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Abstract 
Summary: Recent years have seen the release of several toolsets that reveal cell-cell 
interactions from single-cell data. However, all existing approaches leverage mean celltype 
gene expression values, and do not preserve the single-cell fidelity of the original data. Here, 
we present NICHES (Niche Interactions and Communication Heterogeneity in Extracellular 
Signaling), a tool to explore extracellular signaling at the truly single-cell level. NICHES allows 
embedding of ligand-receptor signal proxies to visualize heterogeneous signaling archetypes 
within cell clusters, between cell clusters, and across experimental conditions. When applied to 
spatial transcriptomic data, NICHES can be used to reflect local cellular microenvironment. 
NICHES can operate with any list of ligand-receptor signaling mechanisms and is compatible 
with existing single-cell packages and pseudotime techniques. NICHES is also a user friendly and 
extensible program, allowing rapid analysis of cell-cell signaling at single-cell resolution. 
Availability and implementation: NICHES is an open-source software implemented in R under 
academic free license v3.0 and it is available at github.com/msraredon/NICHES. 
Contact: michasam.raredon@yale.edu; yuval.kluger@yale.edu 
 
1. Background 

Cellular phenotype across tissues and organs is heavily influenced by the biological 
microenvironment in which a given cell resides (Baccin, et al., 2020; Davidson, et al., 2020; 
McCarthy, et al., 2020; Nabhan, et al., 2018; Qadir, et al., 2020; Rodda, et al., 2018; Tikhonova, 
et al., 2020; Zhou, et al., 2018). Understanding the influence of cell-cell signaling on cell 
phenotype is a major goal in developmental and tissue biology and has profound implications 
for our ability to engineer tissues and next-generation cellular therapeutics. Single-cell 
technologies, which capture information both from individual cells and their surrounding 
cellular environment at the same time, are uniquely suited to exploring phenotype-
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environment relations. Many techniques are available to extract and prioritize extracellular 
signaling patterns from single-cell data, including CellPhoneDB, NicheNet, CellChat, 
Connectome, SingleCellSignalR, iTALK, iCELLNET, Cellinker, CellCall, and PyMINEr, among others 
(Browaeys, et al., 2019; Cabello-Aguilar, et al., 2020; Efremova, et al., 2020; Jin, et al., 2020; 
Noël, et al., 2020; Raredon, et al., 2021; Tyler, et al., 2019; Wang, et al., 2019; Zhang, et al., 
2021; Zhang, et al., 2021). However, current computational methods are based on mean 
expression values taken from each celltype cluster. Mean expression representation does not 
take full advantage of the single-cell resolution of the original measurements, thereby 
obscuring the rich repertoire of signaling patterns between cells. The field can benefit from a 
tool that assesses cell-cell signaling at the truly single-cell level, so that intra- and inter-cluster 
signaling patterns can be inferred from the observed data. 

Here, we describe NICHES (Niche Interactions and Communication Heterogeneity in 
Extracellular Signaling), a computational workflow to characterize cellular interactions in ligand-
receptor signaling-space at the single-cell level. NICHES is designed for analysis of two types of 
cellular interactions: cell-cell signaling (defined as the signals passed between cells, determined 
by the product of the ligand expression of the sending cell and the receptor expression of the 
receiving cell) and cellular niche (defined as the signaling input to a cell, determined by the sum 
of the ligand profiles of the surrounding cells and the receptor profile of the receiving cell). 
NICHES allows embedding, exploration, and analysis of these interactions using already-existing 
single-cell software, such as Seurat and Scanpy (Butler, et al., 2018; Wolf, et al., 2018). 
 
2. Approach 

NICHES takes single-cell data as input and constructs matrices where the rows are 
extracellular ligand-receptor signaling mechanisms and the columns are cell-cell extracellular 
signaling interactions (Fig 1A-C). Cell-cell interactions are represented as columns whose entries 
are calculated by multiplying ligand expression on the sending cell with receptor expression on 
the receiving cell, for each mechanism (Fig 1B). Cellular microenvironment, or the niche of each 
cell, is represented as columns that are calculated by summing all incoming cell-cell edges 
which land on the respective receiving cell (Fig 1C). Row names are based on a ground-truth 
ligand-receptor mechanism list which can be customized by the user. NICHES provides built-in 
access to ligand-receptor lists from the OmniPath and FANTOM5 databases (Ramilowski, et al., 
2015; Türei, et al., 2021)and is compatible with custom mechanism lists containing any number 
of ligand or receptor subunits. 

When applied to spatial transcriptomic data, interactions may be constrained to those 
occurring between spatial neighbors. When applied to single-cell data, NICHES samples unique 
cell pairs from each celltype-celltype cross. Detailed methods and customizable options are 
provided in Supplemental Information. 

 
3. Application 
 
3.1 Advantages of NICHES over Existing Techniques 
 
NICHES facilitates discovery of intra-cluster signaling heterogeneity and subpopulations which 
can be hidden by existing cell-cell signaling inference tools (Supp Fig 1A-C, Supplemental Text). 
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Because NICHES does not leverage cluster-wise mean values, significant differences between 
experimental conditions may be detected when expression distribution shifts but the mean 
value remains similar (Supp Fig 1E-I, Supplemental Text). NICHES also allows users to visualize 
changes in niche signaling due to the addition or loss of a celltype, a task which is not possible 
with current methods (Supp Fig 1J-L, Supplemental Text).  
 
3.2 Cell-Cell Signaling Atlases 
 
NICHES allows comprehensive visualization of ligand-receptor patterns that are present in 
single-cell data (Fig 1D-F). A uniform sample is taken of every celltype-celltype interaction 
resulting in a cell-cell signaling atlas that can be viewed via low-dimensional embedding (Fig 
1D). Each celltype-celltype interaction displays a specific signaling signature with some degree 
of intra-relationship heterogeneity (Fig 1E). A given celltype-celltype cross may then be 
subclustered (Fig 1F) to further explore heterogeneous relationships and identify mechanisms 
specific to subtypes of cell crosses (Tgfb1-Cav1 is specific to Subcluster 2 in this instance.)    

  
3.3 Mapping Local Microenvironment in Spatial Atlases 
 
NICHES quantifies local microenvironments in spatial transcriptomic datasets. Interactions may 
be limited to spatial nearest neighbors, allowing an estimation of local niche for each 
transcriptomic spot to be visualized in low-dimensional space (Fig 1G). Each celltype displays a 
stereotyped niche signature with observable intra-cluster heterogeneity (Fig 1H). Our approach 
provides a broad picture of cell signaling, while identifying tightly localized celltype-specific 
niche interactions (Fgf1-Fgfr2 in this instance is found to be specific to the oligodendrocyte 
microenvironment, in agreement with existing literature (Furusho, et al., 2020; Furusho, et al., 
2015).) Niche interactions of interest may be visualized in spatial context (Fig 1I). Sub-clustering 
may be performed to identify intra-celltype microenvironment heterogeneity correlated with 
tissue boundaries and transition regions (Supp Fig 2). 
 
3.4 Niche Signaling Changes During Differentiation 
 
NICHES may be applied to time-course data to explore how niche signaling changes in 
pseudotime and over differential branching trajectories (Fig 1J,K). The niche for each cell is 
calculated by summing all incoming cell-cell interactions from that cell’s respective batch or 
timepoint, across each signaling mechanism queried, for a given receiving cell. Pseudotemporal 
ordering then allows graphing of extracellular niche signals that are associated with lineage 
branches and differentiation trajectories as a celltype develops within context (Fig 1L). 
 
4. Conclusion 
 
NICHES is a simple but powerful approach to explore cell-cell signaling interactions in single-cell 
and spatial transcriptomic data. NICHES supplements the capabilities of current techniques, 
allowing single-cell resolution of niche signaling and cell-cell interactions, thereby establishing 
rich representations to analyze environment-phenotype relationships in tissues. 
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Figures 
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Figure 1: NICHES allows analysis of cell-cell interactions with single-cell resolution. A) A set of 
cells may interact through many different ligand-receptor mechanisms. B) NICHES represents 
cell-cell interactions as columns whose entries are calculated by multiplying ligand expression 
on the sending cell with receptor expression on the receiving cell, for each signaling 
mechanism. Low-dimensional embeddings may then be made of cell-cell interactions. Note 
schematic clustering of similar profiles. C) Cellular microenvironments, or niches, of each cell 
are represented as columns calculated by summing all incoming cell-cell columns landing on the 
receiving cell. This allows low-dimensional embedding of a proxy for sensed microenvironment 
for each cell. D) NICHES analysis of single-cell (SC) data of four cell types co-localized in the rat 
pulmonary alveolus yields a quantitative cell-cell signaling atlas visualized by low-dimensional 
embedding. E) Biologically relevant signaling markers can be identified specific to each celltype-
celltype interaction. Because single-cell fidelity is preserved, NICHES allows observation of fine 
intra- and inter-cluster heterogeneity unobservable using mean-wise techniques. F) 
Subclustering of a single celltype-celltype cross allows observation of fine heterogeneity and 
identification of mechanisms employed by only a specific subset of cell pairings (Tgfb1-Cav1, 
purple arrow.)  G) Local microenvironment may be estimated from spatial transcriptomic (ST) 
datasets by limiting cell-cell interactions to those within local neighborhoods, yielding a ‘niche’ 
atlas for each transcriptomic spot, which may be visualized in low dimensional space. H) 
Signaling mechanisms specific to the microenvironments of selected celltypes. Fgf1-Fgfr2 (cyan 
arrow) is a known potent regulator of oligodendrocyte phenotype (Furusho, et al., 2020; 
Furusho, et al., 2015) and here is found to be specific to the microenvironment of 
oligodendrocytes. I) Niche interactions of interest may be directly visualized in situ. J) Time-
course data of cortical development in mouse captures neuron differentiation, including two 
distinct lineage trajectories. K) Pseudotemporal ordering of the same data shows the direction 
of differentiation. L) NICHES allows identification of key extracellular signals associated with 
lineage divergence over pseudotime, including known WNT- and NRXN-family signaling 
associated with cortical development (Jenkins, et al., 2016; Wang, et al., 2018) 
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Supplemental Figures 
 

 
 
Supplemental Figure 1: NICHES captures biologically relevant nuances in cell-cell connectivity. 
  
Simulation 1: NICHES reveals hidden intra-cluster heterogeneity (A-C.) In this first simulation, 
there are two celltypes labeled C1 and C2 (A, top). These two celltypes have hidden 
subpopulations communicating in distinct ways via two signaling mechanisms A2m-Lrp1 and 
Ace-Agtr2 (A, bottom). Subpopulation S2 expresses ligand A2m higher than S1 (B, top), while 
subpopulation S3 expresses receptor Agtr2 higher than S4 (B, bottom). This creates four distinct 
cell-cell signaling relationships even though only two celltypes have been crossed. When run 
through NICHES, all four distinct cellular relationships are clearly discernable in a two-
dimensional embedding and may be grouped using k-means clustering (C, top). The k-means 
clusters almost perfectly resemble the ground truth subtype crosses (C, bottom). A black 
asterisk has been added showing the single connectivity value that would be calculated if only 
mean expression were used to compute connectivity between celltypes C1 and C2. 
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Simulation 2: NICHES preserves information regarding differential signaling distributions in 
disparate experimental conditions (E-I.) This simulation compares two cases (labeled Case 1 and 
Case 2), representing different experimental conditions with the same number of cells, same 
celltypes present, and similar mean connectivity (E). Case 1 sending cells express ligand sparsely 
but highly, while Case 2 sending cells express ligand broadly but lowly (F.) Receptor expression 
is identical in each Case (G). While mean connectivity is nearly identical (H), NICHES captures 
the significantly different connectivity between the two cases (I).  
 
Simulation 3: NICHES allows high-dimensional visualization of altered Niche topology due to 
addition or removal of cells (J-L). This simulation demonstrates the capability of NICHES to 
represent altered system-cell signaling topology due to the addition or removal of cells. In Case 
1, there are two communicating cell types C1 and C2 (J). In Case 2, a third cell type (C3) has 
entered the system which expresses ligands sensed by the other cells (K). The addition of signal 
from C3 alters the relevant ligand-receptor rows in the niche matrix associated with receiving 
population C2. When we use NICHES to calculate system-to-cell signaling within each case, we 
see a clear shift in the character of the sensed environment of celltype C2. NICHES therefore 
empowers the study of complex biological questions, such as how added, aberrant or 
infiltrating cells might affect the microenvironment of a receiving celltype across experimental 
conditions or disease states.  
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Supplemental Figure 2: NICHES Reveals Intra-Celltype Microenvironment Heterogeneity 
A) Spatial transcriptomic data labeled by dominant celltype (see Methods). B) UMAP 
embedding of cellular niche for each transcriptomic location. C) Sub-clustering of the L5 IT niche 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401


 9 

represented spatially and D) within UMAP space. Exploration of marker mechanisms reveals 
niche interactions specific to the microenvironments within each subcluster (E-I). 
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Supplemental Text 
 
NICHES reveals hidden intra-cluster signaling heterogeneity 
 
To demonstrate NICHES’s ability to discover intra-cluster heterogeneity, we generated a 
synthetic single-cell RNA-seq dataset with 400 cells equally divided into 2 cell types (C1 and C2), 
which can be separated by their marker genes (Supp Fig A, top).  
 
Additionally, there are 2 subtypes S1 and S2 within C1 and 2 subtypes S3 and S4 within C2 
(Supp Fig A, bottom). By design, S1 and S2 interact differentially with S3 and S4 through 2 
ligand-receptor mechanisms. Specifically, S2 has a higher expression of A2m ligand gene 
compared to S1 (corresponding receptor gene is Lrp1 that is highly expressed in S3 and S4), and 
S3 has a higher expression of receptor gene Agtr2 compared to S4 (corresponding ligand gene is 
Ace which is highly expressed in S1 and S2), as shown in Supp Fig B. Due to the subtle gene 
expression difference, one cannot distinguish the subtypes based on the overall gene 
expression profiles. But because the nuance involves ligand and receptor genes, we may apply 
NICHES to capture this signal.  
 
Supp Fig C shows the cell-cell matrix output of NICHES, embedded in 2D mechanism space, 
clustered via k-means (top) and labeled by ground-truth subtype interaction (bottom). Sending 
cells are all from C1 and receiving cells are all from C2, and the space is 2-dimensional because 
there are only 2 ligand-receptor mechanisms in this simulation: A2m-Lrp1 and Agtr2-Ace. Note 
that the clustering results (Supp Fig C, top) are almost completely identical to the ground truth 
subtype interaction pair labels (Supp Fig C, bottom). For reference, we have added a single 
black asterisk representing the single mean connectivity value between C1 and C2 which would 
result from using a mean-wise computational method to assess ligand-receptor connectivity.  
 
 
NICHES preserves information regarding differential signaling distributions in disparate 
experimental conditions 
 
Next, we sought to demonstrate that NICHES can register cellular archetype shift. We simulated 
2 scRNAseq cases, both of which contain 2 cell types (C1 and C2), as shown in Supp Fig E. In 
both cases, we simulated 1 active ligand-receptor channel between C1 and C2 (C1 expresses 
the ligand gene A2m and C2 expresses the receptor gene Lrp1). By design, the C2 expression 
level of receptor Lrp1 is identical in both cases (Supp Fig G). C1 expression level of ligand A2m is 
sparse but high in Case 1, and broad but low in Case 2, with similar mean values. Because the 
mean expression level of A2m is similar, the mean connectivity of A2m-Lrp1 is similar between 
the 2 cases (Supp Fig H). NICHES, however, is easily able to detect this significant difference in 
connectivity (Supp Fig I). 
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NICHES allows high-dimensional visualization of altered systems-cell topology due to addition 
or removal of cells 
 
Next, we sought to evaluate NICHES’s ability to map changes in system-to-cell signaling 
topology. We simulated two datasets: the first (Case 1) has 2 cell types (C1 and C2, Supp Fig J) 
while the second (Case 2) has 3 cell types (C1, C2, and C3, Supp Fig K). C1 and C2 are connected 
via two mechanisms, A2m-Lrp1 and Ace-Agtr2, where C1 cells express the ligands A2m and Ace 
and C2 cells express the receptors Lrp1 and Agtr2. C3 also expresses ligands A2m and Ace. From 
the perspective of C2, the expression of ligand within this cell system is markedly increased 
when C3 is added (from a biological perspective, C2 has a higher ‘chance’ of receiving signal 
when the C3 population is present), a phenomenon which may be directly captured and 
visualized using NICHES (Supp Fig L). 
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Supplemental Methods 
 
 
Mathematical Formalism 
First, we define basic notations: 
 

Table S1. Notations 
Notation Description and terminology 

𝑪 𝑪 = {𝑐!, 𝑐", … , 𝑐#!}. An ordered set of cells in the system where 𝑁$  is 
the total number of cells in the system. In the spatial transcriptomic 
datasets, we also use 𝑪 to represent each measurement (e.g. spots). 

𝑿 Normalized Gene Expression Matrix. For Cell 𝑐%, 𝑿&" =

*𝑥&"
'# , 𝑥&"

'$ , … , 𝑥&"
'%& 	-

(
 is its gene expression vector, where 𝑔%  is the 𝑖th 

gene 𝑖	 ∈ {1,2, … , 𝑁)} and where 𝑁)  is the total number of genes. For 
instance, 𝑥&"

*'  is the gene expression level of ligand 𝑙+ from Cell 𝑐%, 𝑥&(
,)  

is the gene expression level of receptor 𝑟- from Cell 𝑐.  
𝑴 𝑴 = 6𝑚!, 𝑚", … ,𝑚#*8. An ordered set of ligand-receptor 

mechanisms where 𝑁/ is the total number of mechanisms. Each 
mechanism 𝑚+has a corresponding ligand 𝑙+ and receptor 𝑟+ 

𝑳 𝑳 = [𝑙!, 𝑙", … , 𝑙#*]. A vector of reference ligands. Each 𝑙+ has a 
corresponding mechanism 𝑚+ from 𝑴 in which it participates. 𝑙+ can 
consist of multiple subunits. 

𝑹 𝑹 = [𝑟!, 𝑟", … , 𝑟#*]. A vector of reference receptors. Each 𝑟+ has a 
corresponding mechanism 𝑚+ from 𝑴 in which it participates. 𝑟+ can 
consist of multiple subunits. 

𝑬 𝑬 ∈ {0,1} , unweighted and directed adjacency matrix that indicates 
which cells are connected and can interact in the system. For 
instance, 𝐸%. = 1 indicates that Cell 𝑖 and Cell 𝑗 are connected and 
the ligand signals of Cell 𝑖 can be received by the receptors of Cell 𝑗 

 
Given the gene expression data 𝑿 of a cell system 𝑪, along with a list of known ligand-receptor 
mechanism 𝑴, we aim to define a vector 𝑆$"$( ∈ ℝ

#*  for every connected cell pair cell 𝑖 and 
cell 𝑗 in a pre-defined cell adjacency matrix 𝑬, such that 𝑆$"$(  can characterize the 𝑁/ -
dimensional ligand-receptor interaction profiles between cell 𝑖 sending signal via ligand and cell 
𝑗 receiving signal via its receptors. 
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Cell-Cell Matrix 

To construct the Cell-Cell Matrix, we define 𝑆$"$( = *𝑠$"$(
0# , 𝑠$"$(

0$ , … , 𝑠$"$(
0%*-

(
in which 𝑠$"$(

0' =

𝑥$"
*' × 𝑥$(

,', where the mechanism 𝑚+ consists of ligand 𝑙+ and receptor 𝑟+. We choose the 
multiplication operation so when the ligand or the receptor are not expressed the product is 
zero, representing no cell-cell signaling. 
  
We concatenate the 𝑆$"$(  Cell-Cell Interaction vectors to construct the Cell-Cell Matrix: 𝑺 ∈
ℝ#*×#+, where 𝑁/ is the total number of mechanisms and 𝑁2 = ∑ 𝐸%.

#!
%,. 	is the total number of 

(directed) connected cells. 
 
𝑺 can be used as input to many computational analysis pipelines, including dimensionality 
reduction, clustering, differential expression, pseudo-temporal ordering, and trajectory 
inference, etc., to investigate cell-cell interactions at the individual cell level. 
 
Computing 𝐄 for single-cell RNA-seq/spatial transcriptomic datasets        

One step before computing a Cell-Cell Matrix is to compute the adjacency matrix 𝑬. For single-
cell RNA-seq datasets we assume a fully connected cellular system. However, the 
computational complexity of 𝑺 becomes 𝑶I𝑵𝑪

𝟐K, which greatly hinders the application of Cell-
Cell Matrix onto cellular systems of large number of cells (e.g. 𝑁$ > 1	 × 106).  
 
To reduce the complexity, we adopt a random sampling scheme to down-sample edges and to 
compute a new 𝑬M as follows: Let’s denote the set of cell type labels in the system by 𝑃 =
6𝑝!, 𝑝", … , 𝑝#78 where 𝑁7 is the total number of cell types. The set of cells associated with each 
type is denoted by 𝑁 = 6𝑛!, 𝑛", … , 𝑛#78. For each pair of cell types within 
{(𝑝+ , 𝑝0)|𝑘 = 1,2, … , 𝑁7; 𝑚 = 1,2, … , 𝑁7}, we draw 2 sets of cells 𝐶89:,;'and 𝐶89:,;,  from 
cells of cell type 𝑝+ and 𝑝0 uniformly, i.e., {𝐶89:,;' ⊆	𝐶;'|	|𝐶89:,;'| 	= min	(𝑛+ , 𝑛0)} and 
{𝐶89:,;, ⊆	𝐶;,|	|𝐶89:,;,| 	= min	(𝑛+ , 𝑛0)} (|𝑆| denotes the number of elements in set S). 
Then we pair up 𝐶89:,;'  and 𝐶89:,;,: 𝑄 = 6I𝑐%

89:,;' , 𝑐%
89:,;,K\𝑖 = 1,2, … ,min	(𝑛+ , 𝑛0)}. Lastly, 

each entry in the new adjacency matrix can be set as 𝐸]%. =	 ^
1, 𝑖𝑓	I𝑐% , 𝑐.K ⊆ 𝑄
0,																					𝑒𝑙𝑠𝑒

	.  

 
For spatial transcriptomic datasets we constrain the interactions among cells to be only within a 
certain distance threshold or a certain local neighborhood.  To be more specific, let us denote 𝑫 
as the Euclidean distance matrix among cells computed from the spatial locations, where 𝑑%.  is 
the distance between Cell 𝑖 and Cell 𝑗. Given a distance threshold 𝑟, 𝐸%.  is computed as  𝐸%. =

	^
1, 𝑖𝑓	𝑑%. ≤ 𝑟
0,													𝑒𝑙𝑠𝑒

 for each entry of 𝑬 for spatial transcriptomic datasets. Alternatively, the user 

can specify the parameter k which computes a k-nearest neighbor (knn) graph from	𝑫 and the 
adjacency matrix 𝐸 will be computed as a mutual nearest neighbor graph	from this knn graph, 

i.e., as  𝐸%. =	^
1, 𝑖𝑓	𝑖, 𝑗	𝑎𝑟𝑒	𝑚𝑢𝑡𝑢𝑎𝑙	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
0,																																																		𝑒𝑙𝑠𝑒 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2022.01.23.477401doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.23.477401


 14 

 
Niche Matrix 
Besides the base cell-cell interaction formulation, we extend our original definition of the Cell-
Cell Matrix to investigate cellular niche and cellular influence interactions.  
 
Specifically, we define the Niche Matrix as: 𝒀 ∈ ℝ#*×#!, where 𝑁/ is the total number of 
mechanisms and 𝑁$  is the total number of cells in the system. A column vector of 𝒀 is defined 

as 𝑌$" = *𝑦$"
0# , 𝑦$"

0$ , … , 𝑦$"
0%*-

(
∈ ℝ#*, i.e., each column of 𝒀 is a 𝑁/ -dimensional vector that 

characterizes the interaction profiles between cells sending ligand signals to Cell 𝑖 which 
possesses the relevant receptors to receive these signals.  
 
The connectivity value on one mechanism (e.g. 𝑚+) between sending cells and Cell 𝑖 is defined 
as 𝑦$"

0' = 𝑜𝑝(𝑋*') 	× 𝑥$"
,'  where the mechanism 𝑚+ consists of ligand 𝑙+ and receptor 𝑟+, 𝑋*'  

denotes the row vector of 𝑙+’s expression levels across the cells that are connected to Cell 𝑖, 
and 𝑜𝑝() is a vector operator which, in our implementation, can be either 𝑠𝑢𝑚 (default) or 
𝑚𝑒𝑎𝑛.  
 
Similarly, we define the Influence Matrix as: 𝒁 ∈ ℝ#*×#!  where each column of 𝒁 is a 𝑁/ -
dimensional vector that characterizes the interaction profiles between Cell 𝑖 that sends the 
ligand signals and the cells receiving from it. Each connectivity value between Cell 𝑖 and the 
system is defined as 𝑧$"

0' = 𝑥$"
*' × 𝑜𝑝(𝑋,') where the mechanism 𝑚+ consists of ligand 𝑙+ and 

receptor 𝑟+, 𝑋,'  denotes the row vector of 𝑟+’s expression levels across the cells that connect 
to Cell 𝑖 in the system, and 𝑜𝑝() is again either 𝑠𝑢𝑚 (default) or 𝑚𝑒𝑎𝑛. 
 
For single-cell RNA-seq datasets without spatial coordinates, we assume a fully connected 𝑬 
involving all cells measured within a system. For spatial transcriptomic datasets, we construct 𝑬 
in the same fashion as for the spatial Cell-Cell Matrix, limiting edges to neighbors within radius 
𝑟 or within a user-defined set of nearest neighbors. 
 
Metadata transfer and flexible differential analysis 
NICHES allows the researcher to carry over metadata (i.e. sample labels, coarse- and fine-grain 
cluster labeling, experimental conditions) from source data, allowing rapid downstream 
differential analysis between already tagged groupings of cells. For every input metadata 
category, the NICHES Cell-Cell Matrix output object has Sending Metadata, Receiving Metadata, 
and Sending-Receiving Metadata associated with every column. The Niche Matrix and Influence 
Matrix have only Receiving Metadata and Sending Metadata associated with their columns, 
respectively.  
 
Because each Cell-Cell Matrix contains many individual measurements of cell pairings (or 
environment-cell pairings in the Niche Matrix), differential analysis can be used to reveal ligand-
receptor mechanisms preferential to a given celltype-celltype cross within a system, or to 
identify top differential signaling mechanisms across subject, disease state, experimental 
condition, or tissue. Such calculations may be performed for specific celltype-celltype crosses or 
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for other custom groupings as the user desires, based on mapped metadata. We recommend 
using ROC analysis to measure how well a mechanism differentiates two groups compared to 
standard two-sample tests when the columns in Cell-Cell Matrix or Niche Matrix are no longer 
independent. 

 
Considerations regarding data imputation 
With unimputed data, the partial transcriptome sampling (‘dropout’) which is intrinsic to some 
single-cell RNA-seq technologies can cause some heterogeneity in downstream cell-to-cell 
measurements and resulting clustering due to which specific barcodes are paired. This 
phenomenon can occur even within a single celltype-to-celltype vector, which some users may 
consider artifactual and others may consider biologically relevant. Imputation greatly lessens 
this heterogeneity. 
 
Application to simulated data 
We generate 3 simulation datasets (Simulation 1, Simulation 2, Simulation 3) for 3 separate 
simulation analyses (Supplemental Fig A-C, Fig E-I, Fig J-L) respectively. For each dataset, we 
simulate 3 categories of genes: signaling genes (ligands and receptors), 50 non-signaling marker 
genes to differentiate each cell type, and 5000 noise genes. We assume the genes in the 
datasets follow negative binomial (NB) distributions parametrized by parameter 𝜇 which 
characterizes the mean expression level, and the dispersion parameter 𝛾. We describe the 
exact parameter settings for each dataset as follows: 

 
Table S2: Count matrix design for Simulation 1 

 Cell type 1 (C1) (200 cells) Cell type 2 (C2) (200 cells) 
 Subtype 1 (S1) 

(100 cells) 
Subtype 2 (S2) 

(100 cells) 
Subtype 3 (S3) 

(100 cells) 
Subtype 4 (S4) 

(100 cells) 
A2m NB(𝜇=1,	𝛾=20) NB(𝜇=30,	𝛾=20) 0 
Lrp1 0 NB(𝜇=30,	𝛾=20) NB(𝜇=30,	𝛾=20) 
Ace NB(𝜇=30,	𝛾=20) NB(𝜇=30,	𝛾=20) 0 

Agtr2 0 NB(𝜇=30,	𝛾=20) NB(𝜇=1,	𝛾=20) 
Marker genes 

(50 genes) 
NB(𝜇=10,	𝛾=20) NB(𝜇=20,	𝛾=20) 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
Table S3: Count matrix design for Simulation 2 (Case 1) 

 Cell type 1 (C1) (100 cells) Cell type 2 (C2) (100 cells) 
A2m NB(𝜇=100,	𝛾=20) 

(10 cells) 
0 (90 cells) 0 

Lrp1 0 NB(𝜇=5,	𝛾=20) 
Marker genes 

(50 genes) 
NB(𝜇=10,	𝛾=20) 

 
NB(𝜇=20,	𝛾=20) 
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Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
 Table S4: Count matrix design for Simulation 2 (Case 2) 

 Cell type 1 (C1) (100 cells) Cell type 2 (C2) (100 cells) 
A2m NB(𝜇=10,	𝛾=20) 0 
Lrp1 0 NB(𝜇=5,	𝛾=20) 

Marker genes 
(50 genes) 

NB(𝜇=10,	𝛾=20) 
 

NB(𝜇=20,	𝛾=20) 
 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
Table S5: Count matrix design for Simulation 3 

 Cell type 1 (C1) (1000 
cells) 

Cell type 2 (C2) (1000 
cells) 

Cell type 3 (C3) (1000 
cells) 

A2m NB(𝜇=5,	𝛾=20) 0 NB(𝜇=5,	𝛾=20) 
Lrp1 0 NB(𝜇=30,	𝛾=20) 0 
Ace NB(𝜇=5,	𝛾=20) 0 NB(𝜇=5,	𝛾=20) 

Agtr2 0 NB(𝜇=30,	𝛾=20) 0 
Marker genes (50 

genes) 
NB(𝜇=10,	𝛾=20) NB(𝜇=20,	𝛾=20) NB(𝜇=30,	𝛾=20) 

Noise genes 
(5000 genes) 

NB(𝜇=15,	𝛾=20) 

 
Application to native lung single-cell transcriptomic data 
 
Data was downloaded from (Raredon, et al., 2019), subset to 4 main populations of interest, 
and run through standard principle component analysis (PCA), clustering, and UMAP 
embedding pipelines in Seurat (McInnes, et al., 2018; Stuart, et al., 2019). Data was imputed 
using ALRA (Linderman, et al., 2022) and then run through the NICHES function RunCellToCell. 
The resulting signaling matrix was then used to create a new Seurat object which was scaled 
and run through PCA again and embedding using UMAP. FindAllMarkers was used in Seurat to 
identify cell-cell interaction markers of interest. 
 
Application to brain spatial transcriptomic data 
Anterior mouse brain data was downloaded from 10x Genomics (2020) and preprocessed 
following the steps in Seurat (Stuart, et al., 2019), with subsetting to the frontal cortex region 
only. We integrated the data with a reference single-cell RNA-seq dataset (Tasic, et al., 2016) 
and used its cell type annotations to predict the labels of the spatial pixels by a probabilistic 
classifier (Seurat TransferData function). We then annotated each spatial pixel by its most 
probable label. 
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For NICHES matrix construction, we imputed the data with ALRA (Linderman, et al., 2022) based 
on the normalized data matrix, and then applied the NICHES Neighborhood-to-Cell function to 
compute niche signaling between direct histologic neighbors. The resulting niche matrix was 
embedded using UMAP (McInnes, et al., 2018) in Seurat 4.0 (Hao, et al., 2021). FindAllMarkers 
in Seurat was used to compute top markers for each celltype niche. 
 
Application to pseudotemporally ordered cortical single-cell data 
Single-cell RNA-seq data was taken from Di Bella, et al.(Di Bella, et al., 2021). Data was subset 
to the CPN and CFuPN lineages which included the apical progenitor, intermediate progenitor, 
migrating neuron, CPN, SCPN, and CThPN cell types. Timepoints E10.5, E11.5, and E12.5 were 
removed since they did not adequately capture the cell types of interest for downstream 
trajectory analysis. Niche signaling was computed for each experimental batch using the 
NICHES System-to-Cell function.  
 
For the pseudotime analysis of the single-cell data, Louvain clustering was first conducted. A 
PAGA graph was computed to identify the branch point of the trajectories.(Wolf, et al., 2019) 
Finally, diffusion pseudotime was used to compute exact pseudotime values along the 
trajectories.(Haghverdi, et al., 2016) A random cell from the E13 apical progenitors was used as 
the root cell.  
 
The data was subset to the CFuPN lineage and the mechanisms in the niche signaling data were 
subset to those that had at least 20% of non-zero values. Pearson correlation was computed 
between niche signaling and pseudotime for every cell and mechanisms of interest were 
identified using an FDR cutoff of 0.05 and a minimum correlation of 0.4. Niche matrix values for 
these mechanisms were then plotted in a heatmap ordered by the pseudotime values.  
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