 

can deviate from 2:2 in genomic regions with GC tracts, the cumulative size of all GC tracts is 

typically orders of magnitude smaller in comparison to the genome size, making this assumption 

holds in general. Finally, it is worth emphasizing that although a pre-specified gamete-tetrad 

correspondence enables extra features such as missing genotyping inference, RecombineX’s raw 

genotyping function do not require any tetrad information as the priori when performing raw 

genotyping. Therefore, users can also use RecombineX to perform plain genotyping analysis for 

random gametes derived from known parents. Moreover, additional tools are available for 

reconstructing the gamete-tetrad correspondence map from random gametes (Sakhanenko et al. 2019), 

which could be used in combination with RecombineX when processing sequencing data from 

randomly collected gametes. 

 

For the scenario of fully viable tetrad, while the power of genotyping positively correlates with tetrad 

sequencing depth, a high accuracy is consistently maintained even with very limited tetrad sequencing 

data available. For example, the upper bound of RecombineX’s raw and inferred genotyping error 

rates are estimated as 7 × 10-4 and 2.64 × 10-3 respectively for 1X-sequenced tetrad (Figure 4E and 

Table S2). Aside from sequencing depth, Qnet cutoff is another important parameter for 

RecombineX’s genotyping analysis, which specifies the cumulative genotyping-supporting score 

leveraged over all mapped reads at a given marker site. While a higher Qnet cutoff helps to filter out 

ambiguous genotyping signals, setting it too high will compromise RecombineX’s genotyping power 

for shallowly sequenced tetrads, leaving the genotypes of many markers as undetermined (Figure 4E 

and Table S2). Therefore, in general, lenient Qnet cutoffs such as 10 or 20 are recommended for tetrad 

with very shallow sequencing depth (e.g., 1X). Our simulation shows that RecombineX is able to 

deliver highly accurate genotyping results even with such lenient Qnet cutoffs. 
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Figure 4. Performance of raw and inferred tetrad genotyping with RecombineX. (A) The ground truth 

genotypes of the simulated tetrad (a, b, c, d). (B) RecombineX’s raw genotyping result for the 

simulated tetrad based on 4X sequencing data with a Qnet cutoff of 30. (C) The raw genotyping result 

for the simulated tetrad based on 4X sequencing data of only 3 gametes (b, c, d) with a Qnet cutoff of 

30. (D) The inferred genotyping result for the simulated tetrad based on 4X sequencing data of only 3 

gametes (b, c, d) with a Qnet cutoff of 30. (E) The calculated percentage of corrected, incorrected, and 

missing genotypes based on RecombineX’s tetrad genotyping results in comparison to the simulated 

ground truth when the sequencing data of all four gametes (a, b, c, d) are provided. (F) The calculated 
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percentage of corrected, incorrected, and missing genotypes based on RecombineX’s genotyping 

results in comparison to the simulated ground truth when the sequencing data of only three gametes (b, 

c, d) are provided. For E and F, the tested sequencing depths are 1X, 2X, 4X, 8X, 16X, 32X and 64X 

and the tested Qnet cutoffs are 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.  

 
For the scenario of partially viable tetrad, the error rate of our inferred tetrad genotypes ranges from 6 

× 10-5 to 5.5 × 10-3 across different sequencing depth and Qnet cutoff combinations (Figure 4F and 

Table S3). As demonstrated in our simulation, RecombineX can almost completely recover the true 

genotypes of the mimicked inviable gamete with 4X sequencing reads from the other three viable 

gametes (Figure 4D and 4F), which highlights the power of such missing genotype inference. In terms 

of application value, the inferred missing genotypes from the inviable gametes can be potentially used 

to map the genetic basis of gamete lethality. Moreover, such missing genotype inference enables a 

more cost-effective design of trait-mapping experiments by making better use of shallowly sequenced 

samples. To better support these potential applications, RecombineX reports both raw and inferred 

genotyping results with rich graphical and textual outputs, making them highly amiable for further 

integration with genetic mapping tools such as R-qtl (Broman et al. 2003).  

 
Simulation-based validation for RecombineX’s recombination profiling module 

High quality genotyping performance of RecombineX lays the foundation for accurate recombination 

event identification and classification. Here we assessed RecombineX’s recombination profiling 

performance with the genotyping results obtained with different gamete sequencing depths and Qnet 

cutoffs (Figure 5 and Table S4). Our simulated tetrad has been introduced with 90 COs (each with an 

associated GC tract) and 65 NCOs, which translates into 90 Type 2 COs, 65 Type 1 GCs, and 90 Type 

2 GCs (Figure S4 and S5). It is worth mentioning that the power and accuracy of all genotype-based 

recombination analyses are ultimately linked to the density and distribution of available markers, 

which needs to be taken into consideration when interpreting the results of such analyses. For 

example, among our simulated recombination events, one CO event (which locates very close to the 

chromosome end), and five Type 2 GC events are inherently nondetectable due to the lack of 

available markers in the corresponding genomic regions. We excluded these undetectable events from 

our downstream analyses, which left a total of 89 COs, 65 Type 1 GCs, and 85 Type 2 GCs to be 

identified by RecombineX. 
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Figure 5. Performance of recombination profiling with RecombineX based on simulated data. The 

RecombineX-identified CO and GC events were compared with the simulated ground truth. (A) The 

percentage of corrected, incorrected, and missed total CO and GC events identified by RecombineX 

given different gamete sequencing coverage and Qnet cutoffs. (B) The percentage of corrected, 

incorrected, and missed Type 1 GC (NCO) and Type 2 GC (CO-associated with GC) events identified 

by RecombineX given different gamete sequencing coverage and Qnet cutoffs. Tested sequencing 

depth: 1X, 2X, 4X, 8X, 16X, 32X and 64X. Tested Qnet cutoff: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. 
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Echoing with what we found for genotyping, the performance of recombination profiling positively 

correlates with tetrad sequencing depth. With moderate sequencing depth (e.g., depth >= 8X), 

RecombineX can recover all simulated CO and GC events, regardless of the specific Qnet cutoff value 

used for genotyping. For more shallowly sequenced tetrads, the performance of RecombineX’s 

recombination profiling began to be compromised due to the reduction of available markers with 

strong-enough genotype signals. This is more evident for GC events than for CO events due to the 

much smaller genomic footprint of GC tracts. Therefore, lenient Qnet cutoffs such as 10 or 20 are 

recommended for recombination profiling on shallowly sequenced tetrads, which helps to maintain a 

relatively high sensitivity of event calling without severe compromise in specificity.  

 
Applying RecombineX to real tetrad sequencing data 

After systematically characterizing RecombineX’s module-by-module performance with simulated 

data, we further applied it to real budding yeast (Saccharomyces cerevisiae) and green alga 

(Chlamydomonas reinhardtii) tetrads retrieved from previous studies for further demonstration 

(Callender et al. 2016; Liu et al. 2018). For the budding yeast example, the sampled tetrads are 

derived from a cross between S288C and YPS128 strains, for which the native genome assemblies of 

both parents are available (Yue et al. 2017). Therefore, we performed RecombineX analysis in both 

reference-based and parent-based modes for this case. As for the green alga example, the sampled 

tetrads were derived from a cross between CC408 and CC2936 ecotypes, for which no native parental 

genome assembly is available. Therefore, we only executed RecombineX in the reference-based mode 

here. For both examples, we compared all recombination events automatically profiled by 

RecombineX against the curated recombination event lists reported by the respective original studies.  

 

For the yeast example, 50,199 reference-based markers (mean intermarker distance = 234.35 bp) and 

48,558 parent-based consensus markers (mean intermarker distance = 240.64 bp) were identified 

respectively (Table S5). Our genotyping and recombination profiling analysis based on these markers 

shows a good concordance between RecombineX and the original study, with RecombineX that 

completely recovered almost all previously reported CO and GC events (Figure 6A and Table S6). 

There are a few events that were only called by RecombineX, which were further verified in our 

manual IGV inspection. As for those only called by the original study, we found most of them were 

filtered out by RecombineX at either marker identification or genotyping stage due to CNV-

association or ambiguous genotypes. For instance, by default, RecombineX requires a minimal 

genotype purity of 90%, meaning at least 90% of the mapped reads should support the same genotype 

signal at the corresponding marker position. By this standard, some of event-defining markers (and 

therefore the corresponding event) from the original study will be disregarded by RecombineX 

(Figure S6). While we found such a strong genotype purity filter is generally beneficial for preventing 
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the inclusion of suspicious markers potentially derived from unreliable read mapping, users can easily 

adjust its stringency cutoff with RecombineX when needed.  

 
For the green alga example, we identified 412,210 reference-based markers with an average 

intermarker distance of 260.28 bp (Table S5). Comparing to the yeast example, we noticed a lower 

level of concordance of called recombination events between RecombineX and the original study for 

the green alga example, especially for GC events (Figure 6B and Table S7). While RecombineX 

successfully recovered all CO events reported by the original study, it also identified a substantial 

number of CO events that were not reported before. By manually examining the local read mapping 

profiles of these events in IGV (Robinson et al. 2011), we verified these RecombineX-only CO events 

as legitimate CO events (Figure S7). We did notice that some of these events span over assembly gaps 

and potentially were filtered out in the original study for this reason. As for discrepant GC calls, our 

IGV inspection suggests that most of them could be explained by different stringency criteria 

employed by the two studies during marker identification and gamete genotyping, especially in 

complex genomic regions (Figure S7). Also, It is worth noting that the size of GC tracts in green alga 

are substantially smaller (median size = 73 bp and 364 bp for Type 1 and Type 2 GC respectively) 

when compared with yeast (median size = 1681 bp and 1841 bp for Type 1 and Type 2 GC 

respectively)(Liu et al. 2018). This means that the inclusion or exclusion of a single marker makes a 

big difference in GC event calling for green alga.  

 

 
Figure 6. Applying RecombineX to real yeast and green alga tetrads for recombination profiling. 

Previously sequenced tetrads from yeast (AND702-8, AND702-9, AND702-10, AND702-11, 
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AND702-12) and green alga (I3, I7, I8, I9, I10) were used for re-processing with RecombineX, the 

results of which were further compared with the original studies (Callender et al. for the yeast 

example and Liu et al. for the green alga example). (A) Matched and unmatched total CO and GC 

event numbers identified by RecombineX (in reference-based and parent-based modes respectively) 

and the original studies. (B) Matched and unmatched Type 1 GC (NCO) and Type 2 GC (CO-

associated GC) events identified by RecombineX and the original studies. 

 
Last but not least, meiotic structural rearrangement could occur due to the numerous DSBs triggered 

during meiosis (Murakami and Keeney 2008; Turner et al. 2008), which could make significant 

impacts on the genotypes of the affected gametes. RecombineX’s bonus feature for CNV-profiling 

comes especially helpful in discovering such gamete-specific structural rearrangements. When 

analyzing the five yeast S288C-SK1 tetrads using RecombineX, we found two interesting cases of 

gamete-specific structural rearrangement that have not been noticed before (Figure 7). One such 

structural rearrangement is a large segmental duplication on chromosome IV (chrIV) of the gamete 

AND1702-8:a (i.e. the gamete a of tetrad AND1702-8) (Figure 7A). By design, RecombineX 

automatically flagged CNV regions like this and set the corresponding genotypes to “NA” as a 

conservative measure. To reveal the exact genomic arrangement of this duplication, we retrieved the 

monosporic isolate of this gamete and performed long-read-based genome sequencing and assembly. 

A joined comparison between the resulting de novo AND1702-8:a assembly and the S288C and SK1 

genomes unraveled the intriguing nature of this gamete-specific rearrangement: a tandem duplication 

with the duplicated copies inherited from both parental backgrounds (Figure 7B-7C). The breakpoints 

of this tandem duplication are associated with Spo11 DSB hotspots and Ty-related repetitive 

sequences annotated along the S288C and SK1 genomes, which echoes similar observations made in 

mouse recently (Lukaszewicz et al. 2021). Comparatively, the rearrangement that RecombineX 

identified in the gamete AND1702-12:a (i.e. the gamete a of tetrad AND1702-12) appears more 

complex, in which both chromosome VI (chrVI) and chromosome IX (chrIX) are involved (Figure 

7D). Here we also applied long-read sequencing and assembly to illuminate this complex 

rearrangement, which suggests both tandem and dispersed duplications have contributed to this 

complex rearrangement (Figure 7E). Again, parental genomic features such as Spo11 DSB hotspots 

and Ty-related repetitive sequences are associated with the breakpoints, hinting their roles in 

triggering meiotic DSBs and driving gamete genome rearrangements (Figure 7E). These two cases of 

gamete-specific rearrangements demonstrated the power of resolving and understanding of tetrad 

formation and meiotic recombination within the native contexts of their parental genomes. As high-

quality genome sequencing and assembly become increasingly affordable, future tetrad analyses are 

highly likely to shift away from the current reference-based convention and to embrace the parent-

based new paradigm instead. In this sense, RecombineX with its built-in support for conducting 

analysis in parental genome space is expected to greatly facilitate such parent-based tetrad analysis.  
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Figure 7. RecombineX enables the discovery of complex structural rearrangements in gametes. (A) A 

45-kb CNV identified by RecombineX in gamete AND1702-8:a. (B) Genome sequence comparison 

between AND1702-8:a and its crossing parents (S288C and SK1), with differences in sequence 

similarity depicted by rainbow colors. (C) The gene synteny correspondence between AND1702-8:a 

and its crossing parents (S288C in red and SK1 in blue), with the red and blue shades representing 

different degrees of sequence similarity. (D) A more complex multi-chromosome-involved CNV 

identified by RecombineX in gamete AND1702-12:a. (E) Genome sequence comparison between the 

AND1702-12:a and its crossing parents (S288C and SK1), with differences in sequence similarity 

depicted by rainbow colors. 

 

In summary, we developed RecombineX as a generalized computational framework that automates 

the full workflow of marker identification, gamete genotyping, and tetrad-based recombination 

profiling in a high-throughput fashion, capable of processing hundreds of tetrads in a single batch. 

Aside from conventional reference-based analysis, RecombineX can also perform analysis based on 

parental genome assemblies, which enables analyzing meiotic recombination landscapes in their 

native genomic contexts. Additional features such as copy number variation profiling and missing 

genotype inference further extends its usage for various downstream analyses. Finally, RecombineX 

also ships with a dedicate module for simulating the genomes and reads of recombinant tetrads, which 
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enables fine-tuned simulation-based hypothesis testing. This simulation module revealed the power 

and accuracy of RecombineX even when analyzing tetrads with very low sequencing depths (e.g., 1-

2X). Tetrad sequencing data from the budding yeast Saccharomyces cerevisiae and green alga 

Chlamydomonas reinhardtii were further used to demonstrate the accuracy and robustness of 

RecombineX in tetrad analysis for organisms with both small and large genomes. As demonstrated in 

these examples, RecombineX unifies different functional modules under an integrated framework and 

provides a generalized one-stop solution for tetrad analysis. At the frontend, RecombineX shines in its 

modular design and parameter-rich customizability, making it highly amiable to different model 

systems and use scenarios. Behind the scenes, RecombineX implements thoughtful and rigorous 

algorithms, delivering trustable performance against biological and technical noises. The combination 

of these merits and the extended capacities of parent-based mode support, CNV profiling, missing 

genotype inference, batch processing, and tetrad simulation, together makes RecombineX a 

comprehensive platform for high-performance tetrad analysis. Especially considering that meiotic 

gamete genome sequencing from different natural and mutant backgrounds can now be acquired, we 

expect RecombineX to become a popular tool that empowers future tetrad analysis across different 

genetic backgrounds and species. 

 
 
Materials and Methods 
 
Software implementation 
 
Preprocessing for reference and parental genomes 

For both reference based and parent-based modes, RecombineX preprocesses the input genome(s) to 

generate necessary intermediate files for downstream analysis. These preprocessing steps include: 

cleaning up and relabeling the input genome file (by pre-shipped Perl scripts), indexing the input 

genome files by samtools (Li et al. 2009) (version: 1.9; options: faidx), profiling repetitive sequences 

by windowmasker (Morgulis et al. 2006) (version: 1.0.0; options: -checkdup true -mk_counts), 

profiling GC content by bedtools (Quinlan and Hall 2010) (version:2.27.1 ; options: makewindows -w 

250 ), profiling mappability by gemtools (Marco-Sola et al. 2012) (version: 1.7.1; options: -m 0.02 -e 

0.02).  

 
Reference-based parental marker identification 

The parental Illumina reads are processed with trimmomatic (Bolger et al. 2014) (version: 0.38; 

options: PE -phred 33 ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10  SLIDINGWINDOW:5:20 

MINLEN:36) to trim off adapter contamination and low quality bases. The trimmed reads are mapped 

to the preprocessed reference genome with bwa (Li and Durbin 2009) (version: 0.7.17; option: mem). 

The resulting read mapping bam file is further filtered with samtools (Li et al. 2009) (options: -q 30 -F 
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3340 -f 2) to only retain uniquely aligned and properly paired reads. Based on the filtered bam file, 

Picard Tools (https://broadinstitute.github.io/picard/) (version: 2.19.0) is used for sorting, mate 

information fixing, PCR duplicates removal, and indexing. Afterwards, GATK3 (McKenna et al. 

2010) (version: 3.6-6) is used for performing local read mapping around Indels for better accuracy. 

Based on the GATK3-realigned bam file, samtools is used again for mpileup file production (options: 

mpileup -C 0 -q 30), mapping depth calculation (options: depth -aa), and mapping summary statistics 

calculation (option: flagstat). After read mapping, FREEC (Boeva et al. 2011) (version: 11.4) is used 

to perform sliding-window-based CNV profiling accordingly. Typically, FREEC requires a long list 

of customized parameters tuned for the input genomes. In RecombineX, the suitable parameters are 

automatically estimated based on the preprocessed genome file. Freebayes (Garrison and Marth 2012) 

(version: 1.3.4) is used for SNV and Indel calling. The called variants are further processed by vt (Tan 

et al. 2015) (version: 0.57721) and vcflib (Garrison et al. 2021) (version: 1.0.1) for variant 

decomposition (vt option: decompose_blocksub -a), normalization, annotation, and filtering (vcflib 

option: vcffilter -f QUAL > 30 & QUAL / AO > 1 & SAF > 0 & SAR > 0 & RPR > 1 & RPL > 1). In 

addition to typical variant calling filtering (quality score >= 30), SNVs that fall in repetitive regions, 

CNV regions, or immediate Indel-flanking regions (10 bp) are further filtered out. As an additional 

CNV filtering, SNV sites with per-site mapping depths strongly deviating from the chromosome-wide 

median (e.g., > 1.5X chromosome-wide median or < 0.5 chromosome-wide median) are filtered out 

from the candidate marker list. The filtered SNVs derived from both parents are compared to each 

other to generate a candidate reference-based marker set comprising SNVs segregated between the 

two parents. Such candidate marker set is further leveraged with the mpileup file generated during 

read mapping to control for potential false negative and false positive from SNV calling. Finally, 

RecombineX pre-shipped with several plotting scripts in R to generate graphic reports on CNV and 

marker distribution along the reference genome coordinates.  

 

Parent-based parental marker identification 

Parent-based parental marker identification can be performed in two strategies: the genome-

alignment-based marker identification and consensus-based marker identification. For the genome-

alignment-based marker identification, RecombineX employs mummer3 (Kurtz et al. 2004) (version: 

3.23) for genome alignment building (options: nucmer -g 90 -l 20 -c 65), filtering (options: delta-filter 

-1), and SNV extraction (options: show-snps -Clr). The extracted SNVs are further processed by vt 

(Tan et al. 2015) and vcflib (Garrison et al. 2021) for decomposition, normalization, and annotation. 

Afterwards these marker candidates are filtered based on the repetitive profiling results generated at 

the parent-genome preprocessing step to remove repetitive-region-associated markers. Also, as the 

specific choice of query and target genome assemblies at the genome alignment step potentially could 

lead to directional bias, a reciprocal filter is further applied to only retain the reciprocal SNV calls 

recovered in both comparison directions (i.e., A to B and B to A). The corresponding filtered SNV set 
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is defined as genome alignment based parental marker set. As for the consensus-based marker 

identification strategy, there are several extra steps to be taken. First, cross-parent read mapping is 

performed by mapping the Illumina reads of one parent to the genome assembly of the other parent. 

Accordingly, mapping based SNV, Indel, and CNV calling are carried out by freebayes (Garrison and 

Marth 2012) and FREEC (Boeva et al. 2011). Subsequently, the mapping based SNVs are further 

filtered by repetitive sequences and CNVs identified along the parental genomes. The detailed read 

mapping, variant calling, and variant filtering protocols are the same as those mentioned above, 

except for that both parental genome assemblies rather than a single reference genome is used in this 

case. Afterwards, the resulting mapping-based SNV calling sets are intersected with the genome-

alignment-based SNV marker sets to derive a consensus marker set, upon which a final reciprocal 

filter is further applied to make sure the final consensus set is strictly symmetrical relative to the two 

crossing parents. For both genome-alignment-based and consensus-based marker set, RecombineX 

will also plot their respective marker distributions along the genome coordinates of both parental 

genomes. 

 

Reference-based gamete read mapping and genotyping 

RecombineX uses a strictly defined master sample table to document the metadata for each sequenced 

gamete sample, its Illumina reads, and its corresponding tetrad. According to this file, RecombineX 

will automatically perform reference-based read mapping and CNV profiling for each defined gamete 

sample based on the same protocols adopted for parental marker identification. As for genotyping, 

RecombineX takes the inputs from the mpileup file generated by gamete read mapping and the 

reference-based parental marker list generated by marker identification to evaluate marker-specific 

reads support from each gamete across all marker sites. At each marker site, two quality control 

parameters are calculated. A Qnet score is calculated as the cumulative sequencing score difference 

between the major allele (i.e., the best supported base) and all minor alleles (if any). In the meantime, 

a base purity score is calculated as the proportion of reads supporting the major allele at the 

corresponding marker site. A genotype is tentatively assigned only when both Qnet and base purity 

meet their pre-defined cutoffs (50 for Qnet and 0.9 for base purity by default). The tentatively assigned 

genotypes are further filtered based on the gamete specific CNV profiles generated by FREEC (Boeva 

et al. 2011), during which the genotypes of markers falling in gamete specific CNV regions will be set 

as “NA”. In addition to this raw genotyping result, RecombineX will generate another copy of 

genotyping result (labeled by the “inferred” tag in its file name) by further inferring the possible 

missing genotypes based on a general 2:2 parental allele segregation ratio across the tetrad. For both 

raw and inferred genotyping results, RecombineX will make both tetrad-based and batch-based 

genotyping plots with pre-shipped R scripts to visualize the composition and segregation of two 

parental genetic backgrounds across the genome. 
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Parent-based gamete read mapping and genotyping 

The protocol used by RecombineX for parent-based gamete read mapping and genotyping is largely 

the same as that used for reference-based gamete read mapping and genotyping, except for now the 

analyses are separately performed based on both parental genome assemblies. Therefore, after reads 

mapping, two genotyping results will be obtained separately, each based on the genome space of a 

single parent. These two genotyping calls will be cross validated with each other. Those markers with 

conflicted genotyping calls will be ignored for downstream analysis (i.e., their genotypes will be 

reassigned to “NA”). Like reference-based analysis, features such as gamete CNV profiling and 

missing genotype inference are fully supported for parent-based analysis. 

 

Reference- and parent-based recombination profiling 

The recombination profiling procedures in the reference-based and parent-based modes are essentially 

the same, except that the parent-based mode will perform the analysis twice, each based on the 

genome space of a single parent. RecombineX implemented a modified version of the original 

recombination event profiling algorithms used by ReCombine (Anderson et al. 2011) to cover all 

foreseeable scenarios (Figure S4 and S5). Briefly, RecombineX scans through the tetrad-wide 

genotypes at every marker site to classify them into different categories based on the segregation ratio 

of the parental alleles (e.g., 2:2 or 3:1 or 1:3 or 4:0 or 0:4). Consecutive markers with identical 

segregation ratios are grouped together, based on which preliminary linkage blocks are identified. By 

ignoring the remaining markers with missing genotypes, the calculated preliminary linkage blocks are 

further extended to form final linkage blocks. The outer bounds of each final linkage block are 

defined by the midpoint of the outermost markers of this linkage block and their immediate flanking 

markers. Users can restrict such linkage block identification operation by modifying the minimal 

number of supporting markers (default: 1 marker) and minimal block size (default: 1 bp) parameters. 

According to the identified final linkage blocks, RecombineX systematically examines the genotype 

switch patterns and the number of gametes involved in genotype switches between each pair of 

adjacent linkage blocks to classify the local recombination events. Those recombination events that 

are in close adjacency (controlled by the “merging range” parameter) can be further merged when 

needed. Upon the completion of the calculation, detailed tabular reports on the marker-wide parental 

allele segregation ratio, preliminary and final linkage blocks, as well as lists of recombination events 

will be reported. 

 

Recombinant tetrad genome and reads simulation 

RecombineX performs recombinant tetrad genome simulation based on an input genome assembly 

and a list of clearly defined parental markers. Both reference assembly and native parental genome 

assembly can be used as the input here, as long as the accompanying parental marker list is based on 

the same genome coordinates. With these inputs, RecombineX first simulate the two parental 
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genomes by projecting parental markers to the input genome assembly. Based on the simulated 

parental genomes, CO and GC events are further simulated based on various user-specified 

parameters, which include the number of CO and GC events, the ratio of CO and GC events, the mean 

and standard deviation of GC tracts, etc. These recombination events are randomly placed into the 

four resulting gametes. For both simulated parental and gamete genomes, paired-end Illumina reads 

are further simulated by ART (Huang et al. 2012) with user-specified sequencing depth.  

 

Simulation based analysis 

Genome and reads simulation for parental marker identification 

To evaluate the performance of parental marker identification, a pair of hypothetical crossing parents, 

P1 and P2, were simulated for this study. The genome of P1 is an exact copy of the budding yeast S. 

cerevisiae reference genome (version: R64-2-1_20150113) retrieved from Saccharomyces Genome 

Database (SGD) with the mitochondrial genome excluded. Based on the same reference genome, the 

genome of P2 was further generated by simuG (Yue and Liti 2019) (GitHub commit version: 212ea1f) 

in a two-pass manner to randomly introduce 60,000 SNVs and 6,000 Indels (options: -refseq 

SGDref.genome.fa -snp_count 60000 -titv_ratio 2.0 -indel_count 6000  -seed 20190518 -prefix 

yeast_60kSNP_6kINDEL) as well as six CNVs (options: -refseq 

yeast_60kSNP_6kINDEL.simseq.genome.fa -cnv_count 6 -cnv_gain_loss_ratio 1 -

duplication_tandem_dispersed_ratio 1 -cnv_max_copy_number 4 -centromere_gff 

SGDref.centromere.gff). The centromere annotation of the S. cerevisiae reference genome (distributed 

with the reference genome) was used for the second pass to prevent the simulated CNVs from 

surpassing centromeres.   

 

For the simulated genome of P1 and P2, 150-bp paired-end Illumina reads were further simulated by 

ART (Huang et al. 2012) (version: MountRainier-2016-06-05; options: “-p -l 150 --qprof1 

HiSeq2500L150 –qprof2 HiSeq2500L150 -f <depth> -m 500 -s 10 -na -rs 20210210). Here we 

simulated a wide range of sequencing depths (10X, 20X, …, 100X) for exploring the influence of 

sequencing depth on parental marker identification. The simulated parental genome and reads for P1 

and P2 were fed into RecombineX for parental marker identification. The identified markers 

following both reference-based and parent-based protocols were compared with the initially simulated 

SNVs between P1 and P2.  

 

Recombinant tetrad simulation for gamete genotyping and recombination profiling 

The aforementioned P1 genome and the consensus markers that RecombineX identified based on 

100X parental reads were used as the inputs for tetrad genome simulation. A total of 90 COs and 65 

GCs were simulated with their size distribution parameters determined based on real yeast tetrads: 

mean Type 1 GC size = 2250 bp , standard deviation of Type 1 GC size = 2200, mean Type 2 GC size 
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= 2500 bp, standard deviation of Type 2 GC size = 2000 bp, min GC size = 100 bp, max GC size = 

5000 bp (Mancera et al. 2008). Random seed was set to 20210210 for this simulation. The introduced 

recombination events and the resulting genotypes were used as ground truth sets for downstream 

comparison. For each simulated gamete genome, paired-end Illumina reads were further generated by 

ART with varied depths (1X, 2X, 4X, 8X, 16X, 32X, 64X). The simulated gamete reads were 

processed with RecombineX in both reference-based and parent-based modes. The generated gamete 

genotyping and recombination profiling results were compared with the ground truth generated during 

our simulation. The impacts of different Qnet cutoffs (e.g., 10, 20, 30, …, 100) were thoroughly 

explored during this process.  

 

Real tetrad-based analyses 
Two real tetrad sequencing datasets retrieved from previous studies (Callender et al. 2016; Liu et al. 

2018) were used to run the full workflow of RecombineX. The first dataset includes five tetrads 

derived from the budding yeast S. cerevisiae cross S288C x SK1, for which both reference-based and 

parent-based analyses were performed. The SGD yeast reference genome (version: R64-2-

1_20150113) was used for the reference-based analysis, while our previously generated long-read-

based genome assemblies for S288C and SK1 (Yue et al. 2017) were used for the parent-based 

analysis. The second dataset includes five tetrads derived from the green alga C. reinhardtii cross: 

CC408 x CC2936 (Table S8 and S9), for which only reference-based analysis was performed. For this 

analysis, we retrieved the alga C. reinhardtii (v5.5) reference genome from Ensembl Plants 

(https://plants.ensembl.org). For both yeast and green alga datasets, a Qnet cutoff of 50 was used and 

no adjacent recombination event merging was applied. The RecombineX profiled recombination 

events were compared with the events reported in the original studies, which were retrieved via the 

following links respectively: 

yeast tetrads: http://dx.doi.org/10.5061/dryad.g6s2k 

green alga tetrads: https://figshare.com/s/a95156f0ed5272b9109e 

 

In our comparison, two events were considered “match” only if they completely agreed with each 

other in event types, genomic locations, and involved gametes. For events that were identified by 

RecombineX or the original studies alone, we further examined the gamete read alignment in the IGV 

browser (Robinson et al. 2011) (version: 2.8.13)  to understand the specific causes of such 

disagreement.   

 

Oxford Nanopore sequencing of yeast gametes AND1702-8:a and AND1702-12:a 

To take a closer look at the structural rearrangements identified by RecombineX for yeast gamete 

AND1702-8:a and AND1702-12:a, we retrieved the corresponding strains stocked in Dr. Alain 

Nicolas’s lab at Institut Curie (Paris, France). Upon receiving the yeast cells, we grew them in 10 - 15 
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ml YPD (2% peptone, 1% yeast extract, 2% glucose) at 30 ˚C for overnight (220 rpm). A total 

number of cells less than 7 x 109 were used for DNA extraction. High molecular weight (HMW) DNA 

was extracted by QIAGEN® Genomic-tip 100/g according to the “QIAGEN Genomic DNA 

handbook” for Yeast. DNA quantity and length were controlled by the Qubit dsDNA HS Assay. 

Library preparation and ONT sequencing were performed based on the protocol of “1D Native 

barcoding genomic DNA with EXP-NBD104 and SQK-LSK108” obtained from Oxford Nanopore 

Technologies Community. The FLO-MIN106 MinION flow cell was used for sequencing.  

 

Genome assembly, annotation, and comparison for yeast gametes AND1702-8:a and AND1702-

12:a 

The nanopore reads were processed with our previously developed LRSDAY pipeline (Yue and Liti 

2018) (version: 1.6.0) for de novo genome assembly and comprehensive feature annotation. The 

internal protocols employed by LRSDAY are briefly described as follows. The raw nanopore-

sequencing fast5 reads are processed with Guppy (version: 3.2.4) for basecalling and demultiplexing. 

The resulting fastq reads are further trimmed with Porechop (version: 0.2.4; options: --discard_middle) 

and filtered with with Filtlong (version: 0.2.0; options: --min_length 1000 --mean_q_weight 10 --

target_bases 750000000). The filtered reads are assembled with Canu (version: 1.8; options: -s 

genomeSize=12.5m -nanopore-raw). The raw Canu-assembly is further polished with both nanopore 

(sequenced in this study) and Illumina reads (retrieved from the original study). Three successive 

rounds of long-read-based polishing are performed by Racon (Vaser et al. 2017) (version: 1.4.7) and 

Medaka (https://github.com/nanoporetech/medaka) (version: 0.8.1 ; options: -m r941_flip235).  

Another three successive rounds of short-read-based polishing are performed by Pilon (Walker et al. 

2014) (version:1.23; --fix snps,indels). The polished assembly is further processed with Ragout 

(Kolmogorov et al. 2018) (version: 2.2) and circulator (Hunt et al. 2015) (version: 1.5.5; option: 

fixstart --genes_fa  ATP6.cds.fa --min_id 90) for reference-based scaffolding and mitochondrial 

assembly improvement. The resulting final nuclear and mitochondrial genome assemblies are further 

annotated by Maker3 (Holt and Yandell 2011) (version: 3.00.0-beta) and Mfannot 

(https://github.com/BFL-lab/Mfannot) (version: 1.35) respectively, with additional reference-based 

gene orthology identification performed by Proteinortho (Lechner et al. 2011) (version: 5.16b). Other 

important genomic features such as centromere, tRNA, Ty transposable elements, core-X elements, Y’ 

elements were also annotated by dedicated modules implemented in LRSDAY. The fully assembled 

and annotated genomes of the gametes AND1702-8:a and AND1702-12:a obtained in this way were 

further compared with the native genome assembly of their crossing parents (S288C and SK1) by 

Mummer3 (Kurtz et al. 2004), BLAST+ (Camacho et al. 2009) (version: 2.2.31+; options: -blastn) 

and Easyfig (Sullivan et al. 2011) (version: 2.2.3; options: -i 98 -min_length 1000 -filter -f1 T -f2 

1000) regarding both sequence similarity and annotated genomic features. The Spo11 DSB hotspot 

annotation used in such comparison was retrieved from the literature (Pan et al. 2011).  
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Supporting information 
 
Supporting information captions 

Figure S1. Overview of the RecombineX directory system. The pre-shipped top-level 
directories and individual files of RecombineX are denoted with solid lines. Additional 
directories and files to be generated during the installation of RecombineX are denoted with 
dashed lines.  

Figure S2. Overview of the RecombineX parental marker identification algorithms. Two 
marker identification modes are supported: the reference-based mode (colored in yellow) and 
the parent-based mode (colored in orange).  

Figure S3. Overview of the RecombineX gamete genotyping algorithms. Two genotyping 
modes are supported: the reference-based mode (colored in yellow) and the parent-based 
mode (colored in orange).  

Figure S4. Overview of the RecombineX recombination event classification scheme. The 
definition and example of different CO and GC types are shown in panel a and panel b 
respectively. This classification scheme is designed based on the original ReCombine 
recombination event classification scheme (Anderson et al. PLoS One, 2011) with additional 
modifications.  

Figure S5. Overview of the RecombineX recombination event identification algorithm. This 
algorithm is designed based on the original ReCombine algorithm (Anderson et al. PLoS One, 
2011) with additional modifications.  

Figure S6. Manual examination of unmatched recombination events from the yeast S288C-
SK1 tetrads in IGV. The read alignments of parent and gamete reads are visualized in IGV 
with event-defining SNP markers shown in colors.  

Figure S7. Manual examination of unmatched recombination events from the green alga 
CC408- CC2936 tetrads in IGV. The read alignments of parent and gamete reads are 
visualized in IGV with event-defining SNP markers shown in colors.  

Table S7. Summary of parental marker identification for real cross examples with 
RecombineX. 
 
Table S2. Yeast and green alga parental genome sequencing datasets employed in this study. 
 
Table S3. RecombineX’s performance in parental marker identification performance based 
on simulated data. 
 
Table S4. RecombineX’s gamete genotyping performance based on simulated tetrads with all 
four gametes. 
 
Table S5. RecombineX’s gamete genotyping performance based on simulated tetrads with 
only three viable gametes. 
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Table S6. RecombineX’s recombination event profiling performance based on the simulated 
tetrad. 
 
Table S7. Summary of parental marker identification for real cross examples with 
RecombineX. 
 
Table S8. RecombineX’s recombination event profiling performance based on real yeast 
tetrads. 
 
Table S9. RecombineX’s recombination event profiling performance based on real green alga 
tetrads. 

 

Availability of data and materials 

The RecombineX software is freely distributed under MIT license at GitHub 

(https://github.com/yjx1217/RecombineX). The nanopore reads as well as the corresponding genome 

assemblies of the gametes AND1702-8:a and AND1702-12:a have been deposited to the SRA 

database under the accession number of PRJNA698424. In addition, another copy of the genome 

assembly of AND1702-8:a and AND1702-12:a together with the corresponding genome annotations 

have been uploaded to RecombineX’s GitHub depository under the data subfolder 

(https://github.com/yjx1217/RecombineX/tree/master/data).  
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