
LMM-MQM time series mapping - An application in a murine advanced 1 

intercross line identifies novel growth QTLs 2 

Danny Arends1,❧, Deike Hesse1, Stefan Kärst1, Sebastian Heise1, Shijie Lyu1,2, Paula Korkuc1, Manuel 3 

Delpero1, Megan K. Mulligan3, Pjotr Prins3,4, Gudrun A. Brockmann1  4 

1Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, 5 

Invalidenstraße 42, D-10115 Berlin, Germany 6 

2 Institute of Animal Science and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 7 

450002, People's Republic of China 8 

3Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, 9 

Memphis, TN 38163, USA 10 

4European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center 11 

Groningen, 9713 AV Groningen, The Netherlands. 12 

❧ To whom correspondence should be addressed. 13 

 14 

Address for correspondence: 15 

Dr. Danny Arends 16 

Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin 17 

Invalidenstraße 42, 10115 Berlin, Germany 18 

Phone: 0049 30 2093 49875 19 

Fax: 0049 30 2093 6397 20 

E-mail: Danny.Arends@gmail.com 21 

 22 

 23 

Keywords:  24 

Multiple QTL Mapping, time series, association analysis, body weight, linear mixed models, Foxo1, 25 

Insulin pathway, GWA, variance explained, SNPs 26 

  27 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.23.477441doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477441
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 28 

The Berlin Fat Mouse Inbred line 860 (BFMI860) is a mouse model for juvenile obesity. Previously, a 29 

recessive major effect locus (jObes1) was identified on chromosome 3 explaining around 26% of the 30 

body weight variance in an BFMI860xC57BL/6NCrl advanced intercross line. The aim of this study was to 31 

discover additional QTL. 32 

Time series body weight data were modeled using linear mixed models (LMM), while a multiple QTL 33 

mapping (MQM) approach compensated for the jObes1 locus effect. LMM-MQM identified five 34 

additional loci significantly associated with body weight. Variance explained by the jObes1 locus 35 

increased to 38.1% when using LMM-MQM mapping, while the additional loci explained between 2.0% 36 

and 3.9% of the body weight variance. Several positional candidate genes within the novel QTL regions 37 

were found in KEGG pathways for insulin signaling and insulin resistance. Strong distortion with 38 

preference for the BFMI allele was observed within a newly identified QTL containing the well-known 39 

Foxo1 regulator of adipocyte differentiation.  40 

Here, we present a novel method for QTL detection in time series data: LMM-MQM time series 41 

mapping. We show that our method is more powerful in detecting QTLs compared to single timepoint 42 

mapping approaches. Thus, the time series structure should be considered for optimal detection of 43 

small effect QTLs. LMM-MQM time series mapping can be used to find genetic determinants of all kind 44 

of “phenotypes over time” be it lactation curves in cattle, plant biomass, drug clearance in human 45 

clinical trials, or cognitive decline during disease. 46 

  47 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.23.477441doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477441
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 48 

Weekly body weights are often collected during animal quantitative trait locus (QTL) experiments to 49 

monitor animal health and as an additional phenotype for mapping. When confronted with time series 50 

data, QTL mapping is normally performed at each time point independently 1–3. However, QTL mapping 51 

per time point fails to benefit from the underlying repeated measurement structure of time series data 52 

4,5. Additionally, mapping time points independently does not take into account that genetic effects can 53 

be time-dependent with effect sizes varying over time 6, this can lead to failure to detect loci of interest 54 

or underestimation of variance explained by a given locus. 55 

Recently, more sensitive statistical methods have been developed for QTL mapping, such as composite 56 

interval mapping (CIM) 7, multiple QTL mapping (MQM) 8,9, LASSO 10, Bayesian mapping methods 11, and 57 

machine learning 12. These methods aim to provide a better dissection of genetic effects compared to 58 

classical interval mapping 13 by using more advanced statistical modeling, prior information and/or 59 

incorporating genetic cofactors to compensate for known genetic effects. While, these methods are 60 

generally simple and computationally efficient they are limited to mapping individual time points. 61 

Statistical methods and approaches have also been developed to model time series data. The simplest 62 

approach is to take the average or maximum LOD score 14 across the time series. More complex 63 

methods rely on linear mixed models (LMM) 15,16 to account for repeated measurements and covariance 64 

structure, or employ a two-step modeling approach 17 estimating growth curves for each individual and 65 

then associating curve parameters with genetic markers 18. While these methods allow to model 66 

temporal data, they are not designed to handle genetic loci known to affect the phenotype under 67 

investigation. 68 

The Berlin Fat Mouse Inbred line (BFMI), a mouse model for juvenile obesity 19,20, which becomes obese 69 

under a standard maintenance diet at around 42 days 20 and acquire several features of the metabolic 70 

syndrome including reduced insulin sensitivity 21 at around 70 days. Previously, individual time point 71 

mapping of growth data from BFMI identified a major effect locus on chromosome 3 (jObes1) 22, which 72 

besides body weight also pleiotropically affects the ratio between fat and lean mass. An advanced 73 

intercross line (AIL) between the obese BFMI860 and the lean reference mouse strain C57BL/6NCrl 74 

(B6N) showed that the jObes1 locus explains 25.6% of the variance in body weight. The jObes1 locus 75 

combined with other sources of variance: subfamily (25%), litter number (6%), litter size (5%), and 76 
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seasonal effects (1%) still leaves around 37 % of body weight variance unexplained 23. Therefore, more 77 

loci are expected to significantly contribute to the body weight of the AIL population. 78 

Here, we present a novel method called LMM-MQM time series analysis that combines the strengths of 79 

two well established (QTL mapping) methods to discover additional genetic loci associated with body 80 

weight across different time points. We use MQM to compensate for known genetic loci 8,9 and combine 81 

this with the flexibility of modeling time series data using LMMs to consider random effects and 82 

repeated measurements 24. The method presented here is generic and can be used to perform 83 

association analysis of any phenotype measured over time when genotypes are available. 84 

  85 
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Material & Methods 86 

Mouse population 87 

This study is based on genotypic and phenotypic data of 344 male mice of an advanced intercross line 88 

(AIL) in generation 28. The AIL population was generated from the mapping population of a cross 89 

between a male mouse of the obese line BFMI860 and females of the lean reference mouse strain 90 

C57BL/6NCrl (B6N). Beginning in generation F1, individuals from the same generation were randomly 91 

mated using the program RandoMate 45.  92 

Husbandry conditions 93 

Mice were maintained under conventional conditions and a 12:12 h light:dark cycle (lights on at 6:00 94 

a.m.) at a temperature of 22 ± 2°C. Animals had ad libitum access to food and water. They were fed with 95 

a rodent high-fat diet (HFD) containing 19.5 MJ/kg of metabolizable energy, 45% from fat, 24% from 96 

protein and 31% from carbohydrates (E15103-34, ssniff EF R/M, Ssniff Spezialdiäten GmbH, Soest / 97 

Germany). All experimental treatments of animals were approved by the German Animal Welfare 98 

Authorities (approval no. G0065/14). 99 

Phenotypes 100 

Body weight of AIL animals was recorded weekly between the age of 21 and 70 days. Phenotypes and 101 

covariates can be found in supplemental file 1. 102 

Genotypes and SNP quality control 103 

Genotypes of 344 males of AIL generation 28 were generated at GeneSeek (Lincoln, NE) using the 104 

second-generation Mouse Universal Genotyping Array (MegaMuga, Illumina, San Diego, CA). This array 105 

contains probes targeting around 77,800 known SNPs. Probes were remapped to the mouse reference 106 

genome (GRCm38) using BLASTN 46. Probes that did not map uniquely were removed from further 107 

analysis. SNP genotype calls with low confidence (< 0.9) were set to missing. Furthermore, when a SNP 108 

had less than 30 individuals in a genotype group, that genotype group was set to missing to prevent 109 

false association. After this procedure non-segregating SNPs were removed. Furthermore, SNPs were 110 

discarded when 1) the founder information was not available 2) one (or both) of the founder strains 111 

were heterozygous or 3) founders have the same genotypes. In total 17,971 SNPs passed these very 112 

stringent quality checks. Genotype data are available in supplemental file 1. 113 
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Modeling of time series data 114 

The individual’s body weight as phenotype response of all models is coded as P. In the case of per time 115 

point linear model (LM) and linear mixed model (LMM) mapping this is the body weight at the time 116 

point under consideration. In LMM-MQM time series mapping P stands for all body weight 117 

measurements obtained during the entire experiment. Fixed and random effects are encoded using the 118 

following abbreviations: 119 

 F = Family structure, represented by the father of the litter (31 groups) 120 

 Ls= Litter size, the number of animals born in a single litter (5 groups: 8, 9, 10, 11, and 12 121 

offspring) 122 

 Ln= Litter number, the nth litter of a mother (5 groups: A, B, C, D, and E). Considering biological 123 

evidence, a two-group encoding was also tested during the model phase to differentiate the first 124 

litter of a mouse from the following litters phase (2 groups) 125 

 Lt = Litter type, the combination of litter number and litter size. Depending on the coding of the 126 

litter number this leads to a different number of factor classes for the litter type. Lt2 means litter 127 

type encoded using litter number as two levels (resulting in 8 groups), Lt5 stands for litter 128 

number encoded using the original five levels (resulting in 14 groups) 129 

 S = Season of birth (3 groups: Fall, Spring, and Winter) 130 

 T, T2 and T3 = Time of measurement (8 timepoints day 21, 28, 35, 42, 49, 56, 63, and 70 modeled 131 

as a linear effect shifted by 21 days, making the day 21 the intercept) 132 

 M(jObes1) = Genotypes at the top marker of the jObes1 locus (3 groups: B6N/B6N, B6N/BFMI, and 133 

BFMI/BFMI) 134 

 M(x) = Genotypes at the marker under consideration, this can be 2 or 3 groups depending on the 135 

number of unique genotypes (AA, H, BB) at a certain marker 136 

 R(1|S) = Random subfamily effect: Subfamily as grouping factor, no slope parameter 137 

 R(1|Ind) = Random individual effect: Individual as grouping factor, no slope parameter 138 

 R(Time|Ind) = Random effect: Individual as grouping factor, time as slope parameter 139 

 E = Error term of the model 140 

Before modeling, it was essential to reduce the complexity of the model and to find an optimal strategy 141 

to deal with cofactors that contain a large number of groups, in our case: litter number and litter size. 142 

From experience we know that there is a significant difference in litter size and litter weight between 143 

the first litter of a female compared to following litters by the same female. We defined Ln2 and Ln5, 144 
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encoding for litter number as two (1st litter versus next litters) or five levels (litter A to E), respectively. 145 

Model selection (supplemental file 2) showed that including litter number and litter size was done most 146 

parsimonious when coded as litter type with two levels for litter number (Lt2) which results in 8 groups. 147 

Body weight was modeled by including the largest environmental covariate (subfamily) found during our 148 

previous work, creating an initial null-model for comparison. Afterwards, all other environmental 149 

covariates were included in a stepwise fashion, adding covariates to the model if they significantly 150 

improve upon the previous model (>10 AIC units drop) (Table 1). When no environmental covariates 151 

were left to include or exclude from the model, time was tested as a fixed effect. After including time as 152 

fixed effect it was tested as the slope parameter in the random effect model. Modeling was continued 153 

by adding higher exponents of time into the model as fixed effects, adding additional inflection points to 154 

the model to improve the fit of the model 4, using the 10 AIC unit drop criterion for inclusion into the 155 

model.  156 

When no more exponentiations of the time parameter are left that significantly improved the model, 157 

genetic loci known to influence the AIL body weight were included. Genetic covariates in the BFMI AIL 158 

population consist of the jObes1 locus on chromosome 3 (represented by the genotype at top marker) 159 

that had been detected before. This locus was added into the model and tested for its ability to improve 160 

the fit of the model. The resulting model was defined as the null-model for LMM-MQM time series 161 

mapping. 162 

QTL mapping 163 

Standard QTL mapping for each of the 8 measured time points was performed using a standard linear 164 

model (LM) (Results published before 23) and a standard linear mixed model (LMM). The M(jObes1) term 165 

was only included in the model when performing multiple QTL mapping (MQM) 9 to correct for the 166 

jObes1. Additionally, this the M(jObes1) term was dropped when associating markers close (+/- 5 Mb) to 167 

the Jobes1 locus. 168 

The following linear model (LM) that was used per time point includes F as family structure which is 169 

represented by the father of a litter to absorb population structure: 170 

P = F+Lt2+M(jObes1)+M(x)+E 171 

The following linear mixed model (LMM) used per time point additionally includes subfamily as a 172 

random effect to absorb any residual population structure, not absorbed by F: 173 
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P = F+Lt2 +M(jObes1)+M(x)+R(1|S)+E 174 

LMM-MQM time series mapping 175 

Modeling of time series resulted in the following linear mixed model that was fitted to the growth 176 

phenotype across all eight time points (For modeling steps see Table 1). Time points were shifted by 21 177 

days, such that the body weight measurements correspond to “days after first weighing”. The model 178 

includes the previously identified jObes1 locus as a main effect covariate M(jObes1) and as a covariate-time 179 

interaction M(jObes1):T. Since the jObes1 locus could directly affect the body weight (M(jObes1)) as well as 180 

cause differences in body weight gain over time (M(jObes1):T) throughout the experiment. Derivation of 181 

the null-model by AIC selection (Table 1), leads to the following null-model for mapping QTL for the 182 

growth curves: 183 

P = F+Lt2+T+T2+T3+M(jObes1)+(M(jObes1):T)+R(T|I)+E 184 

LMM multiple QTL mapping assesses the direct effect of the marker M(x) under investigation on the 185 

body weight, but again is also allowed to affect body weight gain over time. This is done by including the 186 

interaction term (M(x):T) into the model, leading to the following full-model including the marker 187 

effect: 188 

P = F+L t2+T+T2+T3+M(jObes1)+(M(jObes1):T)+ M(x)+(M(x):T)+R(T|I)+E 189 

The full-model at each marker is tested against the null-model using the built in ANOVA χ2-test available 190 

from the R language for statistical computing 48. Resulting p-values were converted to LOD scores by 191 

taking the -log10(p-value). When mapping within 5 Mb of the jObes1 top marker on chromosome 3, the 192 

M(jObes1) and (M(jObes1):T) terms are dropped from the model as is required in multiple QTL mapping 8,9.  193 

Since many markers are in strong linkage disequilibrium (LD) with each other in AIL populations, the 194 

simpleM procedure 49 was used to estimate the number of independent tests performed. The simpleM 195 

approach was modified to deal with missing genotypes introduced by quality control of genotype data. 196 

The fixLength parameter was tested (from 10 to 300, step size 5) to find the number of independent 197 

tests performed (Meff). Using this approach, the number of independent tests was estimated to be 198 

1,546, when the fixLength parameter was set to 155. Significance thresholds were calculated using 199 

stringent Bonferroni correction to prevent false associations. Significance thresholds were determined 200 

as -log10(0.01/1,546) = 5.18 LOD to be ‘genome-wide highly significant’ and 4.49 is considered ‘genome-201 

wide significant’ corresponding to genome wide α-level of 0.01 and 0.05, respectively.  202 
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QTL confidence intervals were defined when two or more markers show significant association within a 203 

1 Mb region, after which a conservative 2.0 LOD drop from the top marker 50 was used; confidence 204 

interval start and end positions are defined by the first marker upstream and downstream of the top 205 

marker which have a LOD score 2.0 lower than the top marker. An exception to this rule was made when 206 

segregation distortion at markers was detected, which was the case for a single novel QTL region (nR3). 207 

Variance explained 208 

Computing variance explained in an MQM LMM setting is non-trivial, compared to single time point 209 

mapping. The biggest nuisance is dealing with the random effects of the model. Our model includes a 210 

timepoint|individual random effect, which means that all animals are allowed to have their own start 211 

weight at the beginning of the experiment and their own individual growth rate (body weight gain) 212 

during the experiment. Including these random effects into the model allowed to better estimate the 213 

effect size of the fixed effects of interest. However, the variance absorbed by these random effects 214 

counts as unexplained variance in our experimental setup. 215 

Since the random effect needs to be handled as non-explained variance, variance explained is estimated 216 

by using the following approach: for each model the estimated fixed effects were used to predict body 217 

weights of all animals at each time point. Variance explained was defined as the squared Pearson 218 

correlation between the observed body weights and the predicted values.  219 

Since each marker is included in two components, as a main effect (M(x)), as well as an interaction term 220 

((M(x):T)), variance explained was computed for each top marker by comparing the variance explained 221 

by the model including the main effect and the interaction term, with the variance explained by the 222 

model in which both of these components were not included. 223 

Code availability 224 

LMM-MQM time series mapping code is available at: https://github.com/DannyArends/LMM-MQM-TS. 225 

All code is provided under the GNU General Public License version 3.  226 

Candidate gene analysis 227 

Positional candidate genes were determined for each QTL confidence interval. These gene lists were 228 

further prioritized based on their occurrence in several KEGG pathways which encompass the BFMI 229 

obesity phenotype on a molecular level. Given that BFMI mice are prone to obesity, KEGG pathways that 230 

encompass high fatness and several other features of the metabolic syndrome on a molecular level were 231 

selected. KEGG pathways considered can be found in supplemental file 3. 232 
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Additionally, a literature study investigating known association of genes within the QTL confidence 233 

intervals was performed. Genes were prioritized as candidates if literature evidence was found, e.g. 234 

previous association between the gene and body weight, obesity, or type II diabetes.  235 

Further prioritization of candidate genes was performed by the analysis of DNA variations (3' and 5'-UTR 236 

and non-synonymous SNPs) detected within the candidate genes. This was done using DNA sequencing 237 

data of the BFMI860 parental strain which was compared to the B6N reference mouse strain available 238 

from Ensembl (version GRCm38.6). Based on these mutations and their impact on the gene, further 239 

prioritization was performed. 240 

DNA Sequencing 241 

Paired-end DNA sequencing was performed on the parental line BFMI860 using 150 bp paired end 242 

chemistry. 1 µg of genomic DNA was prepared for sequencing using the Illumina PCR free TruSeq 243 

protocol. Obtained FastQ data was mapped against the Mus musculus mm10 genome using bwa-mem 244 

(v.0.7.13) 51. Duplicate reads were marked using picard-tools (v.2.4.1) 52. Read alignment was checked 245 

and prepared for further processing with GATK tools 53 using samtools (v.1.3.1) 54.  246 

Indel realignment and base quality score recalibration was performed using the GATK (v3.6) following 247 

GATK’s best practices workflow 55. Afterwards variant calling was performed per sample applying GATK’s 248 

HaplotypeCaller in ERC mode yielding variants stored in the variant call file format (vcf) 56.  249 

For selected candidate genes known variants were annotated using the dbSNP (version snp138), after 250 

which consequences of genomic variants were annotated using the SnpEff tool (version 4.1k) 57 available 251 

at Ensembl (database version GRCm38).  252 

  253 
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Results 254 

LMM-MQM time series mapping detected 5 novel QTL regions. These new regions are designated 255 

throughout the results section of this paper as nRX, which is short hand for “novel region X”, where X is 256 

the region number as denoted in Table 2.  257 

Per time point QTL mapping 258 

LM, LMM, and LMM-MQM mapping at individual time points did not identify any new QTL compared to 259 

those previously published 23 (Figure 1). However, some regions are consistently showing non-significant 260 

associations at several time points during the analysis. For example, during the LMM mapping nR5 is 261 

consistently detected from day 42 to 70 with a non-significant LOD score between 2 and 4 (Figure 1 - 262 

Top). When using LMM-MQM mapping nR1 (day 63 and 70), nR2 (day 49 to 70), and nR4 (day 21, 28, 35, 263 

63, and 70) were detected with non-significant LOD scores between 2 and 4 (Figure 1 - Bottom). 264 

LMM-MQM time series mapping 265 

An improvement of QTL identification could be obtained by using LMM-MQM time series mapping 266 

across all time points. This approach identified five new genome-wide significant QTLs (nR1 to nR5 Table 267 

2), previously undetected during LMM or MQM mapping at individual time points. Variance explained by 268 

these novel loci was calculated per time point (Table 3). Between 2.0 % and 3.9 % of the body weight 269 

variance can be explained by individual loci. Furthermore, the variance explained by the jObes1 locus at 270 

the end of the experiment (day 70) increased from 25.6 % (single marker mapping) to 36.1 % when using 271 

LMM-MQM time series analysis. 272 

LMM-MQM time series analysis detected two additional QTLs flanking the jObes1 locus on chromosome 273 

3 (Figure 2). Located proximal of the jObes1 locus is nR2 (Chr3:26,989,539 - 35,953,921). The nR2 top 274 

marker shows that individuals homozygous for the BFMI allele show an increase in growth rate of 23 275 

mg/day compared to homozygous B6N individuals. Heterozygous animals on this locus show a 276 

decreased growth rate compared to B6N individuals of -27 mg/day. While these effects look small when 277 

expressed on a daily basis this amounts to a difference of ~2.5 grams between heterozygous and 278 

animals homozygous BFMI at the nR2 locus when considering the whole experimental period. The 279 

second QTL near the jObes1 locus (nR3, Chr3:49,901,885 - 52,973,026) located distal of the jObes1 locus 280 

leads to an increase in growth rate for heterozygous individuals (72 mg/day) and homozygous BFMI 281 

individuals (43 mg/day) compared to homozygous B6N individuals.  282 
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Interestingly, within the nR3 confidence interval (Chr3:49,901,885 - 52,973,026) a very small region 283 

(Chr3:52,218,893 - 52,370,324) was observed that displays a sharp drop in LOD scores (Figure 2 and 3). 284 

This small region consisting of 5 markers shows LOD scores below 1.0 LOD, while the markers flanking 285 

both sides of this small regions show significant LOD scores above 5.50. Further investigation of this 286 

sharp drop in LOD score revealed a segregation distortion within this region. Within this small region, 287 

the number of animals homozygous for the B6N allele was severely reduced to below our threshold of 288 

30 individuals per genotype group (Figure 3). The loss of homozygous B6N individuals caused the loss of 289 

association in this region, since no significant difference exists between homozygous BFMI and 290 

heterozygous BFMI/B6N individuals. Obviously, selection against homozygosity of the B6N allele at this 291 

region has taken place. Therefore, we expect that genes located in this LOD-drop region could be 292 

responsible for the observed QTL effect. 293 

Surprisingly, this five-marker-region which showed a sharp drop in LOD scores, harbors only one protein 294 

coding gene, Foxo1 (Chr3:52,268,336 - 52,353,221), which has one SNP in the 5' and six SNPs in the 3' 295 

region of the gene in BFMI mice. The resulting protein (FOXO1) is an important transcription factor 296 

which plays a central role in the regulation of glucose metabolism by insulin signaling in the liver 25. 297 

FOXO1 is also known to be involved in the commitment of a preadipocyte to develop into mature 298 

adipocytes 26. Furthermore, it was shown that FOXO1 activity decreases lipid droplet formation 27 in 299 

developing preadipocytes. 300 

Candidate genes prioritization by KEGG pathways 301 

Most candidate genes were found in the pathways related to insulin signaling (mmu04910) and insulin 302 

resistance (mmu04931). KEGG pathway mmu04910 - insulin signaling identified five possible candidate 303 

genes underlying different nR confidence intervals. Located in the nR2 confidence interval are Prkci 304 

(Chr3:30,995,747 - 31,052,959) and Pik3ca (Chr3:32,397,671 - 32,468,486) 28. The previously discussed 305 

Foxo1 (Chr3:52,268,336 - 52,353,221) gene is located in the nR3 confidence interval. Pik3cb 306 

(Chr9:99,036,654 - 99,140,621) is located in nR4, and Sorbs1 (Chr19:40,294,753 - 40,513,779) in nR5. 307 

KEGG pathway mmu04930 - Type II diabetes mellitus identified another possible candidate gene: 308 

Cacna1e (Chr1:154,390,731 - 154,884,501) located in nR1. In addition, KEGG mmu04950 - Maturity 309 

onset diabetes of the young, revealed another candidate gene: Slc2a2 (Chr3:28,697,903 - 28,731,359) in 310 

nR2. mmu04923 - Regulation of lipolysis in adipocytes adds Ptgs2 (Chr1:150,100,031 - 150,108,227) 311 

located in nR1 as another candidate gene. In nR4 KEGG mmu04973 - Carbohydrate digestion and 312 

absorption identified Atp1b3 (Chr9:96,332,655 - 96,364,442) as a further candidate. 313 
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Candidate genes per region 314 

Within the nR1 region (Chr1:149,553,681 - 154,868,088), a total of 34 protein coding genes are located. 315 

The KEGG pathway search identified one possible candidate (Cacna1e) while literature search found 316 

another three candidates previously implicated in the regulation of body weight: Pla2g4a associated 317 

with resistance to high fat diet induced obesity and insulin sensitivity 29, Ptgs2 which was shown to be 318 

epigenetically dysregulated in diabetes-prone bicongenic B6.NODC11b x C1tb mice 30, and Prg4 which 319 

upon weight loss in human showed a significant long‐term decrease in blood plasma 31. Furthermore, 320 

Prg4 deficiency was found to protect against glucose intolerance and fatty liver disease in diet-induced 321 

obese mice 32.  322 

Out of the 45 protein coding genes that are located within the nR2 region (Chr3:26,989,539 - 323 

35,953,921) two genes (Prkci and Pik3ca) are in the KEGG insulin signaling pathway. The gene Slc2a2, 324 

which is part of two KEGG pathways (mmu04931 - MODY, and mmu04973 - Carbohydrate digestion and 325 

absorption), is also located within the nR2 QTL region. Literature yielded another four candidates: 326 

Cldn11, one of the five most regulated transcripts in the pancreatic islets of the obesity sensitive New 327 

Zealand Obese (NZO) strain compared to the B6N-ob/ob mice protected from diabetes due to increased 328 

β-cell production 33,34. Furthermore, Kcnmb2 and Kcnmb3, shown to have genetic variants which are 329 

associated with insulin resistance, and are modified by dietary (polyunsaturated) fat content 35 can be 330 

regarded as candidates. The last candidate from literature is Sox2, often discussed as possible candidate 331 

gene in type II diabetes, but its role and association are still unclear. 332 

The nR3 region (Chr3:49,901,885 - 52,973,026) contains only 11 protein coding genes. Located in this 333 

region is the Foxo1 gene which was prioritized due to literature and its prominent role in the KEGG 334 

insulin signaling pathway. Furthermore, Foxo1 contains one SNP in the 5' and six SNPs in the 3' region of 335 

the gene in BFMI mice. The second candidate for this region Setd7 comes from literature. Setd7 was 336 

found to be significantly downregulated after caloric restriction in rhesus macaques 36, and has been 337 

implicated to be involved in the epigenetic regulation of macrophage activation in type II diabetes 37. 338 

The third candidate gene in this region is Rab33b one of the interaction partners of TBC1D1/4 which is 339 

involved in insulin-dependent GLUT4 trafficking 38,39 . 340 

A total of 66 protein coding genes are located within the nR4 region (Chr9:86,816,288 - 99,363,348). 341 

Besides the Pik3cb gene (the interaction partner of Pik3ca, located within nR2) which was prioritized 342 

due its KEGG pathway, two additional candidate genes were detected within the nR4 region: Atp1b3 343 
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which was annotated to the insulin secretion pathway in gene ontology, and Mrap2 which has been 344 

associated with severe obesity in mammals 40. 345 

The nR5 region (Chr19:37,825,545 - 40,410,259) contains 28 protein coding genes, three of which can be 346 

considered as possible candidate genes: Ffar4, involved in brown fat thermogenesis 41, Rbp4, an 347 

adipokine that contributes to insulin resistance in the AG4KO mouse model 42, and Sorbs1 in which the 348 

T228A polymorphism in humans has been associated with obesity and type II diabetes 43. 349 

DNA Sequencing 350 

In total 25 candidate genes within the five new QTL confidence intervals were prioritized for functional 351 

relevance to the BFMI phenotype. DNA sequence variants for these genes occurring in the BFMI860 352 

founder line compared to B6N are summarized in supplemental file 4. Here only mutations with 353 

profound effects are mentioned for brevity.  354 

Most striking is the 50 amino acid deletion found in the Prg4 gene (nR1) in the BFMI860 founder line. 355 

This large deletion of 50 amino acids out of 1221, removes amino acids 600 to 650 in exon 7, and most 356 

likely results in a non-functional protein. This large deletion combined with the previously discussed 357 

literature evidence makes Prg4 the top candidate for the nR1 region.  358 

Atp1b3 located in nR4 has four non-synonymous SNPs (S127T, V247F, H250R, and R277Q) in the 359 

BFMI860 founder line. These mutations are found to be heterozygous in the BFMI860 line despite 360 

inbreeding, while SNPs outside of this gene are found to be homozygous. As such, our hypothesis is that 361 

these three mutations lead to a non-functional protein, which when both alleles are affected cause 362 

(embryonic) lethality. The occurrence of these three non-synonymous SNPs elevates Atp1b3 to the top 363 

candidate for the nR4 region. 364 

Three non-synonymous mutations (S200P, T236A, and P309L) were detected in the Sorbs1 gene (nR5). 365 

Since, the mutations are homozygous in the BFMI860 founder strain, the resulting protein is likely 366 

functional. However, the non-synonymous SNPs might cause protein kinetics to be different between 367 

the BFMI and the wildtype B6N protein variant and thereby contribute to the observed phenotypic 368 

differences between the strains. 369 

Discussion 370 

When dealing with interacting and/or correlated effects, it is often more statistically powerful to treat 371 

them as one categorical variable. Time series modeling is complicated and needs to be performed 372 

carefully in a stepwise fashion, adding effects stepwise to the model, while comparing models and 373 
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reasoning about them at every step of the modeling process. An example of this is litter size and litter 374 

number which both are significant factors in the examined AIL population, but also have a weak but 375 

significant interaction (p = 0.098). In such a situation, it is better to model these two linear covariates as 376 

a single combined categorical variable “litter type” (which is the combination of litter number and litter 377 

size). This significantly improved the resulting model, and removes the need to include an interaction 378 

term, which would add to model complexity. Furthermore, including the categorical variable “litter 379 

type” increases the available number of degrees of freedom remaining for marker - phenotype 380 

association analysis.  381 

The resulting LMM-MQM model contains many factors which may lead to spurious associations due to 382 

small sample size in one of the genotype groups. Therefore, we applied very stringent quality control to 383 

genetic markers. This leads to a reduction in markers that can reliably be used in mapping time series 384 

data. For example in this study 17,971 markers were found to be reliable for usage during LMM-MQM 385 

time series mapping, versus 22,164 markers that were used during our previous research 23 where single 386 

marker, single timepoint QTL mapping was performed. This reduction in the number of suitable markers 387 

decreases the chance of false associations while simultaneously increasing reliability for newly detected 388 

loci. 389 

Time series data on body weights are often collected during experiments, however, when QTL mapping 390 

this time series structure of the data is often not fully exploited. QTLs are mapped at individual time 391 

points, resulting in less power to detect small effect QTLs or QTLs acting continuously in a time 392 

dependent manner. The combination of LMM and MQM mapping methods allows the more fine-grained 393 

detection of QTL by modeling all time points together and compensating for significant genetic effects. 394 

This led in our study to the identification of five additional loci affecting body weight in young mice.  395 

Within each identified region known and unknown candidate genes can be responsible for the 396 

phenotypic alterations. The identification of regions without known candidates are interesting as they 397 

allow discovery of novel candidate genes contributing to the development of obesity over time. Finding 398 

several prior known associations, on the other hand, demonstrates that LMM-MQM mapping improves 399 

the association of genetic factors with body weight, since standard LM and LMM mapping failed to 400 

detect these associations. 401 

Currently more and more phenotypic data is collected across a wider time span 44. This wealth of 402 

temporal data combined with the decrease of costs for genotyping and sequencing allows for more 403 
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sensitive modeling of genetic effects underlying these phenotypes in a wide range of species. However, 404 

this also requires the development of novel methods and algorithms to analyze this high dimensional 405 

data and exploit the temporal structure of this data 5.  406 

Conclusions 407 

QTL mapping using the MQM approach accounts for known genetic effects and can be combined with 408 

LMM time series mapping for more statistical power. It allows to model repeated measurements of a 409 

trait on multiple individuals by modeling the full time series, in contrast with traditional single time point 410 

methods that treat time points individually. Using a full model with all available data, five additional 411 

significant genomic regions contributing to body weight variance were detected. While the LMM 412 

approach individually allows detection of additional loci on different chromosomes, complementing the 413 

LMM approach by MQM the new method was able to compensate for the large effect of the jObes1 414 

which led to the detection of additional QTLs, but also to the dissection of flanking regions of the jObes1 415 

locus. 416 

LMM-MQM timeseries mapping is a generic approach which models complex high dimensional data, 417 

compensates for known genetic effects, and takes advantage of the temporal structure of phenotypic 418 

data. 419 
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mutations detected by DNA sequencing of the BFMI860 founder line 578 
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Figures 579 

 580 

 581 

Figure 1: LMM QTL mapping and LMM-MQM mapping for each time point.  582 

(Top) This figure shows the LMM mapping per time point. The jObes1 locus on chromosome 3 is clearly observed at day 21 (orange) and then from day 42 to 583 

day 70 (orange - purple). We can clearly observe the nR5 locus on chromosome 19 from day 42 to 70 with a non-significant LOD score between 2 and 4. 584 

Regions nR2 and nR3 are obscured by the strong jObes1 effect locus. (Bottom) LMM-MQM mapping per time point, compensated for the strong jObes1 locus. 585 

The intense colors at jObes1 disappeared, since the effect is absorbed by the jObes1 top marker covariate in the model. However, no additional significant QTL 586 

was detected because statistical power at each individual time point is limited. nR1 is observed on chromosome 1 at day 70, nR2 from day 49 to 70 on 587 

chromosome 3, nR3 is not detected in any of the per-timepoint models, and nR4 at days 21, 28, 35, 63 and 70 on chromosome 9, nR5 is consistently detected 588 

from day 42 to 70. However, all of these regions did not reach genome wide significance when using separated per time point mapping instead of time series 589 

mapping, since LOD scores are in the range of 2 to 4 LOD.590 
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  591 

 592 

Figure 2: LMM-MQM mapping, detailed view of chromosome 3. After correction for the jObes1 top 593 

marker two new QTLs on chromosome 3 are observed (nR2 and nR3). nR2 shows a genome-wide 594 

significant LOD score of 5.99 at the top marker UNC030576333 (Chr3:28,575,896). This locus was not 595 

found when mapping without the jObes1 top marker as a cofactor due to linkage between nR2 and 596 

jObes1. nR3 shows a genome-wide significant LOD score of 5.03 at the top marker JAX00522656 597 

(Chr3:51,374,784). This locus was also significantly associated before correction for the jObes1 top 598 

marker, but, due to linkage this QTL was hidden by the large jObes1 QTL. After correction for the jObes1 599 

QTL, enough evidence remains to detect nR3. Furthermore, a significant drop in LOD scores 600 

(Chr3:52,218,893 - 52,370,324) is observable within the confidence interval of nR3 (Chr3:49,901,885 - 601 

52,973,026), this drop is examined more closely in Figure 3. 602 

  603 
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 604 

Figure 3: Detail of the nR3 confidence interval showing a sharp drop in LOD scores around Foxo1. 605 

Distortion of the allele distribution (background coloring of the figure) is observed for 5 SNP markers 606 

between 52,218,893 and 52,370,324 base pairs. In the distorted region, a strong increase in the number 607 

of individuals homozygous for the BFMI allele is observed (Dark blue, 50% of all individuals in the 608 

distorted region), while the percentage of heterozygous individuals stays constant at around 50 %. This 609 

leads to a significant distortion from the expected 25:50:25 ratio, which is consistently observed in the 610 

surrounding region. The distortion leads to fewer than 30 individuals homozygous for the B6N genotype, 611 

causing the B6N/B6N group to be ignored when performing LMM-MQM time series mapping. LOD 612 

scores (blue line) sharply drop since the difference between homozygous BFMI and heterozygous 613 

individuals is not significant. Located within this drop is only Foxo1, a well-known and important 614 

regulator within the insulin signaling pathway in the liver.615 
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 616 

 617 

Tables 618 

Table 1: Time series modeling steps to obtain a null-model to use for LMM-MQM mapping. Starting with a model including Family structure 619 

and litter type environmental covariates are added to the model and their Δ AIC is calculated relative to the previous best model. Including season 620 

actually decreases the fit of the model relative to the amount of degrees of freedom lost. The conclusion/result from each modeling step is 621 

summarized in the last column. Modeling the available time series data resulted in m10 being the most suitable model, and as such it is used in 622 

the LMM-MQM mapping phase as the null-model. 623 

ID Model Random effect Δ AIC Model comparison result 

m0 P = F 1|individual   

m1 P = F + Lt2 1|individual  -21.71  Littertype2 should be included as a fixed effect 

m2 P = F + Lt2 + S 1|individual 1.67  season should NOT be a fixed effect 

m3 P = F + Lt2 + T 1|individual -4700.2  time should be a fixed effect 

m4 P = F + Lt2 + T time|individual -766.4  time should be a random slope effect 

m5 P = F + Lt2 + T + T2 time|individual -3559.6  time2 should be a fixed effect 

m6 P = F + Lt2 + T + T2 + T3 time|individual -962.5  time3 should be a fixed effect 

m7 P = F + Lt2 + T + T2 + T3 + T4 time|individual -6.6  time4 should NOT be a fixed effect 

m8 P = F + Lt2 + T + T2 + T3 + M(jObes1)+(M(jObes1):T) time|individual -231.8  jObes1 top marker and interaction with time should be included 
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Table 2: Overview of QTLs detected with the LMM-MQM approach. For each region start and stop positions are given based on the 624 

conservative 2.0 LOD drop. Effect sizes listed as grams difference at the start of the experiment (columns H and BFMI) and in milligrams/day for 625 

the locus x time interaction (columns H/Day and BFMI/Day). All effects are relative to the group of individuals homozygous B6N for the top 626 

marker locus (B6N = X and B6N/Day = Y). We list the effect size of the jObes1 locus in the table to allow the comparison of effect size between 627 

different loci. The jObes1 locus effects are obtained from the null-model and show a clear dominance pattern in the body weight gain for 628 

individuals homozygous for BFMI locus (B6N/Day = Y, H/Day ≈ Y-11 mg/day, BFMI/Day = Y+201 mg/day). We also observe that the estimated 629 

intercept is negative (in a dominant way) for the jObes1 locus with homozygous BFMI individuals weighing around 1.44 grams less at the start of 630 

weighing (d21) which is consistent with previous findings. All other effect sizes mentioned in the table are from LMM-MQM mapping which 631 

include the jObes1 main effect and its interaction with time. The number of individuals in each genotype group is color coded, light green colors 632 

represent lower sample size, while dark green represents higher number of individuals. 633 

Name Chr Start Top marker Stop LOD Number of alleles Effect relative to homozygous B6N 

            B6N H BFMI H BFMI   H/Day BFMI/Day 

nR1 1 149,553,681 UNC1938399 154,868,088 7.14 83 145 116 0.80 g 0.41 g   -78 mg -67 mg 

nR2 3 26,989,539 UNC030576333  35,953,921 5.99 46 173 125 0.10 g 0.42 g   39 mg -25 mg 

nR3 3 49,901,885 JAX00522656  52,973,026 5.03 60 158 126 0.21 g -0.08 g   46 mg 81 mg 

nR4 9 86,816,288 UNC090485124 99,363,348 6.34 171 133 40 -0.05 g 0.49 g   -27 mg -105 mg 

nR5 19 37,825,545 UNC30294194 40,410,259 4.83 81 179 81 0.11 g -0.37 g   12 mg 69 mg 

            
   

          

jObes1 3 36,481,201 UNC5048297 36,854,743 43.23 39 165 140 -0.07 g -1.44 g   -11 mg 201 mg 
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Table 3: Variance explained by novel QTLs (nR1 to nR5) and Jobes1 on body weight across all 634 

measured time points.  635 

Age 
(days) nR1 nR2 nR3 nR4 nR5   jObes1 

21 1.47 0.23 1.04 0.49 0.05   4.77 

28 0.87 0.16 0.66 0.01 -0.15   -1.35 

35 1.70 1.09 1.65 0.82 0.46   -0.54 

42 2.69 0.90 2.66 2.35 1.19   16.53 

49 2.27 1.94 2.48 2.43 1.62   28.83 

56 2.82 2.76 3.01 3.85 1.40   34.18 

63 2.74 1.90 2.79 3.33 1.12   34.54 

70 3.41 2.62 3.47 3.89 1.95   36.05 

 636 

  637 
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