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Abstract

Social recognition memory encompasses two distinct processes: familiarity - the ability to rapidly distinguish a novel from
familiar individual - and recollection, the recall of detailed episodic memories of prior encounters with familiar individuals (1).
Although it is clear that the hippocampus is important for different forms of episodic memory (2), including spatial memory (3)
and social recognition memory (4–7), whether and how neural activity in this single brain region may be able to encode both
social familiarity and social recollection remains unclear (8–13). We addressed such questions using microendoscopic calcium
imaging from pyramidal neurons in the dorsal CA2 region of the hippocampus (dCA2), an area crucial for social recognition
memory (6, 14, 15) that encodes social and spatial information (16–18), as mice explored novel and familiar conspecifics. Here
we demonstrate that the geometry of dCA2 representations in neural activity space enables social familiarity, social identity,
and spatial information to be readily disentangled. Importantly, highly familiar littermates were encoded in higher-dimensional
neural representations compared to novel individuals. As a result of this coding strategy, dCA2 neural activity was able to both
provide an abstract, low-dimensional representation of social familiarity that could readily distinguish a novel from familiar
individual and encode detailed episodic memories associated with familiar individuals.
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The example of the “butcher on the bus” provides a clas-
sic illustration of the distinction between familiarity and

recollection processes of social recognition memory (1). En-
countering a known individual in a novel context may evoke an
immediate sense of familiarity, which then requires conscious
effort to recollect the details of episodic memories associated
with that individual (19). To explore the neural mechanisms
of familiarity and recollection, we injected a Cre-dependent
virus into dCA2 of Amigo2-Cre mice to express the geneti-
cally encoding calcium indicator GCaMP6f selectively in dCA2
pyramidal neurons. Following lens implantation, we measured
calcium events in a large number of dCA2 pyramidal neurons
in awake, behaving animals (Fig. 1a-c, Suppl Movie 1) as they
interacted with novel mice and familiar littermates.

We first imaged dCA2 activity as a mouse performed a
test of social novelty recognition (Fig. 1d). After habituation
to an oval arena containing two empty wire pencil cups at
its opposite ends (left and right sides), one novel mouse and
one familiar littermate were placed under each cup, and the
subject mouse was allowed to explore the stimulus mice for
five minutes (trial 1). To investigate the relation between
social and spatial responses, we exchanged the positions of
the stimulus mice and allowed the subject mouse to explore
them for an additional 5 min (trial 2). As previously reported,
subject mice showed a robust preference for the novel over
the familiar individual in the initial presentation of the con-
specifics in trial 1 (Fig. 1e-g). Pharmacogenetic silencing of
dCA2 confirmed that dCA2 pyramidal neurons were necessary
for social recognition in this arena (Suppl Fig. 1).

dCA2 encodes both social and spatial features

To determine whether the population activity of dCA2 neu-
rons contained information about social or spatial features
of experiences, we used a linear classifier to decode spatial
and social variables from dCA2 firing activity as the subject
mouse explored the novel individual and familiar littermate
in the two trials (Fig 2b). A linear classifier is simple enough
that it can be readily implemented by an individual neuron,
implying that if the classifier can successfully extract informa-
tion from dCA2 activity then so could, in principle, a single
neuron. This neuron could be within dCA2, recurrently con-
nected to the other dCA2 neurons (20), or it could be a neuron
downstream from dCA2 (such as ventral CA1 (21)). We first
trained the classifier to distinguish mouse interactions with the
novel versus familiar animal by combining firing data around
a given mouse in both trials. Next, we trained the classifier to
distinguish whether the subject mouse was exploring around
the left versus right cup, combining firing data around a given
cup in both trials. To maximize decoding performance, we
trained the classifier on the pseudo-simultaneous population
of dCA2 neurons that we recorded (1096 neurons, n=11 mice).

The linear classifier was able to decode significantly above
chance levels with which of the stimulus mice the subject was
interacting and the spatial position where the interaction oc-
curred (Fig. 2c). Additionally, the classifier could also decode
whether the subject mouse was participating in trial 1 versus
trial 2 (Fig. 2c). However, trial decoding performance was
much lower than the decoding of position or social interactions

(Fig. 2c). This distinction was further evidenced when we
trained the linear classifier on the population of dCA2 neurons
recorded in each individual mouse. The smaller populations
of dCA2 neurons from each subject provided sufficient infor-
mation to decode both social and spatial variables (Fig. 2d),
whereas trial decoding accuracy was not greater than chance
levels (Fig. 2d).

To what extent is the accuracy of dCA2 social decoding
relevant to the behavioral performance of the mouse in distin-
guishing novel and familiar individuals? Although previous
studies have found that dCA2 is crucial for social recognition
memory and that dCA2 neuron firing responds to the pres-
ence of a conspecific (16–18) and contains information about
social novelty (17, 22), it is not known whether the precision
of social encoding in dCA2 is related to an animal’s behav-
ioral ability to discriminate a novel from a familiar individual.
We therefore compared the behavioral performance of each
individual mouse in discriminating a novel from familiar indi-
vidual with the accuracy of dCA2 activity-based decoding of
interaction partner in the first trial. This comparison revealed
a strong correlation between behavioral and neural discrimi-
nation (Fig. 2e), suggesting the behavioral relevance of dCA2
decoding accuracy. In contrast, there was no correlation be-
tween behavioral preference and decoding accuracy when the
subject mouse explored two stimulus mice with similar degrees
of novelty, such as when the cups contained two novel mice
or two familiar littermates (Suppl. Fig. 2b and c, respectively).

Does social and spatial decoding rely on separate sub-
populations of highly selective dCA2 cells that respond mainly
to social or spatial cues? We addressed this question by ex-
amining the weights assigned to each neuron by the linear
classifier during decoding of social or spatial information. Most
dCA2 neurons contributed to the decoding of both social and
spatial information, and the fraction of selective cells that con-
tributed to either social or spatial decoding was comparable to
chance levels (see Suppl. Fig. 3; a cell exhibiting mixed selec-
tivity across the trials can be observed in Suppl. Movie 2&3).
The few highly selective cells did not contain essential social
or spatial information as there was little decrease in decoder
performance when these neurons (ranked by their normalized
difference in social and spatial decoding weights) were omitted
from the input to the classifier (Suppl. Fig. 4). In contrast,
there was a larger decrease in decoding performance when we
omitted neurons with high decoding information content for
both variables (ranked by the sum of their social and spatial
decoding weight; Suppl. Fig. 4). A comparison between the
performance decays upon exclusion of selective or informative
neurons revealed that the decoding performance relied more
on high-information neurons than on high-selectivity neurons
(Suppl. Fig. 4).

Social and spatial features are represented in different
subspaces of the neural activity space

Our results so far indicate that, although individual dCA2
neurons responded to different combinations of social and spa-
tial variables, dCA2 activity contained sufficient information
to decode social and spatial features during exploration of a
novel and familiar animal.
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Fig. 1. Single dCA2 pyramidal neurons show distinct Ca2+ responses during social and spatial exploration. a) Amigo2-Cre mice were injected in dCA2 with Cre-
dependent virus expressing GCaMP6f. dCA2 pyramidal neuron calcium levels were imaged via microendoscopy. b) Image of lens path over dCA2 showing co-expression (white
cells) of GCaMP6f and STEP, a dCA2 marker protein. c) GCaMP6f fluorescent signals (top) and deconvolved spike traces (bottom) from five example dCA2 cells during trial 1.
Periods of interaction with novel or familiar mice are color-coded. d) Experimental paradigm. A subject mouse was habituated to an arena containing two empty wire cup cages.
In trial 1 the cups contained one novel (N) and one familiar mouse. In trial 2, the positions of the mice were swapped. e) Heatmap of subject mouse position in the three trials. f)
Time spent actively interacting with empty cups or mice. Subjects interacted significantly more with the novel versus familiar mouse in trial 1, but not trial 2 (two-way ANOVA:
Interaction Partner x Trial, F(2, 22) = 7.652, p<0.01. Šídák’s multiple comparisons test: habituation trial (left versus right cup), p>0.05; trial 1 (N versus F), p<0.001; trial 2 (F
versus N), p>0.05). g) Interaction discrimination index = [(time exploring left cup) – (time exploring right cup)]/[time spent exploring both cups] for three trials. A significant
preference is observed in trial 1 only. One-sample t-test against zero: habituation trial, t=1.980, p=0.073; trial 1, t=3.644, p<0.01; trial 2, t=0.59, p>0.05. Bars show mean ±
SEM. ** p<0.01, *** p<0.001.
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Fig. 2. Decoding social and position information from dCA2 population activity. a) Schema for experiment with a novel and familiar mouse as in Figure 1. b) Linear
classifiers (SVMs) were trained to decode social interaction partner (N versus F), position (left versus right) and trial (trial 1 versus trial 2). Calcium spike data from both
trials were grouped as indicated by colors. The decoded dichotomy is indicated by light vs. dark colors. c) Decoding of interaction partner (social), position, and trial from
pseudo-simultaneous data from 1096 cells recorded from 11 mice. Open circles show average decoding performance from 20 cross-validations. Horizontal line and error bars
show mean ± 2SD of distribution of chance values from shuffled data (see Methods). Social decoding performance = 0.88; chance = 0.49 ± 0.02 (mean ± SD, throughout
figure); p<0.001. Spatial decoding performance = 0.90; chance = 0.51 ± 0.02; p<0.001. Trial decoding performance = 0.62; chance = 0.54 ± 0.02; p<0.001. In all cases
statistical significance determined by z-score relative to chance distribution. d) Decoding performance from individual animals (open circles). Horizontal lines and error bars
show mean ± SD SD determined from individual decoding values from 11 animals. Social decoding performance = 0.62 ± 0.06 (mean ± SD); p<0.001, paired t-test comparing
decoding performance with chance value ( 0.5) calculated for each individual animal (t=6.25, n=11). Spatial decoding performance = 0.64 ± 0.04, p<0.001, paired t-test
(t=11.12, n=11). Trial decoding performance = 0.52 ± 0.06; p>0.05, paired t-test (t=0.96, n=11). e) Decoding performance from individual animals during trial 1 was strongly
correlated with the subject mouse’s ability to discriminate the novel from familiar animal (Spearman’s r=0.87, p<0.01, n=10). See Methods for a detailed discussion on chance
level estimations and p values. ns = non-significant, ** p<0.01, *** p<0.001.
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Next, we explored how these social and spatial variables
interacted with each other in the population code. If the
responses of individual neurons depend non-linearly on the
two variables, the neural representations will be typically high
dimensional (23). In this case, for example, a linear classifier
trained to discriminate the location of social interactions with
a specific individual will not be able to decode the position
of interactions with a different conspecific. Conversely, neural
activity could depend linearly on the two variables (linear
mixed selectivity (24–26)), in which case the changes in neu-
ral response to alteration of one variable will be invariant to
changes in the other variable. In this case a linear classifier
trained to discriminate between two positions will generalize,
allowing it to decode position when the identity of the animal
at each position is changed. Analogously, a linear decoder
trained to report the identity of a pair of animals will generalize
when the position of the animals is altered. Such generalized
representations can be considered to be abstract (27), as the
classifiers report a given variable independent of changes in
one or more other variables. These abstract representations —
which are widely studied in the machine learning community,
where they are called disentangled representations — have
been observed in several brain areas (27–29).

To quantify the ability of dCA2 representations to gen-
eralize, we asked whether a linear classifier trained on one
set of social and spatial conditions could accurately decode
social and spatial information recorded in a different set of
conditions not used for training. This measure is termed the
cross-condition generalization performance (CCGP) (27). As
illustrated in Figure 3b, high CCGP values for both social and
spatial features require a low dimensional geometry of these
representations in the dCA2 population firing space, with the
social and spatial features represented in approximately orthog-
onal subspaces. CCGP for social novelty was determined first
by training a linear classifier to distinguish the novel from the
familiar mouse using the subset of dCA2 firing data recorded
around only one of the two cups in each of the two trials, so
that the spatial location was fixed. We then tested whether
the linear classifier trained for social decoding around one cup
(e.g., the left cup) could be used for the successful decoding
of the novel and familiar animals when they were located in
the other cup (e.g., the right cup). Similarly, we examined the
spatial CCGP by first training the classifier based on dCA2
firing when the subject mouse explored a given mouse (e.g.,
the novel mouse) in the left and right cups across the two
trials and testing whether that classifier could distinguish left
from right using activity around the same two cups when they
contained the other animal (e.g., the familiar mouse).

We found that dCA2 activity enabled a high CCGP using
pseudo-population data for both social and spatial information
(Figure 3c top). The same findings were corroborated by ana-
lyzing CCGP for each individual separately (Fig 3c bottom).
Together, these results suggest that the representational geom-
etry of social and spatial representations in dCA2 is relatively
low dimensional, hence allowing simple linear decoders, imple-
mentable by single downstream neurons, to extract social and
spatial information independently.

dCA2 provides a low-dimensional abstract representa-
tion of novelty versus familiarity

Although the above experiments showed that dCA2 activity
can distinguish a novel from familiar mouse, the data so far
did not allow us to determine whether dCA2 did indeed en-
code familiarity versus novelty or whether it encoded the two
social identities of the distinct individuals present in these
trials, independent of their degree of familiarity. To address
this issue, we exposed subject mice (438 cells from 5 mice) to
one pair of novel and familiar mice in trial 1 and then to a
different pair of novel and familiar mice in trial 2, with the
positions of the novel and familiar mice swapped between the
two trials (Fig. 4a). On average the subjects explored the
novel mice to a greater extent than the familiar mice on both
trials (Suppl. Fig. 5). A linear classifier trained on dCA2
activity during interactions with the two novel versus the two
familiar mice accurately decoded whether the subject mouse
was interacting with a novel or familiar mouse (Suppl. Fig.
6). Similarly, a classifier trained on dCA2 activity when a
mouse was exploring the left or right cup accurately reported
the left-right position of the subject mouse (Suppl. Fig. 6).

To understand whether dCA2 activity provided an abstract
representation of social novelty versus familiarity, we deter-
mined the CCGP for familiarity across the two trials with the
two distinct pairs of mice (Fig. 4b). Remarkably, a classifier
trained to distinguish interactions with one novel and familiar
mouse located in the same cup across the two trials accurately
decoded interactions with a distinct novel and familiar mouse
located in the other cup across the two trials. We observed a
significant CCGP for decoding familiarity versus novelty when
the classifier was trained on either pseudo-population data or
data from individual subjects (Fig. 4c,d). Thus, the represen-
tation of novelty versus familiarity in dCA2 was generalizable,
or abstract, with respect to individual identity and subject
position. Abstraction of familiarity was not simply the result
of an invariance of the representations with respect to the
position or the identity of individuals. Indeed, position could
still be decoded (Suppl. Fig. 6), and it was also represented in
an abstract format as we observed a highly significant CCGP
value (Fig. 4c,d). We thus conclude that the hippocampal
social representations, and specifically those in dCA2, have a
sufficiently low-dimensional geometry to encode the abstract
concept of social familiarity.

dCA2 encodes social identity for novel and familiar in-
dividuals

Given that familiarity is represented in an abstract format, it
was natural to ask whether dCA2 also contained sufficiently
detailed information to discriminate between individual identi-
ties, separately from their degree of familiarity. We approached
this question using two additional social interaction tests in
a paradigm similar to that used in Figure 1. In one test, the
subject mouse explored a pair of novel mice placed under the
two cups, whose positions were reversed in trials 1 and 2 (732
cells from 10 mice; Fig 5b). In the second test we placed a
pair of familiar mice under the cups in the two trials of the
test (1083 cells from 11 mice; Fig 5c). Thus, in both cases
the two stimulus mice present during a given test had similar
degrees of novelty or familiarity.
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Fig. 3. Cross-condition generalization performance (CCGP) for decoding social and position information. a) Protocol for measuring CCGP. Top, social CCGP obtained
by training classifier to distinguish N from F mouse when in one cup across trials (e.g., left) and testing that classifier to identity same mice when in the other cup (e.g., right),
and vice versa (train on left, test on right). CCGP values averaged from left, right pairs. Bottom, spatial CCGP determined by training classifier to distinguish left versus right
cup when they contain same animal (e.g., F) and testing by decoding left from right when cups contain the other animal (e.g., N), and vice versa. CCGP obtained from average
of two spatial decoding results. b) Graphical representation showing how low dimensional (near planar) representation of four conditions of experiment in neural firing space
provides for a higher CCGP compared to a higher-dimensional neural representation of same four conditions (tetrahedral, 3-dimensional geometry). c) CCGP values for social
and position decoding. Top, CCGP determined for pseudo-simultaneous data. Social CCGP = 0.77, chance level = 0.51 ± 0.03 SD (mean ± SD throughout figure); p<0.001,
z-score relative to chance distribution. Spatial CCGP = 0.76; chance level = 0.49 ± 0.03, p<0.001, z-score relative to chance distribution. Horizontal lines and error bars show
mean ± 2 STDs of null model values. Bottom, CCGP values determined for individual animals (symbols). Social CCGP = 0.58 ± 0.07; p<0.01, paired t-test against chance
levels (t=3.75, n=10). Spatial CCGP = 0.59 ± 0.05; p<0.001 (t=4.76, n=10). Horizontal lines and error bars show mean ± SD. ** p<0.01, *** p<0.001.
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Fig. 4. dCA2 provides a generalized, abstract representation of novelty-familiarity. a) Schema of experiment. A subject mouse interacted for 5 min with one novel (N1)
and one familiar mouse (F1) in trial 1 and interacted for 5 min with a different novel (N2) and familiar mouse in trial 2. Positions of novel and familiar mice were swapped in the
two trials. b) Decoding scheme for calculation of CCGP for social novelty versus familiarity (left) and for right versus left position (right). In both cases, training and testing
conditions were swapped and decoding results averaged to obtain CCGP. c) CCGP values calculated from pseudo-simultaneous population data. Familiarity (versus novelty)
CCGP = 0.74; chance level = 0.51 ± 0.04 (mean ± SD, throughout figure); p<0.001, determined from z-score value relative to chance distribution. Position CCGP = 0.89;
chance level = 0.50 ± 0.03; p<0.001 (z-score comparison). Horizontal lines and error bars show mean ± 2 SDs for distribution of chance values. d) CCGP values determined for
individual subjects. Familiarity (vs novelty) CCGP = 0.61 ± 0.04; p<0.01, paired t-test against individual chance levels (t=5.79, n=5). Position CCGP = 0.69 ± 0.04; p<0.001,
paired t-test (t=9.26, n=5). Horizontal lines and error bars show mean ± SD calculated from individual decoding values. ** p<0.01, *** p<0.001.

The subject mice showed no significant behavioral pref-
erence for one novel mouse over the other or one familiar
mouse over the other (Suppl. Fig. 7). Despite the lack of
behavioral preference, the linear decoder successfully classi-
fied interactions with one novel mouse versus the other using
pseudo-simultaneous population data (Fig. 5a,d). The classi-
fier similarly decoded the individual identity of familiar mice
(Fig. 5e). Thus, dCA2 population activity contained suffi-
ciently detailed information to distinguish two mice based
on identity, and not only by differences in degree of novelty.
In addition to decoding social identity, we were also able to
decode left versus right position at a high accuracy when the
cups contained either two novel animals or two familiar mice
(Fig 5d,e). In contrast, the accuracy of trial decoding from
the pseudo-population data was much lower than that for
the social identity or position decoding, although significantly
higher than chance, for both novel and familiar mice (Fig 5d,e).
When we analyzed neural data from individual subjects, the
decoding performance for social identity and position were
significantly higher than chance (Suppl. Fig. 8). However,
trial decoding was higher than chance levels only when the
subject mice interacted with two familiar mice; trial decod-
ing did not differ from chance levels when the subject mice
interacted with two novel mice (Suppl. Fig. 8).

Distinct representational geometries of novel and famil-
iar conspecifics

How does dCA2 meet the distinct demands of representing
both the identities of novel and familiar animals required for
recollection while also providing a generalized, abstract rep-

resentation of novelty, required for familiarity detection? To
approach this question, we investigated the geometries of novel
and familiar representations, first by measuring the CCGP
values for spatial position and social identity in the protocol
described above using two novel and two familiar mice.

Our analysis of pseudo-simultaneous data yielded a sig-
nificant CCGP value for social identity of two novel animals
across different positions (Fig. 5f). The CCGP for social
identity of two familiar animals was greater than chance levels,
but lower than that obtained with the two novel animals (Fig.
5g). When we analyzed data from individual mice, we found a
significant CCGP for social identity during interactions with
the two novel animals (Suppl. Fig. 8), but not for the two
familiar animals (Suppl. Fig. 8). In contrast, CCGP values
for position were similar and significantly greater than chance
for the two sets of conditions, both when determined for the
pseudo-population data (Fig. 5f,g) and for individual mice
(Suppl. Fig. 8).

To enable a more direct comparison between the two ex-
periments, we calculated CCGP values for the subset of mice
(630 cells from 7 mice) that was run in both the two-novel and
two-familiar animal sessions. We found that the CCGP for
social identity calculated with pseudo-population decreased
markedly when the subject was exposed to two familiar mice
compared to two novel mice (Fig. 6a). A smaller, yet signifi-
cant, decrease was also observed for position CCGP (Fig. 6a).
When we compared values calculated for each individual sub-
ject, we found that mean CCGP for social identity decreased
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Fig. 5. Encoding of mouse identity, position and trial during interactions with novel or familiar mice. a) Scheme of decoding analysis. b,c) A subject mouse explored
two novel (b) or familiar (c) animals in trial 1; the same two animals were present in trial 2 with positions swapped. d) Decoding of identity, position and trial with two novel mice
using pseudo-simultaneous data. Novel identity decoding = 0.87; chance = 0.50 ± 0.02 (mean ± SD, throughout figure); p<0.001 (z-score comparison relative to chance).
Position decoding = 0.89; chance = 0.50 ± 0.015; p<0.001 (z-score comparison). Trial decoding = 0.62; chance = 0.49 ± 0.02 p<0.001 (z-score comparison). e) Decoding of
identity, position, and trial with two familiar mice using pseudo-simultaneous data. Familiar identity decoding = 0.79; chance = 0.51 ± 0.04; p<0.001 (z-score comparison).
Position decoding = 0.97; chance = 0.51 ± 0.03; p<0.001 (z-score comparison). Trial decoding = 0.69; chance = 0.50 ± 0.032; p<0.001 (z-score comparison). f) CCGP for
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Position CCGP = 0.86; chance = 0.50 ± 0.03; p<0.001 (z-score comparison). Horizontal lines and errors bars show mean ± 2 SD of chance distribution. *** p<0.001.
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significantly during exploration of familiar compared to novel
mice. Moreover, we observed a significant decrease in identity
CCGP during trials with familiar compared to novel mice in 6
out of 7 subjects, with a significant increase in identity CCGP
in only 1 out of 7 subjects (Suppl. Fig. 9). In contrast, we
did not observe a consistent effect of familiarity on position
CCGP (Suppl. Fig. 9).

The differences in CCGP values for social identity indicate
that dCA2 encodes novel animals in lower dimensional repre-
sentations compared to familiar individuals. Support for this
conclusion comes from an analysis of the ability of a linear clas-
sifier to decode the trial variable. The low-dimensional planar,
rectangle-like representation of social identity and position
with novel animals (Fig 6b, dark grey points) implies that the
pairs of conditions in the two trials correspond to the opposite
corners of the rectangle. In this case a linear classifier will not
be able to separate one trial from the next as the classification
problem is equivalent to solving the exclusive OR (XOR) prob-
lem (where the two conditions of each trial that are grouped
together by the classification task share no common social or
spatial variable). In contrast, a higher dimensional tetrahedral
representation (Fig. 6b, light gray points) would allow the
points in opposite corners to be separated by a linear plane,
thus enabling trial decoding. As the trial variable is the only
dichotomy of the four conditions that is non-linearly separable,
a higher than chance decoding accuracy for trial (provided the
other two variables, identity and position, are also decodable),
indicates that the representation is high dimensional and the
points can be divided into two groups (shattered) in all possi-
ble ways by a linear decoder (high shattering dimensionality
(23, 27)).

As noted above in discussing the results of Figure 5, trial
decoding with data from the entire pseudo-population was
greater during interactions with two familiar animals than
with two novel animals (see also Suppl. Fig. 8). To determine
whether this difference was statistically significant, we com-
pared trial decoding in the two-novel or two-familiar animal
sessions when calculated for those individual subject mice run
in both tasks, as done for the CCGP analysis. We found that
trial decoding from the pseudo-simultaneous population of
cells recorded from this subset of animals was significantly
greater during interactions with two familiar mice compared
to two novel mice (Fig 6a). We similarly found a consistently
greater accuracy of trial decoding during interactions with
familiar mice compared to novel mice when analyzing data for
individual subjects (significant increase in 5 out of 7 subjects;
no subjects showed a significant decrease, Suppl. Fig. 9). The
trial decoding data therefore provides additional support that
familiar animal representations have a higher dimensionality
compared to novel animal representations.

To provide a comprehensive overview of our conclusions,
we devised a geometric model that was able to capture our
key findings. We first assumed that novel individuals are
represented in a low dimensional geometry, illustrated in this
example by having the activity of a sample population of three
neurons confined to a two-dimensional plane (Fig. 6b). We
then posited that increasing levels of familiarity progressively
shift the neural plane away from the novel animal represen-

tations, accounting for the abstract decoding of familiarity
seen in Fig. 4 (the coding directions of familiarity, red in the
figure, are approximately parallel, meaning that a decoder
trained on one animal in one position would generalize to
other animals and positions). To explain the decreased CCGP
associated with trials containing two familiar mice compared
to two novel mice, as well as the increased ability to decode
the trial variable when interacting with familiar mice (Fig.
6a), we posited a relatively small random displacement of the
neural firing points for familiar animals away from the shifted
planar representation, providing an increased dimensionality.
Finally, because decoding performance was higher for decoding
the identities of two novel animals compared to two familiar
animals (Fig. 5d,e, Suppl Fig. 10) we surmised that the dis-
tance between representations on the identity axis was reduced
with increasing familiarity. This geometric description was
sufficient to recapitulate all our major findings, across tests
(Fig. 6c, Suppl Fig. 10).

Discussion

The classic “butcher on the bus” scenario posits that social
recognition memory has at least two components: familiar-
ity—the sense of whether one has previously encountered an
individual—and recollection—the detailed recall of previous
encounters with specific individuals1. Up to now, the neural
mechanisms underlying social familiarity and recollection have
been obscure, including uncertainty as to whether a given brain
region can participate in both processes (8–13, 30). Our ex-
periments and analyses, based on large-scale calcium imaging
of hippocampal dCA2 pyramidal neuron from mice engaged
in social/spatial interactions, demonstrate that dCA2 encodes
both social familiarity and social identities of individuals with
similar degrees of novelty or familiarity, the latter being a key
requisite of recollection. Moreover, we find that familiar indi-
viduals are encoded with a higher dimensional geometry than
novel individuals, one consequence of which may be to enable
the richer memory store associated with familiar individuals
compared to novel ones.

We focused on dCA2 because of its prominent role in the
encoding, consolidation and recall of social memory, as as-
sessed by the ability of a mouse to distinguish between a novel
and familiar conspecific (6, 14, 21). Although previous studies
using in vivo recordings found that dCA2 neuron firing re-
sponds during social interactions (16–18) and can distinguish
between a novel and familiar animal (17), dCA2 neurons also
act as place cells, firing as an animal explores specific loca-
tions (16–18, 31, 32). Thus, it has to date been unclear as
to whether and how dCA2 social/spatial firing can be dis-
entangled by downstream neurons to decode social novelty
versus familiarity and spatial location. Moreover, prior studies
did not fully address whether dCA2 represents the identity of
individual conspecifics with identical degrees of social novelty
or familiarity nor how the representations of novel and familiar
conspecifics may differ.

Using a linear classifier to decode social and spatial in-
teractions, we found that dCA2 activity encodes both social
and spatial information. Although most dCA2 neurons re-
spond to both social and spatial cues, the geometry of these
social/spatial representations in dCA2 firing space provides a
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low-dimensional representation that allows a linear classifier
to decode social information in a way that generalizes to novel
locations (i.e., locations not used to train the decoder). More-
over, a linear classifier trained to decode position can readily
generalize to a situation in which novel animals are placed at
the same locations. We also found that the ability of dCA2
social representations from a given mouse to decode a novel
from familiar animal was highly correlated with the behav-
ioral ability of that mouse to distinguish a novel from familiar
animal, supporting the view that dCA2 representations may
be important for encoding social memory.

In addition to detecting novelty versus familiarity, we found
that dCA2 also encodes the identities of individual animals
with identical degrees of novelty or familiarity, enabling a
linear classifier trained on dCA2 firing to distinguish one novel
mouse from another or one familiar littermate from another.
Of particular importance, the representations of the novel
and familiar animals adopt distinct geometries. This enables
a simple, generalized read-out of novelty versus familiarity,
which may contribute to the ability of both mice and humans
to rapidly distinguish a familiar individual from a stranger.

A geometrical model captured the key elements of our find-
ings, in which increasing familiarity causes a roughly parallel
shift in the low dimensional manifold of novel animal repre-
sentations, enabling the generalized decoding of novel from
familiar animals. At the same time, familiarization distorts
the low-dimensional representation seen with novel animals
with non-linear perturbations that are different for every com-
bination of mouse identity and position. These perturbations
make the representations higher dimensional.

What are the consequences of having familiar identities rep-
resented in a higher dimensional space than novel identities?
A number of studies have reported that the dimensionality
of neural activity is linked to functional or behavioral com-
plexity (23, 27, 33–35). Low-dimensional representations, and
in particular disentangled representations (29), are generally
robust to noise and allow for generalization not possible with
high dimensional representations. These disentangled repre-
sentations also allow dCA2 to represent a large number of
different situations (e.g. different animals encountered at dif-
ferent locations in different contexts), as large as all the novel
situations that an animal can potentially encounter. If L is
the number of disentangled variables (latent variables) that
are represented and each variable has only two values, then
the number of representable situations scales as 2L, which
can be much larger than the number of neurons N . Some of
these situations are actually experienced by the animal and
so could be stored in memory. Recollecting a memory can
be modeled as a process in which the pattern of activity that
represents a particular experience is fully reconstructed at a
later time (36–39), when a memory cue is presented. In the
case of disentangled representations, the number of memories
that can be stored and recollected is relatively low, scaling
only linearly with L (see Supplemental Information), and is
exceeded by the memory capacity of high-dimensional repre-
sentations, which scales linearly with N (see e.g. (36, 37)).
Indeed, disentangled representations that have similar geomet-
rical properties as those that we observed can be constructed

by combining together L separate populations of neurons, each
encoding a single latent variable. The correlations between all
the neurons within each population make the representations
low dimensional. Each population of neurons can be regarded
as a single effective neuron, and hence the memory capacity
will scale with the number of independent effective neurons L,
and not with the total number of neurons N .

We suggest that when a novel situation is actually expe-
rienced by an animal its low-dimensional representation is
transformed into a higher-dimensional representation suited
for storage in episodic memory, likely through the process of
synaptic plasticity, thereby greatly enhancing the number of
memories that can be stored. Interestingly, this transforma-
tion still allows familiarity to be represented as an abstract
variable. In the simple geometrical models described in Figure
6, we showed that the geometry of familiar social/spatial rep-
resentations can be obtained by transforming the geometry of
the social/spatial representations of novel animals in two steps.
The first is a rigid translation in the activity space. This allows
familiarity to be encoded in an abstract format. The second
is a relatively small shift of each different social/spatial condi-
tion (i.e., a combination of position and identity) in different
directions in neural activity space, making the representations
of familiar animals higher dimensional. This transformation
allows familiarity to be represented in an abstract format
without sacrificing the elevated memory capacity of high di-
mensional representations.

Recent findings on the representational geometry for both
familiar and novel faces in monkey inferotemporal (IT) cortex
(26) show certain similarities and differences with our results.
Similar to our findings, the representations for novel faces
are low dimensional (see also (25)). At short latencies, the
dimensionality of familiar and unfamiliar face representations
is similar, with the two geometries related by a simple transla-
tion. In contrast at longer latencies, the geometry of familiar
representations becomes distorted. It is unclear whether this
distortion is non-linear, as in our data, or whether it could be
explained with a linear transformation, which would preserve
the dimensionality of the representations. One clear differ-
ence is that the distortion observed in IT enables improved
discrimination of familiar faces whereas in our case the ability
of the decoder to discriminate between two animals remains
the same or slightly decreases for familiar compared to novel
animals. This could be due to a difference between neocortex
and hippocampus, a difference between primates and rodents,
and/or a difference in the nature of social familiarity for two-
dimensional pictures of faces compared to interactions with
living conspecifics.

Our results provide the first demonstration, to our knowl-
edge, that experience-dependent changes in representational
geometry can contribute to the differential cognitive processing
of novel and familiar individuals. The balance of generalization
and flexibility may be an important feature that guides the
encoding of complex social relationships to form a cognitive
map of social space. Such coding may be required for navi-
gating complex social behaviors, such as pair bonding, social
aggression, and the creation of social dominance hierarchies.
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Materials and Methods

Viral injection and GRIN lens implantation.

Calcium imaging. A 200 nL volume of AAV2/1.syn.FLEX.GCaMP6f.
WPRE.SV40 virus (titer: 6.5×1011 pp/mL, Penn Vector Core) was
injected at a rate of 150 nL/min into the right hemisphere above
dorsal hippocampal CA2 using stereotactic coordinates: AP -2.0
mm, ML +1.8 mm, DV -1.7 mm from bregma of 3-6 month-old male
heterozygous Amigo2-Cre (Cre+/-) mice. Three weeks following
injection, a 1.2 mm diameter circular craniotomy was centered at
the following coordinates: AP -2.0 mm, ML +2.5 mm. We inserted
a GRIN lens (Inscopix, 1.0 mm diameter, 4.0 mm length) into the
craniotomy at a depth of -1.4 to -1.5 mm relative to bregma at a
10° angle from the midline, so that the lens was parallel to the CA2
cell body layer. The Inscopix Proview system imaged cells during
implantation to adjust the position of the lens to optimize visible
fluorescence. Kwik-sil was placed around the craniotomy and the
lens secured in place using Metabond dental cement. The top of the
Proview lens cuff was filled with Kwik-cast to protect the lens. Mice
were housed with littermates for one week before a plastic baseplate
was placed over the lens and secured with Metabond dental cement.
The baseplate and microscope were placed over the lens and the
position was adjusted until cells were maximally in focus.
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Pharmacogenetic silencing of CA2. We injected 8 Amigo2-Cre-/-

(controls) and 12 Amigo2-Cre+/- mice in dCA2 with a Cre-dependent
virus expressing the inhibitory hM4Di designer receptor exclusively
activated by designer drugs (iDREADD), AAV2/8 hSyn.DIO.hM4D
(Gi)-mCherry. 200 nL of virus (1.9× 1012 pp/mL) was injected into
dCA2 bilaterally using the following coordinates: anteroposterior
(AP) -2.0mm, mediolateral (ML) +/-1.8mm, dorsoventral (DV)
-1.7mm.

Extraction of Calcium Signals.

Data Acquisition, Preprocessing and Motion-correction. On the day
of the experiment, mice were moved to the behavior room and sub-
ject mice and littermates were separated into holding cages. Mice
were allowed to acclimate to the environment for 30 minutes. An
nVista 3.0 Inscopix miniaturized microscope was inserted into the
baseplate and used to record calcium fluorescence from dCA2 pyra-
midal neurons during social and non-social behavior using Inscopix
data acquisition software (20 frames per second, 50-ms exposure,
0.2-0.3 mW/mm2 EX-LED). The working distance between the
microscope objective and the lens was adjusted to maximize cell
focus, and this distance was maintained between trials and from
session to session. To align behavior and calcium videos, a 5V
TTL pulse from an AMi-2 Optogenetic interface triggered calcium
recordings through Anymaze softward at the start of each trial
along with a behavior video recording. Behavior recordings were
collected at a rate of 20 Hz. The raw videos from separate sessions
were concatenated and then run through Inscopix Data Analysis
software. Videos were preprocessed to correct defective pixels and
4x spatially down-sampled. Background fluorescence was removed
using a spatial band-pass filter and fluorescence videos were motion-
corrected using the Inscopix motion correction algorithm. The
preprocessed and motion corrected tiff files were then exported for
cell identification and signal deconvolution.

Segmentation and ROI Identification. Cell regions-of-interest (ROIs)
were identified using the Python CaImAn package for large-scale
calcium imaging data. The spatial footprints and deconvolved signal
for the active sources (ROIs) were extracted using CNMFe (40),
and then the scaled raw traces and spatial footprints were exported
to Matlab. We used a custom GUI to evaluate individual ROIs
and spatial footprints, and those with non-spherical or non-oval
shapes caused by motion artifacts were excluded from analysis. We
detrended the raw traces over a window of 50 s using custom scripts.
Finally, the computed traces, separated by session, were deconvolved
using the OASIS algorithm for nonnegative signal deconvolution
(baseline = trace median, noise = trace MAD, spike thresholds =
2x MAD).

Behavior.

Calcium recordings. We imaged dCA2 pyramidal neurons in a total
of fifteen Amigo2-Cre heterozygous mice (with one excluded due
to non-specific expression in dCA1) in multiple tests probing social
recognition and memory. Prior to the first test, mice were handled
and habituated for three days on the following schedule: Handling
(day 1), handling, exposure to oval arena for 15 minutes (day 2), han-
dling, exposure to holding cage for 30 minutes, scruffing/insertion
of the microscope, and to the oval arena for 15 minutes with micro-
scope inserted (day 3). Mice were additionally habituated in the
oval arena to empty cups for 10 minutes. No changes in subject
mouse behavior, including during social interaction, were observed
compared to wild-type controls.

In each test, subject mice were placed into an oval arena that
consisted of two half-circles with radius 15 cm connected to a central
square area with length of 30 cm (total dimensions: length 60 cm,
width 30 cm, height 45 cm). Wire pencil cups (radius 5 cm) were
placed 10 cm from the two ends of the arena along the midline and
will hereafter be referred to as left cup and right cup. Stimulus mice
were placed underneath the cups as described for each test. Between
consecutive trials, subject mice were removed to a holding cage to
which they had been previously habituated for approximately 2
minutes while the oval arena was cleaned with 70% alcohol wipes
to remove any olfactory cues, wiped with paper towels, cleaned
with water, and then wiped with paper towels until dry. The cups

with or without stimulus mice were re-introduced to the arena, and
finally the subject mouse was re-introduced into the arena and the
trial initiated in ANY-maze. The position of the two stimulus mice
were randomized to the left or right cups in the first trial, and the
positions then swapped in the second trial. Stimulus mice were age-
and sex-matched to subject mice (males 3-6 months old).

In each trial, the subject mouse was free to explore the arena.
Periods of interaction with cups or conspecifics in the arena, defined
as times when the subject’s head was oriented towards the center of
the cup within a zone equal to 1.5x the cup radius (7.5cm), while the
subject was actively sniffing, were manually scored. In a minority
of tests and trials, the subject mouse climbed on top of the wire
pencil cups. In these cases, the period atop the cup was excluded
from analysis. The behavior videos were run through a deep neural
network trained using DeepLabCut to recognize the position of the
mouse head and body, as well as location of the objects placed in
the arena. Errors in the DeepLabCut output were corrected using
an automated custom Matlab script.

Familiar versus novel mouse recognition test. Twelve subject mice
underwent the following three 5-min trials: habituation trial, two
empty cups (left and right); trial 1, novel mouse and familiar
littermate in the two cups; trial 2, same novel mouse and familiar
littermate with positions swapped (Fig. 1c).

Social Novelty Recognition Test. Five subject mice underwent the
following three 5-min trials: habituation trial, two empty cups; trial
1, novel mouse 1 and familiar littermate 1; trial 2, novel mouse
2 and familiar littermate 2, with novel/familiar animal positions
swapped relative to trial 1 (Fig. 4a).

Interaction with mice with similar degrees of novelty or familiar-
ity. Twelve subject mice were exposed to two novel mice using three
5-min trials: habituation trial, two empty cups; trial 1, two novel
mice; trial 2, the same two novel mice with positions swapped (Fig.
5b). Twelve subject mice were exposed to two familiar littermates
using three 5-min trials: habituation trial, two empty cups; trial
1, two familiar littermates in the cups; trial 2, the same familiar
littermates with positions swapped (Fig. 5c).

Subject mice were run through one or more of the above social
memory tests. If a subject was run through more than one test,
subsequent tests were run one week apart. As an exception, subjects
run first through the test for individual preference (familiar) then
through the test for familiar recognition were run on the same day
with a thirty-minute delay period between tests. The breakdown
of tests per subject is as follows (in test order): 7/15 subjects
were given the two-novel mice interaction test followed by the
two-familiar mice interaction test followed by a test for familiar
recognition (stimulus identities same between trials). 3/15 two-novel
mice interaction test only, 2/15 familiar recognition test (stimulus
identities changed between trials), familiar recognition test (stimulus
identities same between trials), two-novel mice interaction test, two-
familiar interaction test. 3/15 familiar recognition test (stimulus
identities changed between trials), familiar recognition test (stimulus
identities same between trials), two-familiar interaction test.

Behavior Statistical Analysis. To determine whether there were sig-
nificant differences in the interaction times of the subject mouse with
different social and non-social stimuli, we ran a two-way ANOVA
of trial and interaction partner with repeated measures for both
factors using Graphpad Prism software (version 9.0.1). Šidák’s mul-
tiple comparisons test was used post-hoc to determine significant
differences across trials or between interaction partners. Statistical
significance was defined as p < 0.05. In addition, for each trial
we calculated a preference score for interacting with each partner
through the following equation:

Preference Score (B : A) = tB − tA
tB + tA

Where tA is the length of time the subject mouse interacted
with one mouse and tB is the length of time the subject mouse
interacted with the other mouse. We used the one-sample t-test to
determine whether the preference score was significantly different
than zero.
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Effect of CA2 silencing on social memory. Three weeks after iDREADD
viral injection, Amigo2-Cre heterozygous mice (n=12) and wild-
type littermates (n=8) were habituated to IP injection for four days.
On the third and fourth day, mice were additionally habituated to
the same oval arena used in calcium recording experiments for 5
minutes and to an individual holding cage for 30 minutes. On the
fifth day, mice were moved to the experimental room and allowed
to acclimate to the environment for 30 minutes in their individual
holding cages. Mice were then injected intraperitoneally 30 minutes
prior to testing with 10 mg/kg clozapine-n-oxide (CNO), the ligand
for the iDREADD receptors, to reduce CA2 activity.

30-minutes post-injection, subject mice were run through two
5-minute learning trials in the oval arena: trial 1, novel mouse 1
and novel mouse 2 in the two cups; trial 2, the same two mice with
positions swapped. In between each trial, the subject mouse was
returned to the holding cage for approximately 2 minutes. Following
trial 2, the subject mouse was returned to its holding cage. After a
two-hour interval, the subject mouse was returned to the arena for
two memory recall trials: trial 3, one of the previously encountered
mice in the learning trials (e.g. novel 1) and a third previously
unencountered novel mouse (novel 3); trial 4, the same two mice
with positions swapped. The behavior videos were manually scored
for interactions, defined by the same criteria as those applied dur-
ing calcium imaging behavior, by an investigator blinded to the
identities of the subject mice and the individuals under the cups.
Memory recall was assessed by the greater interaction time with
novel 3 compared to the previously encountered mouse, using the
same statistical analysis described above.

Population decoding analysis.

Linear classifier. The decoding analysis was performed using a linear
classifier based on a support vector machine with custom-written
Python scripts based on the scikit-learn SVC package (41).

Data labeling. For each subject and session, we selected neural data
corresponding to periods in which the subject was actively interact-
ing with one of the two cups. We then divided the neural recordings
into 100 ms time bins and labeled them according to whether the
subject was interacting with the left or right cup and to the identity
of the animal under the cup (labeled as F, as in familiar, or N,
as in novel, in the familiar versus novel recognition test, and #1
or #2 for novel-novel and familiar-familiar interaction tests). In
each test there were always two trials, with the positions of animals
swapped in trials 1 and 2. Thus, for each test there were a total of
4 social/spatial conditions [e.g., for the familiar-novel test: familiar
on left (F, left), familiar on right (F, right), novel on left (N, left),
novel on right (N, right)]. We then divided the four conditions into
binary dichotomies (class 0 and class 1) according to the variable
we wished to decode. For example, in the novel-familiar test, social
stimulus identity was decoded by grouping firing data around the
familiar animal as class 0 [(F, left) and (F, right) conditions] and
grouping firing activity around the novel animal as class 1 [(N, left)
and (N, right) conditions). We decoded stimulus position by group-
ing firing activity around the left cup as class 0 [(F, left) and (N,
left) conditions] and grouping firing activity around the right cup
as class 1 [(F, right) and (N, right) conditions]. For trial decoding
(also referred to as XOR), we grouped firing activity around the
two cups of trial 1 as class 0 [(F, left) and (N, right)] and trial 2 as
class 1 [(F, right) and (N, left)].

Cross-validation and pseudo-simultaneous population activity. For
each subject and session, we divided data from each class of condi-
tions (0 and 1) into training and test pseudo-trials, which each trial
defined by a bout of interaction, with bout duration lasting from
the beginning to end of a given interaction. Bout durations lasting
longer than 1 s were split into multiple 1-s-long pseudo-trials. We
randomly selected 75% of pseudo-trials for training a classifier and
the remaining 25% were used for testing decoding performance. We
next constructed a set of pseudo-population activity vectors from the
training and testing datasets from a given animal by dividing each
pseudo-trial into 100-ms bins, with each bin having its associated
population activity vector containing the mean event rate observed
during that time bin for each neuron recorded. We then randomly
sampled q population vectors (where q = 5 unless otherwise noted)
from the training data set of each subject and concatenated them

to form a single qn-long vector, where n is the total number of
recorded neurons in a given subject. This procedure was repeated
T = 2qn times to create a training data set of pseudo-population
firing rate vectors. We then followed the same procedure to build
the pseudo-population testing data vectors, by sampling population
vectors from the testing data set of each subject. In some cases we
performed decoding analysis on data from all N neurons from all
animals tested in a given behavioral task. In this case, we randomly
sampled q population vectors from the training data set for each
individual animal. Next we concatenated those extended population
vectors into one pseudo-simultaneous qN -long vector. We repeated
this process sampling successive sets of random population vectors
for a total of T = 2qN pseudo-simultaneous training set vectors.
We then repeated this process to obtain the testing data set vectors.

To disentangle the selectivity to position and stimulus identity,
which are correlated variables, the sampling procedure described
above was performed in a balanced way so that each condition
within each class (e.g., (F, right) & (F, left) for class 0 and (N,
right) & (N, left) for class 1 in decoding stimulus identity) for each
subject was equally represented in the training and testing pseudo-
simultaneous data set. Only subjects that explored all conditions for
a minimum of 3 s each, divided into a minimum of 4 pseudo-trials,
were included in the analysis.

The pseudo-simultaneous training data set was then used to
train a SVM linear classifier, which was tested on the pseudo-
simultaneous testing data set to assess the decoding performance
as the fraction of correctly classified pseudo simultaneous vectors.
The whole procedure, from training-testing division to performance
assessment, was repeated for k = 20 times to implement a k-
fold cross-validation scheme, taking the mean score (µdata) as the
estimated performance value of the decoding procedure.

Null model and p-value. We tested the decoding performance ob-
tained by the cross-validated procedure described above against a
null model where the labels (0 and 1 as defined above) of pseudo-
trials were randomly shuffled. After each shuffling, the same cross-
validation procedure was repeated, obtaining a null-model value
for decoding performance. We repeated the shuffling nnull times
to obtain a distribution of null model performance values, yielding
a mean null decoding performance 〈µnull〉 and standard deviation
of the null distribution σnull. The p value was then derived from
the z-score of the performance computed on data compared to the
distribution of nnull null-model values: z = µdata−〈µnull〉

σnull
.

Correlation between decoding performance and behavior. We com-
pared decoding performance versus behavioral preference in the
familiar versus novel social recognition test. It was assessed by com-
paring the two quantities for left (familiar) vs. right (novel) cup in
the first half of the littermate recognition test. To compute decoding
performance, we used the decoding scheme described above, with
the difference that training and testing data was not sampled and
concatenated across different subjects to build pseudo-simultaneous
population vectors but was analyzed for each animal individually,
with q = 1. To account for the greater variance of decoding perfor-
mance across the random training-testing assignment of trials in
individuals, we used a 120-fold cross validation scheme. Behavioral
performance was computed as the Preference Score computed in
the first trial of the littermate recognition test. When specified,
the absolute value of the Preference Score was also computed. To
exclude animals with a strong left-right preference (independently
on the identity of the stimulus animal in the corresponding cup),
we computed a left-right preference score as the absolute value of
the normalized difference in exploration time for the left vs. the
right cup across the whole session: PSlr = |tl−tr|

tl+tr
. Subjects with a

strong left-right preference, defined as PSlr > 0.5, were excluded
from the analysis.

Multi-selectivity analysis. We performed the following analysis to
assess whether decoding of social and spatial information was pri-
marily driven by cells specialized for one of the two variables (social
identity or spatial location of the stimulus). First, for each vari-
able we identified its coding direction as the normalized average
decoding weights vector over k cross validations. We denoted these
vectors as ~Wposition, for position decoding, and ~W social for social
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familiarity/identity decoding. For each cell i, we then computed a
specialization index defined as the absolute value of the normalized
difference between the two decoding weights:

σi :=
|Wposition

i −W social
i |

Wposition
i +W social

i

Given a specialization threshold θσ , we then computed a population
specialization index as the fraction of cells whose specialization
was larger than θσ. Finally, for each value of θσ, we compared
the specialization index with a null model that assigned to each
cell a random positive value of the two weights by keeping their
quadratic sum

(
Wposition
i

)2 +
(
W social
i

)2 conserved – equivalent
to a random rotation of the weight vector in the corresponding
two-dimensional plane.

Cross-condition generalization performance. Cross-condition gener-
alization performance (CCGP) was computed as described in (27).
We first constructed pseudo-simultaneous activity vectors as de-
scribed above, except we did not group data from pairs of conditions
with the same decoding variable. Rather pseudo-trials used for train-
ing a given classification came from one of the pairs of conditions
that both contained the decoding dichotomy for a given classification
while sharing the same non-decoding variable. The corresponding
testing set consisted of data from the other pair of conditions that
shared the other non-decoding variable. For example, when de-
coding social identity, one training set consisted of data during
interactions with mouse 1 versus mouse 2, when both were in the
left cup, and the testing set consisted of data with mouse 1 and
mouse 2 in the right cup. The decoding for a given dichotomy was
then repeated, swapping the classes of pseudo-trials used for the
training and testing data (e.g., training with data obtained with
mouse 1 and mouse 2 in the right cup and testing on data with
mouse 1 and mouse 2 in the left cup). CCGP was obtained from the
mean decoding performance from the two pairs of training and test-
ing conditions. Only animals that showed a decoding performance
greater than chance levels for both spatial and social variables (with
the threshold p<0.05 computed as described above) were used in
the by-subject analysis of CCGP values.

Null model for CCGP. We estimated the null model CCGP as de-
scribed in (27). To obtain a meaningful null model for generalization
performance, it is important to maintain the level of decodability ob-
served experimentally while selectively randomizing generalization
between different pairs of conditions. To achieve this, we performed
a solid rotation-translation of the pseudo-population vectors sam-
pled from each condition in the neural activity space (using q = 5 as
described for the decoding analysis) by random shuffling of the neu-
ron index. After the four independent rotations, we computed the
CCGP as described above to obtain a null model CCGP value, and
repeated this to obtain 20 null model CCGP values. As described
in the decoding section, the significance of the CCGP value for the
experimental data was computed from its z-score with respect to
the population of null model CCGP values.

Comparing decoding performance and CCGP across experiments.
To compare the decoding performance or CCGP of the same sub-
ject in different experimental paradigms (for example, interacting
with the two novel or the two familiar animals), we balanced the
subject’s behavior so that each of the four conditions had the same
interaction time (the minimum) between the two paradigms. If
the two sessions had a different number of recorded neurons, say
nmin and nmax, we randomly sub-sampled the session with a larger
number of neurons to match the smaller one. The random choice of
nmin out nmax neurons was repeated for each cross-validation (for
decoding) or each pseudo-simultaneous data sampling (for CCGP)
when decoding the nmax session.

Exclusion analysis. To assess whether simple decoding performance
or CCGP relies on a set of specialized cells, we ran an exclusion
analysis by progressively excluding neurons from the linear classifier
based on their ranking through two different metrics:

• Selectivity, defined above as σi := |Wposition
i

−W social
i |

W
position
i

+W social
i

• Information, defined as Ii := Wposition
i +W social

i

We then ranked the cells according to their Selectivity (σ) or In-
formation (I) scores, and measured CCGP after excluding the top
p% of ranked neurons from the classifier. We denoted these two
measures as CCGP(p, σ) and CCGP(p, I), respectively. For each
value of p, we then assessed the relative importance of Information
and Selectivity by computing the difference between the two scores:

∆I,σ (p) := CCGP(p, I)− CCGP(p, σ)
A negative value of ∆I,σ (p) indicates that, for the purpose of
generalization performance, Information is a more relevant feature
than Selectivity, as CCGP (p, I) decreases more than CCGP (p, σ)
when the top p% of cells are excluded. Vice versa, a positive value of
∆I,σ (p) indicates that selective neurons are more important, for the
purpose of generalization performance, than informative cells. To
obtain a single value for each session and individual, we computed
the area between the two curves as AUC (I, σ) :=

∑100
p=1 ∆I,σ (p).

The population of AUC values for each experimental setup that
was then tested against a chance level of AUC=0 using a one-
sample t-test. The same analysis was also performed for decoding
performance.

Geometrical model. In order to test our geometrical interpretation
of the experimental data, we developed a statistical model in which
increasing degrees of familiarity led to a progressive and continu-
ous change in the geometry of social/spatial representations. The
model is composed of a population of N neurons whose firing rate is
described by two binary latent variables, corresponding to position
and stimulus identity of animals with the same degree of familiarity,
reproducing the data from the interaction test with two novel or
two familiar animals (Fig.s 5, 6).

In the absence of noise, each of the four conditions of an exper-
iment would be associated with a point in N-dimensional neural
firing space. To introduce response variability to the same stimulus,
the population firing probability for each condition was described
by an isotropic Gaussian distribution with unit variance centered
around a condition-specific centroid in the neural firing space.

To account for our results during interactions with two novel
animals, the means of the four gaussian distributions were arranged
so that the two coding directions for the variables were orthogonal –
reproducing a low-dimensional, or abstract, representational geome-
try in the firing space approximated by a two-dimensional rectangle.
The length of two arms of the rectangle, denoted as µ0

pos and µ0
id,

correspond to the signal-to-noise ratio in the representations of
position and social identity variables, respectively, which in turn
are reflected in decoding performance.

We accounted for the changes we observed in decoding of famil-
iar compared to novel animals by introducing a familiarity latent
variable, denoted as f , in which increasing degrees of familiarity
modify the planar, rectangular representation of novel animals as
follows.

• Reduces signal-to-noise ratio of the identity variable
µid (f) = µ0

id − ηf

• Performs a global shift by vector length αf along a third
coding direction orthogonal to identity and position axes

• Increases the representational dimensionality of the two vari-
ables by shifting each of the four condition centroids by a
vector of length γf along a random direction for each condi-
tion

Using this model, we created simulated data for the activity of N
neurons during a set of simulated sessions as a mouse is allowed to
interact with two individuals of the same degree of familiarity, f , in
left and right cups, with positions swapped in two trials. For each
given condition (given mouse in a given cup), we randomly sampled
T = 5000 N-dimensional point from the distribution in neural
activity space for that condition. We then analyzed the simulated
data using the same linear decoding and CCGP procedures we used
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for the experimental data analysis. For each value of f , we repeated
the sampling and analysis for n = 200 simulated sessions and took
the mean for all decoding performance values. We carried out this
analysis for a set of values of f ranging from 0 (fully novel) to 1
(completely familiar) at increments of 0.1. For the present analysis
we used N = 80, µpos = 0.7, µ0

id = 0.6, η = 0.5, α = 3.0, γ =
0.06.
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Supplementary Figure 1. dCA2 silencing impairs social memory recognition in a two-choice test in an oval chamber. a) Experimental setup: Amigo2-Cre-/- (control)
and Amigo2- Cre+/- mice were injected with Cre-dependent virus to express iDREADD in dCA2. After viral expression both groups were systemically injected with CNO
30-minutes prior to a social memory test, which consisted of two learning trials (Trials 1 and 2) and one recall trial (Trial 3). Trial 1, A subject mouse explored for 5 min two novel
stimulus mice (N1 and N2) placed in pencil cup cages at opposite ends of an oval chamber. Trial 2, The positions of the two novel mice were swapped and the subject mouse
explored the stimulus mice for an additional 5 min. Trial 3, After a two-hour intertrial interval, one of the two now familiar novel mice (eg N2) was exchanged for a third novel
mouse (N3). Memory recall was assessed by the increased time spent exploring the third novel mouse compared to the now-familiar mouse from the previous trials (F1). b)
Cre-/- and Cre+/- mice showed similar interactions with N1 and N2 in the two learning trials (only trial 1 data showed here). Cre-/- mice showed expected increased interaction
time with the novel compared to familiar individual in trial 3. Cre+/- mice, in which dCA2 was inhibited, did not show a preference for novel over familiar mouse. Two-way
repeated-measures ANOVA: Genotype x Interaction Partner F(3,36)=3.624, p=0.022. Šídák’s multiple comparisons test. Trial 1 (N1 versus N2): Cre-/- mice, p>0.99; Cre+/- mice
p>0.99. Trial 3 (F1 versus N3): Cre-/- mice, p=0.0014; Cre+/- mice, p=0.99. c) Memory performance in indicated trials assessed by preference score: [(time exploring N3) –
(time exploring F1)]/[(time exploring N3) + (time exploring F1)]. One-sample t-test against zero. Trial 1: Cre-/- mice, t=0.3680, df=7, p=0.72; Cre+/- mice t=0.3065, df=11, p=0.76.
Trial 3: Cre-/- mice, t=3.080, df=7, p=0.018; Cre+/- mice, t=0.09393, df=11, p=0.93. Bars show mean ± SEM. * p<0.05, ** p<0.01.
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Supplementary Figure 2. Plots of decoding performance compared with subject mouse social memory preference score. a) There is a significant correlation between
the absolute value of the preference score and social decoding accuracy. Experiment from Figures 1, 2, 3 (Spearman’s correlation r=0.84, p<0.01). b) No significant correlation
is observed between absolute preference score and social decoding performance during interactions with two novel mice (Spearman’s correlation r =-0.43, p>0.05). c) There
was no significant correlation between absolute preference score and social decoding performance during interactions with two familiar littermates (Spearman’s correlation
r=0.26, p>0.05). ** p<0.01.
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Supplementary Figure 3. Most dCA2 cells have mixed selectivity, encoding information for position, novelty, and identity. a) left: Position decoding versus social
decoding weights for each dCA2 neuron (F-N experiments from Figures 1 and 2). Selective neurons lie in a triangular wedge near each axis, defined by an arbitrary angle θ.
Right: Histogram of angles representing the population of cells divided into 5 classes of selectivity (bars are color graded corresponding to the degree, or lack of thereof, of
selectivity for a given variable). Black bars show mean and two STDs of a null model obtained by assigning a random angle to each point in the left plot. b, c, d) Same analysis
of a for the experiment of, respectively: Figure 4 with two different pairs of Novel/Familiar animals in trials 1 and 2; Figure 5, with two novel animals in each trial; Figure 5, with
two littermates in each trial. A selectivity distribution consistent with the null model is observed for experiments in a, c, and d. The null model assumes that the two variables are
equally decodable; therefore, a one-sided deviation from chance levels as the one observed in b is expected when one variable is more decodable than the other (position in
this case, see Suppl. Fig. 6)
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Supplementary Figure 4. Decoding performance relies on cells with high information content rather than high spatial/social selectivity. a) Effect on decoding
performance of omitting top fraction of rank-ordered cells from linear classifier. Cells were ranked either by information content (sum of social and spatial decoding weights) or by
selectivity (normalized difference in social and spatial decoding weights). The area between the curves (AUC) reveals the greater importance of information content compared
to selectivity. Data shown for F-N experiment from Figures 1-2. b) The same analysis for CCGP from Figure 3. c) Selectivity and information rankings from the F-N experiment
are moderately negatively correlated, indicating that cells differentially contribute to the two measures (Spearman r=-0.16, p<0.001). d-g) AUC values with significance defined
by a one-sample t-test against zero. d) AUC values by subject, for social (social decoding AUC = -0.025 ± 0.016, t=-4.94, p<0.001) and spatial (spatial decoding AUC = -0.023 ±
0.021, t=03.43, p=0.0064) decoding performance and CCGP (social CCGP AUC = -0.020 ± 0.016, t=-4.08, p=0.0022; spatial CCGP AUC = -0.014 ± 0.019, t=-2.29, p=0.045) in
F-N experiment of Figures 1-3. e) AUC values for experiment of Figure 4 with a different pair of novel and familiar mice in trials 1 and 2. Statistics: Social AUC (decoding):
-0.019 ± 0.007, t=-5.33, p=0.0060; spatial AUC (decoding): -0.012 ± 0.008, t=-2.83, p=0.048; social AUC (CCGP): 0.00 ± 0.004, t=0.04, p=0.97; spatial AUC (CCGP): 0.003 ±
0.007, t=0.72, p=0.51. f) AUC values for experiment of Figure 5 with two novel animals. Statistics: Social AUC (decoding): -0.028 ± 0.015, t=-5.54, p<0.001; spatial AUC
(decoding): -0.018± 0.020, t=-2.63, p=0.027; social AUC (CCGP): -0.008 ± 0.009, t=-2.73, p=0.023; spatial AUC (CCGP): -0.004 ± 0.020, t=-0.60, p=0.56. g) AUC values for
experiment in Figure 5 with two familiar animals. Statistics: Social AUC (decoding): -0.035 ± 0.014, t=-7.61, p<0.001; spatial AUC (decoding): -0.029 ± 0.010, t=-9.17, p<0.001;
social AUC (CCGP): -0.012 ± 0.016, t=-2.41, p=0.037; spatial AUC (CCGP): -0.008 ± 0.014, t=-1.76, p=0.11. ns = non-significant, * p<0.05, ** p<0.01, *** p<0.001.
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Supplementary Figure 5. Behavior during social novelty recognition test of Figure 4. a) Time spent exploring empty cups in habituation trial and during presentation
of two pairs of novel/familiar animals in trials 1 and 2. Two-way repeated-measures ANOVA. Interaction Partner, F(1,4)=22.19, p<0.01; Interaction Partner x Trial, F(1.212,
4.849)=1.100, p>0.05. Šídák’s multiple comparisons test: habituation trial (cup A versus cup B), p>0.05; trial 1 (N1 versus F1), p<0.05, trial 2 (N2 versus F2), p>0.05. b)
Preference score in three trials. One-sample t-test against zero: habituation trial, t=1.802, df=4, p=0.15; trial 1, t=4.097, df=4, p<0.05; trial 2, t=1.716, df=4, p>0.05. Bars show
mean ± SEM. * p<0.05.
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Supplementary Figure 6. Decoding of social novelty/familiarity, position, and trial during experiment of Figure 4. a) Schema of experiment using two pairs of
novel/familiar animals in trials 1 and 2. b) Grouping of conditions for decoding social novelty, position, and trial. c, top) Performance of linear classifier for decoding social
familiarity (familiarity decoding performance = 0.83, null = 0.50 ± 0.02 [mean ± SD, throughout figure], p<0.001), position (position decoding performance = 0.94, null = 0.50 ±
0.02, p<0.001), and trial (trial decoding performance = 0.57, null = 0.54 ± 0.02, p<0.05) for pseudo-simultaneous dCA2 data. Open circles show average decoding performance
from 20 cross-validations. Horizontal line and error bars show mean ± 2SD of distribution of chance values from shuffled data. c, bottom) Performance of linear classifier for
same conditions for single subjects (mean familiarity decoding performance = 0.64 ± 0.09, paired t-test against individual chance levels t=2.99, n=5, p<0.05; mean position
decoding performance = 0.74 ± 0.04 STD, t=10.71, n=5, p<0.001; trial decoding performance = 0.51 ± 0.10, t=0.21, n=5, p>0.05). Open circles indicate performance of
individual subjects. Horizontal lines and error bars show mean ± SD across individual animals. ns = non-significant, * p<0.05, *** p<0.001.
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Supplementary Figure 7. Behavioral data associated with tests in Figure 5. a) Interaction durations with empty cups (habituation trial) or cups containing two novel mice
in trials 1 or 2 (data for Fig. 5b). No significant difference was observed for any trial: Two-way ANOVA for Partner x Trial F(2,22) = 0.8633, p=0.44. b) Preference scores in three
trials are not significantly different from zero. One-sample t-test against zero: habituation trial, t=0.3668, df=11, p=0.72; trial 1 (N1-N2), t=0.7748, df=11, p=0.45; trial 2 (N2-N1),
t=1.317, df=11, p=0.21. c) Interaction durations with empty cups or cups containing two littermates (data for Fig. 5c). No significant difference was observed for any trial:
Two-way ANOVA for Interaction Partner x Trial F(2,22)=1.079, p=0.36. d) Preference scores in three trials were not significantly different from zero. One-sample t-test against
zero, habituation trial, t=1.569, df=11, p=0.15; trial 1 (F1-F2), t=1.249, df=11, p=0.24; trial 2 (F2-F1), t=0.2079, df=11, p=0.84. Bars show mean ± SEM.
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Supplementary Figure 8. Decoding performance and CCGP for individual subjects in the two-novel and two-familiar setup (Fig. 5). Throughout figure, open circles
(decoding performance) or squares (CCGP values) show performance for individual subjects. Horizontal line and error bars show mean across subjects ± SD. a) Two-novel
decoding performance for individual subjects. Decoding of social identity (decoding performance = 0.63 ± 0.09 [mean ± SD, throughout figure], paired t-test against individual
chance levels t=4.43, n=10, p<0.01) and position (decoding performance = 0.67 ± 0.09, t=5.65, n=10, p<0.001) was significant. Trial decoding (decoding performance = 0.53 ±
0.05, t=1.65, n=10, p>0.05) was at chance levels. b) Two-familiar decoding performance of identity, position, and trial for individual subjects (identity decoding performance
= 0.60 ± 0.05, paired t-test against individual chance levels, t=7.16, n= 11, p<0.001; position decoding performance = 0.69 ± 0.09, t=6.84, n=11, p<0.001; trial decoding
performance = 0.56 ± 0.04, t=4.33, n=11, p<0.01). c) Cross-condition generalization performance is significantly greater than chance in classifying two novel identities and
left-right position for individuals’ data (two-novel identity CCGP = 0.62 ± 0.07, paired t-test against individual chance levels, t=4.67, n=7, p<0.01; position CCGP=0.64 ± 0.07,
t=4.61, n=7, p<0.01). d) Two-familiar decoding performance of identity, position, and trial for individual subjects (identity decoding performance = 0.60 ± 0.05, paired t-test
against individual chance levels, t=7.16, n= 11, p<0.001; position decoding performance = 0.69 ± 0.09, t=6.84, n=11, p<0.001; trial decoding performance = 0.56 ± 0.04,
t=4.33, n=11, p<0.01). d Two-familiar test CCGP values for individual subject data show that identity CCGP is non-significantly different from chance, while position CCGP is
significantly higher than chance (two-familiar identity CCGP = 0.54 ± 0.07, paired t-test against individual chance levels t=1.38, n=11, p>0.05; position CCGP=0.61 ± 0.11,
t=3.13, n=11, p<0.05). ns, non-significant; *, p<0.05; **, p<0.01; ***, p<0.001.
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Supplementary Figure 9. Comparisons of trial decoding performance, identity CCGP, and position CCGP in tests with two novel mice or two familiar mice from
Figures 5,6. a) left: by-subject paired comparison of trial decoding performance during interaction with two novel mice (left side of each subject plot) and two familiar mice
(right side of each subject plot). Significance levels are computed with a Mann-Whitney U test on n=20 cross validation repetitions (for decoding performance) or n=20
pseudo-population re-sampling (for CCGP). right: summary of left panel showing only mean performance values. Circles indicate single subject performances. Horizontal lines
and error bars show mean ± SD. Significance is computed via Wilcoxon signed-rank test across individual subjects. b, c) same analysis of a done for identity and position
CCGP, respectively. ns, non-significant; *, p<0.05; **, p<0.01; ***, p<0.001.
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Supplementary Figure 10. Comparisons of decoding performances of geometrical model, experimental data and behavior in tests with two novel mice or two
familiar mice from Figures 5,6. a) Experimental results for social and spatial decoding performance from dCA2 populations in individual subject mice, same analysis of Suppl.
Fig. 9. Shown statistics refer to a Wilcoxon signed-rank test. Circles indicate single subject performances. Horizontal lines and error bars show mean ± SD. b) Experimental
results for social and spatial decoding performance from pseudo-simultaneous population data [mean ± SD from 20 cross-validation folds] in tests with two novel (N1-N2) or two
familiar (F1-F2) mice. c) Geometrical model results for spatial and social decoding performance of two mice as function of increasing degrees of familiarity (0, completely
novel mice; 1.0, familiar littermates). d) Geometrical model results for social and spatial decoding in the test with one familiar and one novel mouse (F-N) from Figures 1, 2, 3.
e) Geometrical model results for social and spatial CCGP in the F-N test from Figures 1, 2, 3. Note that the model correctly reproduces that social decoding and position
decoding, as well as social and position CCGP, have comparable values in the F-N experiment. f) Interaction times with empty cups in habituation trial and two novel mice
(N1-N2) or two familiar mice (F1-F2) in trials 1 and 2 for the experiment shown in Figure 5. No significant difference in interaction was observed between the two tests: two-way
repeated-measures ANOVA of Test F(1,13)=0.3093, p=0.59, or Test x Trial F(2,26)=1.663, p=0.21. Shaded areas in c,d,e show SD over 200 simulations. Bars in (f) show mean
± SEM. ns = non-significant.

Supplementary Video 1. ∆F/F calcium imaging recording of CA2 pyramidal neurons. Recording is 4x speed.

Supplementary Video 2. Animation of data gathered from example subject mouse in the 5-minute experiment corresponding to Figure 1, trial 1, demonstrating subject
exploring familiar littermate in left cup and novel conspecific in right cup. Mouse head and body represented by small and large thin black circles around the blue and magenta
dots, respectively. Active interaction with conspecifics is demonstrated by black fill within the head and body circles. Left and right cup are represented by wide black circles.
Ring around body represents the ∆F/F activity of a single sample neuron, with a scale from black (no activity) to red (high activity), normalized to trial maximum ∆F/F
value. Grey imprints of the head and body represent the head and body positions at the time of maximum event ∆F/F . Yellow line indicates the path of the subject in the
arena. The sample cell demonstrates a high selectivity for calcium events in the presence of the novel conspecific in the right cup over the familiar littermate in the left cup.

Supplementary Video 3. Animation of data gathered from example subject mouse in the 5-minute experiment corresponding to Figure 1, trial 2, with stimulus conspecific
positions swapped from Supplementary Movie 2 such that the familiar littermate is in the right cup and novel conspecific in the left cup. Mouse head and body represented by
small and large thin black circles around the blue and magenta dots, respectively. Active interaction with conspecifics is demonstrated by black fill within the head and body
circles. Left and right cup are represented by wide black circles. Ring around body represents the ∆F/F activity of a single sample neuron, with a scale from black (no
activity) to red (high activity), normalized to trial maximum ∆F/F value. Grey imprints of the head and body represent the head and body positions at the time of maximum
event ∆F/F . Yellow line indicates the path of the subject in the arena. With the positions of the conspecifics reversed, the sample cell now demonstrates little to no selectivity
for the novel conspecific in the left cup or familiar conspecific in the right cup. The high selectivity in trial 1 and low selectivity in trial 2 (when positions are reversed) is consistent
with a neuron demonstrating mixed selectivity.
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Supplementary Information - Memory capacity for disentangled representations

Our goal is to compare memory storage capacity of low- and high-dimensional representations. We assume that a memory of an experience
is recollected when the neural circuit is presented with a cue and it can reconstruct the patterns of activity corresponding to the experience
stored in memory. This can be implemented with a feed-forward network that essentially implements an autoencoder (see e.g. (39)) or
in recurrent neural network like the Hopfield network (36, 37), in which each attractor of the neural dynamics represents one memory
(this scenario would be compatible with the anatomy of dCA2, which is known to have recurrent excitatory connections (20)). In both
cases, the synaptic weights are chosen in a way that the recollected memory is reconstructed: for the autoencoder the memory is simply
reconstructed in the output layer, and for a recurrent network it is reconstructed after relaxation in an attractor. Also, in both cases a
partial cue (e.g. a pattern that has a limited overlap with the one stored in memory) will lead to the reconstruction of the full stored memory.

In order to estimate the memory capacity we need to make assumptions about the nature of the memories. For random uncorrelated
patterns the memory capacity of the Hopfield model is p ∼ N : the number of attractors p scales linearly with the number N of neurons.
Random patterns are high dimensional, as long as p is not too large (i.e. when p < N) and N is large enough, so this is one illustrative
and highly representative case of memories that are represented with high dimensional geometries. Real world memories are not random
and uncorrelated but it is not unreasonable to consider the random representations if one assume that the brain has a neural circuit
that decorrelates the representations (recoding), at least so some extent, before storing them in memory (see for example (39)). This
neural circuit could be implemented in the dentate gyrus, which is known to play an important role in pattern separation (42–44) (pattern
separation is clearly a form of decorrelation).

In order to estimate the memory capacity we start by considering one possible way of constructing disentangled representations. The
representations we now define are not the only possible type of disentangled representations, but they are a representative and illustrative
example. Moreover, they have a geometry that is compatible with the observed low dimensional representations. Each pattern is obtained
by concatenating L vectors of NL neurons, each encoding one latent variable Λλ, with λ = 1, ..., L (e.g. we could assume that L = 2 and
the first NL neurons of the full vector encode the position of the animal, and the second NL neurons encode the identity). For simplicity
we assume that each latent variable is encoded by the same number of neurons. All the neurons within each group of NL neurons have
the same activation state, which equal to the value of the latent variable Λλ that they encode, and hence they are perfectly correlated.
Following (36) we assume that there are only two activation states ±1 for each neuron.

The patterns to be memorized are ξµi where µ is the memory index, i is the index of the neuron (i = 1, ..., N). As discussed above, the
patterns are obtained by concatenating vectors that encode different latent variables. Hence ξµi = Λµ

λ
for i = (λ−1)NL+1, ..., (λ−1)NL+NL,

where Λµ
λ
is value of the latent variable indexed by λ for memory µ. For example if L = 2, the memory µ would have the following form:

ξµ =

NL︷ ︸︸ ︷
ξµ1 , ξ

µ
2 , ...ξ

µ
NL

,

NL︷ ︸︸ ︷
ξµNL+1, ξ

µ
NL+2, ...ξ

µ
N =

NL︷ ︸︸ ︷
Λµ1 ,Λ

µ
1 , ...Λ

µ
1 ,

NL︷ ︸︸ ︷
Λµ2 ,Λ

µ
2 , ...Λ

µ
2

We assume that Λµ
λ

= ±1 with equal probability. In other words the patterns Λµ
λ
are random and uncorrelated. This implies that each

memory is constructed by choosing randomly each latent variable. This could correspond to a particular episode in which, for example, a
certain animal is encountered at a particular location. The identity of the animal and the location are assumed to be random. These
representations are low dimensional as their dimensionality is L and L is assumed to be much smaller than N .

We now estimate the memory capacity using a simple signal to noise analysis, as in (36). If the initial state is set by the input, and it is
sl(t), then the state of activation at time t+ 1 of neuron sk is given by the following expression:

sk(t+ 1) = sign

(
N∑
l=1

wklsl(t)

)
where k, l = 1, ...N and N = LNL and wkl is the synaptic weight connecting neuron l to neuron k. The argument of the sign function is
total synaptic current to neuron k and we call it Ik. We assume that wkl is computed using the Hopfield prescription:

wkl =
p∑

µ=1

ξµ
k
ξµ
l

We now focus on the total incoming synaptic current to neuron k:

Ik =
N∑
l=1

wklsl(t) =
N∑
l=1

p∑
µ=1

ξµ
k
ξµ
l
sl(t)

We consider the case in which a generic pattern is presented, for example memory 1: s(t) = ξ1. In the sum over l, we can now group
together all the neurons that encode the same latent variable (they all have the same state of activation) and express the total synaptic
current as a function of the Λ variables, which are independent by construction (both with respect to λ and to µ):

Iν = NL

(
Λ1
ν

L∑
λ=1

Λ1
λΛ1

λ +
∑
µ>1

L∑
λ=1

ΛµνΛµ
λ

Λ1
λ

)
Where Λ is the index of the latent variable encoded by neuron k, the neuron whose state of activation has to be updated. We separated
the sum over µ into two parts: the first term reproduces the stored memory (Λ1

ν) that has to be recollected and hence is usually called
(memory) signal. The second accounts for the interference from the other memories, and under the assumption that the values of the
latent variables are random and uncorrelated, it is basically just noise. As Λ1

λΛ1
λ = 1, the signal scales like NLL and the noise term has a

variance of approximately N2
LpL (there are pL independent terms in the noise). So the signal to noise ratio (SNR) is L/

√
pL =

√
L/p.

This means that the SNR of the memory to be recollected remains large enough, even in the presence of other memories, as long as p < L.
Hence the maximum number of memories that can be recollected scales as L, the number of latent variables. Notice that NL cancels
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out and the max capacity p hence scales as L (it does not depend on the total number of neurons but only on the number of latent variables).

This result is not surprising and it holds also for other learning rules. For example for the pseudo-inverse approach (37, 45, 46) it is clear
that the memory capacity scales linearly with the dimensionality of the input patterns, which in our case is L.

Notice that we had to assume that the weights between neurons encoding the same latent variable are all set to zero. Otherwise we have a
problem similar to the presence of autapses in the Hopfield model (synapses that connect a neuron with itself): the autapses greatly
enhance the stability of the input cue, at the expense of the ability to recall the stored memory (37, 46). By setting all the synapses
between neurons encoding the same latent variable to zero, we ensure that the network recollects the memory stored in the synaptic
weights and it does not simply reproduce the cue. We neglected the corrections due to these zero weights in the formulae above because
they do not change the scaling properties we are interested in when L, NL and N are large enough.

The simple calculations reported here have only the purpose to illustrate some properties of memory systems storing disentangled
representations. It has several limitations: 1) the disentangled representations we considered are not the only possible low dimensional
representations, and in particular we should consider representations that are rotated, which would be more similar to those observed
in the experiment. In the simple case considered above each neuron encodes only one disentangled variable. 2) it will be interesting to
consider representations that are not fully disentangled and have a dimensionality that is intermediate 3) the learning rule is very simple
and it is biologically plausible but it doesn’t consider the problem of autapses (how does the system set to zero the connections between
neurons representing the same latent variable?). On the other hand it seems to be clear that CA2 is not really dealing with these low
dimensional representations. The only purpose of the calculations reported here is to show that there is a problem of memory capacity
with low dimensional representations and that is probably the reason why they are not used in CA2 to represent familiar animals.
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